JPH09228869A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPH09228869A
JPH09228869A JP3622796A JP3622796A JPH09228869A JP H09228869 A JPH09228869 A JP H09228869A JP 3622796 A JP3622796 A JP 3622796A JP 3622796 A JP3622796 A JP 3622796A JP H09228869 A JPH09228869 A JP H09228869A
Authority
JP
Japan
Prior art keywords
fuel
cylinders
injection
air
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3622796A
Other languages
Japanese (ja)
Inventor
Keiji Okada
圭司 岡田
Tsutomu Nakada
勉 中田
Yoshiki Sekiya
芳樹 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3622796A priority Critical patent/JPH09228869A/en
Publication of JPH09228869A publication Critical patent/JPH09228869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To activate catalysts in art early stage, and concurrently make the difference in output small between each rich cylinder and each lean cylinder by detecting the warming condition of catalysts, setting the quantity of fuel to be fed to specified cylinders when catalysts are in a cooling condition, greater than that to be fed to the other cylinders, furthermore dividing the quantity of fuel, and thereby injecting it thereafter. SOLUTION: While an internal combustion engine is in operation, output signals from an air flow meter 2, a cooling water temperature sensor 5, a crank angle sensor 6 and the like are inputted into a control unit 7, and the quantity of fuel injection to be met to operational conditions is operated so as to be injected-out of each injector 10. In this case, an air-fuel ratio is also detected by an O2 sensor 12 so as to allow feed-back control be executed. Furthermore, the quantity of fuel correction for rich cylinders (specified cylinders) is set much more than the quantity of fuel correction for lean cylinders (other cylinders) in response to water temperature when catalysts are in a cooling condition, concurrently the quantities of ignition timing corrections for the rich cylinders and the lean cylinders have been read in respectively, after the quantity of fuel correction has been made for the rich cylinders, the quantity of fuel injection is divided into a number of several injection times by a specified pulse width so as to be injected there-after.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の空燃比
制御装置に関し、詳細には機関冷機時における触媒温度
上昇期間の短縮を図るために特定気筒の空燃比をリッ
チ、他気筒をリーンとする手段を有する空燃比制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control system for an internal combustion engine, and more specifically, in order to shorten the catalyst temperature rising period when the engine is cold, the air-fuel ratio of a specific cylinder is made rich and the other cylinders are made lean. The present invention relates to an air-fuel ratio control device having a means for controlling.

【0002】[0002]

【従来の技術】従来の内燃機関の空燃比制御装置として
は、例えば図10に示すような特開平2−19627号
公報が開示されている。排気浄化に用いられる3元触媒
は、一般にある温度以上になった時に活性するものであ
る。機関冷機時には触媒温度が低いため、活性化温度に
達するまでは充分な効果を発揮できない。しかしこの場
合、触媒に未燃成分(HC、CO)と酸素を供給する
と、酸化反応が促進され、速やかに触媒を活性化させる
ことが可能である。また、通常、機関冷機時は運転性確
保のため、空燃比は理論混合比よりもリッチに設定さ
れ、触媒に供給される未燃成分の濃度は高いものの、酸
素の濃度は一般に低い。前記従来例は機関冷機時、特定
気筒の燃料噴射量を減少させることにより触媒に未燃成
分に加えて高濃度の酸素を供給し、触媒の活性化を迅速
に行うものである。
2. Description of the Related Art As a conventional air-fuel ratio control system for an internal combustion engine, for example, Japanese Patent Application Laid-Open No. 19627/1990 has been disclosed as shown in FIG. The three-way catalyst used for exhaust gas purification is generally activated when the temperature exceeds a certain temperature. Since the catalyst temperature is low during engine cooling, sufficient effect cannot be exhibited until the activation temperature is reached. However, in this case, when unburned components (HC, CO) and oxygen are supplied to the catalyst, the oxidation reaction is promoted and the catalyst can be activated quickly. Further, normally, in order to ensure operability during engine cooling, the air-fuel ratio is set to be richer than the theoretical mixing ratio, and the concentration of unburned components supplied to the catalyst is high, but the concentration of oxygen is generally low. In the conventional example, when the engine is cold, the fuel injection amount in a specific cylinder is reduced to supply high concentration oxygen in addition to unburned components to the catalyst to rapidly activate the catalyst.

【0003】[0003]

【発明が解決しようとする課題】このような従来の内燃
機関の空燃比制御装置にあっては、気筒間に空燃比差を
設ける構成となっていたため、空燃比がリッチに設定さ
れる気筒に対し、リーンに設定される気筒では出力が低
く、その結果トルク変動を生じて運転性が悪化するとい
う問題点があった。
In such a conventional air-fuel ratio control apparatus for an internal combustion engine, since the air-fuel ratio difference is provided between the cylinders, the cylinder in which the air-fuel ratio is set to rich is selected. On the other hand, in the cylinder set to lean, the output is low, and as a result, there is a problem that torque fluctuation occurs and the drivability deteriorates.

【0004】空燃比のばらつきによるトルク変動を緩和
する手段としては、リッチ気筒の点火時期を遅角する方
法が一般的であるが、リッチであっても点火時期を遅角
しすぎると燃焼のサイクル変動が大きくなるため、吸収
できる空燃比差には限界がある。前記従来例において
は、気筒間の空燃比差を大きく設定するほうが、得られ
る触媒活性化促進効果は大きくなり、この場合点火時期
制御のみでは気筒間の出力差を吸収できない。
As a means for reducing the torque fluctuation due to the variation of the air-fuel ratio, a method of retarding the ignition timing of the rich cylinder is generally used. However, if the ignition timing is retarded too much even if rich, the combustion cycle There is a limit to the air-fuel ratio difference that can be absorbed because of the large fluctuation. In the above-mentioned conventional example, the larger the air-fuel ratio difference between the cylinders is set, the larger the obtained catalyst activation promoting effect becomes, and in this case, the ignition timing control alone cannot absorb the output difference between the cylinders.

【0005】本発明は、このような従来の問題点に着目
してなされたもので、機関冷機時の触媒活性化促進のた
めに特定の気筒の空燃比をリッチ、他気筒をリーンで運
転する際、リッチ気筒の燃料噴射パルス幅TpRを複数
回にわけ、噴射初期の粒径の大きい燃料噴霧を供給しH
C、COを多く発生させることにより、リッチ度合を小
さくし、リッチ気筒とリーン気筒の出力差を低減するこ
とができる内燃機関の空燃比制御装置を提供することを
目的としている。
The present invention has been made by paying attention to such a conventional problem. In order to accelerate catalyst activation during engine cooling, the air-fuel ratio of a specific cylinder is made rich and the other cylinders are made lean. At this time, the fuel injection pulse width TpR of the rich cylinder is divided into a plurality of times to supply the fuel spray having a large particle size at the initial stage of the injection to the H level.
An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that can reduce the rich degree by generating a large amount of C and CO and reduce the output difference between the rich cylinder and the lean cylinder.

【0006】[0006]

【課題を解決するための手段】本発明は上記のような課
題を解決するために、請求項1記載の内燃機関の空燃比
制御装置では、触媒が冷機状態にあるとき特定気筒へ供
給する燃料量を他の気筒よりも多く設定する際に、この
燃料量を所定パルス幅に分割して噴射する制御を行わせ
る手段とした。すなわち、図1に示すように、触媒の暖
機状態を検出する触媒暖機状態検出手段aと、触媒が冷
機状態にあるとき特定気筒へ供給する燃料量を他の気筒
よりも多く設定する燃料量設定手段bと、この燃料量を
所定パルス幅に分割して燃料噴射弁dにて噴射する燃料
噴射分割手段cとを備える。
In order to solve the above problems, the present invention provides an air-fuel ratio control system for an internal combustion engine according to claim 1, wherein the fuel supplied to a specific cylinder when the catalyst is in a cold state. When the fuel amount is set to be larger than that of the other cylinders, the fuel amount is divided into a predetermined pulse width and injected. That is, as shown in FIG. 1, a catalyst warm-up state detecting means a for detecting a catalyst warm-up state, and a fuel for setting the amount of fuel supplied to a specific cylinder when the catalyst is in a cold state to be larger than those of other cylinders. An amount setting means b and a fuel injection dividing means c for dividing the fuel amount into a predetermined pulse width and injecting the fuel with a fuel injection valve d are provided.

【0007】また請求項2記載の内燃機関の空燃比制御
装置では、触媒が冷機状態にあるとき特定気筒へ供給す
る燃料量を他の気筒よりも多く設定する際に、この燃料
量を所定パルス幅に分割し、設定噴射終了時期に燃料噴
射が終了するよう燃料噴射を開始させる手段とした。す
なわち、図2に示すように、触媒の暖機状態を検出する
触媒暖機状態検出手段aと、触媒が冷機状態にあるとき
特定気筒へ供給する燃料量を他の気筒よりも多く設定す
る燃料量設定手段bと、この燃料量を噴射するのに必要
な噴射回数を所定パルス幅に基づいて演算する噴射回数
演算手段eと、燃料の噴射終了時期を設定する噴射終了
時期設定手段fと、噴射終了時期に噴射が終了するよう
に所定パルス幅と噴射回数とに基づいて噴射開始時期を
設定する噴射開始時期設定手段gとを備える。
Further, in the air-fuel ratio control apparatus for an internal combustion engine according to claim 2, when the amount of fuel supplied to a specific cylinder is set to be larger than that of other cylinders when the catalyst is in a cold state, this fuel amount is set to a predetermined pulse. A means for starting the fuel injection so that the fuel injection ends at the set injection end timing is provided. That is, as shown in FIG. 2, catalyst warm-up state detection means a for detecting the warm-up state of the catalyst, and fuel for setting the amount of fuel supplied to a specific cylinder when the catalyst is in the cold state to a value larger than that of other cylinders An amount setting means b, an injection number calculating means e for calculating the number of injections required to inject this fuel amount based on a predetermined pulse width, an injection end timing setting means f for setting the fuel injection end timing, An injection start timing setting means g is provided for setting the injection start timing based on a predetermined pulse width and the number of injections so that the injection is ended at the injection end timing.

【0008】また、請求項3記載の内燃機関の空燃比制
御装置では、請求項1,2記載の所定パルス幅を燃料噴
射弁dの設定可能な最小パルス幅とした。
Further, in the air-fuel ratio control device for an internal combustion engine according to claim 3, the predetermined pulse width according to claims 1 and 2 is set to the minimum pulse width that can set the fuel injection valve d.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】(第1の実施の形態)図3は本発明の実施
の形態における内燃機関の空燃比制御装置の構成を示す
図である。
(First Embodiment) FIG. 3 is a diagram showing a configuration of an air-fuel ratio control apparatus for an internal combustion engine according to an embodiment of the present invention.

【0011】図3において吸入空気通路の最上流に設け
られたエアクリーナ1の下流にはエアフローメータ2が
設けられ、吸入空気の流量を計測する。その下流に設け
られたスロットルバルブ3にはスロットル開度センサ4
が設けられ、スロットル開度を計測する。これらの計測
結果は、機関の運転状態に関する情報、すなわち冷却水
温センサ5の出力、クランク角度センサ6の出力ととも
にコントロールユニット7に送られる。コントロールユ
ニット7では運転状態に応じた燃料噴射量を演算し、コ
レクタ8から各気筒毎に分岐した吸気マニホールド9に
設けられたインジェクタ10により燃料を噴射する。
In FIG. 3, an air flow meter 2 is provided downstream of an air cleaner 1 provided at the uppermost stream of the intake air passage to measure the flow rate of intake air. The throttle valve 3 provided downstream of the throttle valve 3 has a throttle opening sensor 4
Is provided to measure the throttle opening. These measurement results are sent to the control unit 7 together with information on the operating state of the engine, that is, the output of the cooling water temperature sensor 5 and the output of the crank angle sensor 6. The control unit 7 calculates the fuel injection amount according to the operating state, and injects fuel from the injector 8 provided in the intake manifold 9 branched from the collector 8 for each cylinder.

【0012】また、排気マニホールド11の集合部には
2 センサ12が設けられ、排気ガスの空燃比を検出す
る。検出結果はコントロールユニット7に送られ、機関
暖機後は検出結果に基づき空燃比帰還制御を行う。ま
た、コントロールユニット7では運転状態に応じた点火
時期の演算も行い、その結果に基づき点火プラグ13で
各気筒への点火が行われる。
Further, an O 2 sensor 12 is provided at the collecting portion of the exhaust manifold 11 to detect the air-fuel ratio of the exhaust gas. The detection result is sent to the control unit 7, and after the engine is warmed up, the air-fuel ratio feedback control is performed based on the detection result. The control unit 7 also calculates the ignition timing according to the operating state, and the ignition plug 13 ignites each cylinder based on the result.

【0013】次に作用を説明する。Next, the operation will be described.

【0014】図4に燃料噴射量、点火時期演算のフロー
チャートを示す。まず、ステップS1でエンジン回転数
Ne、エアフローメータ出力Qa、水温センサ出力Tw
を読み込む。次のステップS2では基本燃料噴射量Tp
=K×Qa/Ne(K:定数)を演算し、また、基本点
火進角値ADVをTp−Neマップより検索する。次の
ステップS3では、水温Twが所定値Tw1より低いか
否かを判定し、低い場合は機関が冷機状態にあると判断
してステップS4に進む。一方、TwがTw1よりも高
い場合、すなわち機関暖機後と判断した場合は、ステッ
プS9に進んでO2 センサ出力に基づき燃料噴射量を補
正する空燃比帰還制御を行う。空燃比帰還制御の詳細に
ついては従来と同様なので説明を省略する。
FIG. 4 shows a flowchart for calculating the fuel injection amount and the ignition timing. First, in step S1, engine speed Ne, air flow meter output Qa, water temperature sensor output Tw
Read. In the next step S2, the basic fuel injection amount Tp
= K × Qa / Ne (K: constant) is calculated, and the basic ignition advance value ADV is searched from the Tp-Ne map. In the next step S3, it is determined whether or not the water temperature Tw is lower than a predetermined value Tw1, and if it is lower, it is determined that the engine is in a cold state and the process proceeds to step S4. On the other hand, when Tw is higher than Tw1, that is, when it is determined that the engine has been warmed up, the process proceeds to step S9, and air-fuel ratio feedback control is performed to correct the fuel injection amount based on the O 2 sensor output. The details of the air-fuel ratio feedback control are the same as the conventional ones, and thus the description thereof is omitted.

【0015】ところで、ステップS4では図5から水温
Twに応じたリッチ気筒(特定気筒)の燃料補正量kt
wR、リーン気筒(他の気筒)の燃料補正量ktwLを
読み込み、また、図6から燃料補正量ktwR、ktw
Lに応じた、リッチ気筒の点火時期補正量advtw
R、リーン気筒の点火時期補正量advtwLを読み込
み、次のステップS5にてこれらに応じ噴射量および点
火時期を補正する。次にステップS6にて、リッチ気筒
の補正後燃料噴射量TpRを所定パルス幅Tprで複数
回にわけて噴射するためのその回数nをTpR=Tpr
×nから算出する。
By the way, in step S4, the fuel correction amount kt of the rich cylinder (specific cylinder) according to the water temperature Tw from FIG.
wR, the fuel correction amount ktwL of the lean cylinder (other cylinder) is read, and the fuel correction amounts ktwR and ktw are read from FIG.
Ignition timing correction amount advtw of the rich cylinder according to L
The ignition timing correction amounts advtwL for the R and lean cylinders are read, and the injection amount and the ignition timing are corrected in accordance with them in the next step S5. Next, in step S6, the number of times n for injecting the corrected fuel injection amount TpR of the rich cylinder in a plurality of times with a predetermined pulse width Tpr is TpR = Tpr.
Calculate from xn.

【0016】ステップS7にて、個々の所定パルス幅T
prの間隔を図7に示す駆動パルスに対する噴射弁の閉
弁遅れ時間Tbとし、設定噴射終了時期となるように、
図8に示す信号をインジェクタに送る。これにより、リ
ッチ気筒では理論空燃比よりもリッチ側として排気中の
未燃成分の濃度を高め、一方リーン気筒では理論空燃比
よりもリーン側として排気中の酸素濃度を高める。この
時、点火時期はリッチ気筒、リーン気筒それぞれの安定
度限界まで遅角する設定とし、排温を高めることで、空
燃比制御と併せて触媒の活性化を促進する。
At step S7, each predetermined pulse width T
The interval of pr is set to the valve closing delay time Tb of the injection valve with respect to the drive pulse shown in FIG. 7 so that the set injection end timing is reached.
The signal shown in FIG. 8 is sent to the injector. Thus, in the rich cylinder, the concentration of unburned components in the exhaust is increased to be richer than the stoichiometric air-fuel ratio, while in the lean cylinder, the oxygen concentration in the exhaust is increased to be leaner than the stoichiometric air-fuel ratio. At this time, the ignition timing is set to retard the stability limit of each of the rich cylinder and the lean cylinder, and the exhaust temperature is increased to accelerate the activation of the catalyst together with the air-fuel ratio control.

【0017】従って、機関冷機時において触媒の早期活
性化のために特定気筒を他の気筒よりもリッチとする際
に、リッチ気筒の燃料噴射パルス幅を所定パルス幅で複
数回にわけて噴射させることにより、噴射初期の粒径の
大きい燃料噴霧を供給し、燃焼を悪化させ未燃成分(H
C、CO)を多く発生させる構成としたため、触媒での
酸化反応が促進され、速やかに触媒は活性化する。従っ
て従来の制御に比べ、図9に示すようにリッチ気筒のリ
ッチ度合を小さくでき、リッチ気筒とリーン気筒の出力
差が小さくなり、運転性へのはね返りを低減できる。
Therefore, when the specific cylinder is made richer than the other cylinders for early activation of the catalyst when the engine is cold, the fuel injection pulse width of the rich cylinder is injected by dividing the fuel injection pulse width into a plurality of predetermined pulse widths. As a result, a fuel spray having a large particle size at the initial stage of injection is supplied, which deteriorates combustion and causes unburned components (H
Since the composition is such that a large amount of C, CO) is generated, the oxidation reaction in the catalyst is promoted, and the catalyst is quickly activated. Therefore, as compared with the conventional control, the rich degree of the rich cylinder can be reduced as shown in FIG. 9, the output difference between the rich cylinder and the lean cylinder can be reduced, and the rebound to the drivability can be reduced.

【0018】(第2の実施の形態)本実施の形態の構成
は第1の実施の形態と同様であるため、説明は省略す
る。
(Second Embodiment) The configuration of this embodiment is the same as that of the first embodiment, and therefore the description thereof is omitted.

【0019】次に作用を説明する。Next, the operation will be described.

【0020】本実施の形態では、第1の実施の形態にお
ける所定パルス幅Tprを噴射弁の設定可能最小パルス
幅Tpminとしている。燃料噴射弁は図7に示すよう
に、駆動信号に対し、動作に遅れが生じるために、燃料
噴射弁に特有の最小有効駆動信号幅(設定可能最小パル
ス幅Tpmin)が存在する。このTpminを用いる
ことにより、燃料噴射パルス幅の分割回数、つまり、T
pr(=Tpmin)での噴射回数が最大となり、噴射
初期の粒径の大きい噴霧が最も多く供給される。
In this embodiment, the predetermined pulse width Tpr in the first embodiment is set as the settable minimum pulse width Tpmin of the injection valve. As shown in FIG. 7, the fuel injection valve has a delay in operation with respect to the drive signal, so that there is a minimum effective drive signal width (settable minimum pulse width Tpmin) peculiar to the fuel injection valve. By using this Tpmin, the number of divisions of the fuel injection pulse width, that is, T
The number of injections at pr (= Tpmin) is maximized, and the spray having the largest particle size at the initial stage of injection is supplied most.

【0021】従って、機関冷機時において触媒の早期活
性化のために特定気筒を他の気筒よりもリッチとする際
に、リッチ気筒の燃料噴射パルス幅を所定パルス幅で複
数回にわけて噴射させ、その所定パルス幅を噴射弁の設
定可能最小パルス幅とすることにより噴射回数を最大と
し、噴射初期の粒径の大きい燃料噴霧をより多く供給
し、燃焼を悪化させ、未燃成分(HC、CO)を多く発
生させる構成としたため、触媒での酸化反応がより促進
され従来の制御に比べ、図9に示すようにリッチ気筒の
リッチ度合を小さくでき、リッチ気筒とリーン気筒の出
力差が小さくなり、運転性へのはね返りを低減できる。
Therefore, when the specific cylinder is made richer than the other cylinders for early activation of the catalyst when the engine is cold, the fuel injection pulse width of the rich cylinder is injected by dividing the fuel injection pulse width into a plurality of predetermined pulse widths. , The predetermined pulse width is set as the minimum pulse width that can be set by the injection valve, thereby maximizing the number of injections, supplying a larger amount of fuel spray having a large particle size in the initial stage of injection, and deteriorating combustion, resulting in unburned components (HC, Since a large amount of CO) is generated, the oxidation reaction in the catalyst is further promoted, and the rich degree of the rich cylinder can be reduced as shown in FIG. 9 as compared with the conventional control, and the output difference between the rich cylinder and the lean cylinder is small. Therefore, the rebound to the drivability can be reduced.

【0022】[0022]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、触媒暖機状態検出手段aにより判断された
触媒冷機時において、触媒の早期活性化のために燃料量
設定手段bにより特定気筒を他の気筒よりもリッチとす
る際に、燃料噴射分割手段cにおいて特定気筒の燃料噴
射パルス幅を所定パルス幅にて複数回にわけて噴射する
指令を燃料噴射弁dに出力するために、噴射初期の粒径
の大きい燃料噴霧が多く供給され、粒径の大きい燃料噴
霧は気化しにくく、空気との混合も悪く燃焼状態が悪い
ために、未燃成分(HC、CO)が多く発生される構成
としたため、触媒の早期活性が得られる一方で、従来の
制御に比べリッチ気筒のリッチ度合を小さくでき、リッ
チ気筒とリーン気筒の出力差が小さくなり、運転性への
はね返りを低減できる。
As described above, according to the first aspect of the invention, the fuel amount setting means b is provided for early activation of the catalyst when the catalyst is in the cold state judged by the catalyst warm-up state detecting means a. Accordingly, when the specific cylinder is made richer than the other cylinders, the fuel injection dividing means c outputs a command to the fuel injection valve d to inject the fuel injection pulse width of the specific cylinder at a predetermined pulse width in plural times. Therefore, a large amount of fuel spray having a large particle size at the initial stage of injection is supplied, the fuel spray having a large particle size is difficult to vaporize, and the mixture with air is poor and the combustion state is poor, so that unburned components (HC, CO) Since it is configured to generate a large amount of catalyst, early activation of the catalyst can be obtained, while the rich degree of the rich cylinder can be reduced compared to the conventional control, the output difference between the rich cylinder and the lean cylinder can be reduced, and the rebound to the drivability can be reduced. In reduction That.

【0023】また請求項2記載の発明によれば、触媒暖
機状態検出手段aにより判断された触媒冷機時におい
て、触媒の早期活性化のために燃料量設定手段bにより
特定気筒を他の気筒よりもリッチとする指令が噴射回数
演算手段eに出力され、噴射回数演算手段eにおいて特
定気筒の燃料噴射パルス幅を所定パルス幅に分割して噴
射する回数を演算し、その出力及び燃料の噴射終了時期
を設定する噴射終了時期設定手段fからの出力に応じ
て、噴射開始時期設定手段gから、噴射終了時期に噴射
が終了するように噴射を開始する指令が燃料噴射弁dに
出力される構成としたため、設定噴射終了時期に噴射が
終了するように、複数回に分割した燃料噴射を開始させ
る制御に必要な燃料を燃焼室内へ吸入することができ
る。
According to the second aspect of the present invention, when the catalyst is warmed down as judged by the catalyst warm-up state detecting means a, the fuel amount setting means b is used to change the specific cylinder to another cylinder for early activation of the catalyst. Is output to the injection number calculation means e, and the injection number calculation means e calculates the number of times of injection by dividing the fuel injection pulse width of the specific cylinder into a predetermined pulse width, and the output and fuel injection In response to the output from the injection end timing setting means f for setting the end timing, the injection start timing setting means g outputs a command to start the injection to the fuel injection valve d so that the injection ends at the injection end timing. Because of the configuration, the fuel required for the control to start the fuel injection divided into a plurality of times can be sucked into the combustion chamber so that the injection ends at the set injection end timing.

【0024】さらに請求項3記載の発明によれば、請求
項1,2記載の所定パルス幅を燃料噴射弁の設定可能最
小パルス幅とし、1サイクルの噴射回数を最大としたた
め、噴射初期の粒径の大きい燃料噴霧がより多く供給さ
れ、粒径の大きい燃料噴霧は気化しにくく、空気との混
合も悪く燃焼状態が悪いために、未燃成分(HC、C
O)が多く発生される構成としたため、リッチ気筒の燃
料噴射パルス幅を噴射弁の設定可能最小燃料噴射パルス
幅で複数回にわけて噴射させる制御により未燃成分をよ
り多く発生させることができ、触媒の活性がより促進さ
れる。
Further, according to the invention of claim 3, the predetermined pulse width of claims 1 and 2 is set as the minimum pulse width that can be set for the fuel injection valve, and the number of injections in one cycle is maximized. Since the fuel spray having a large diameter is supplied more, the fuel spray having a large particle diameter is difficult to vaporize, and the mixing with air is poor and the combustion state is bad, the unburned components (HC, C
O) is generated in a large amount, so that it is possible to generate a larger amount of unburned components by controlling the fuel injection pulse width of the rich cylinder to be injected by dividing the fuel injection pulse width into the minimum settable fuel injection pulse width of the injection valve. , The activity of the catalyst is further promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の内燃機関の空燃比制御装置の構成図で
ある。
FIG. 1 is a configuration diagram of an air-fuel ratio control device for an internal combustion engine of the present invention.

【図2】本発明の内燃機関の空燃比制御装置構成図であ
る。
FIG. 2 is a configuration diagram of an air-fuel ratio control device for an internal combustion engine of the present invention.

【図3】本発明の第1の実施の形態に係る構成図であ
る。
FIG. 3 is a configuration diagram according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態の作用を示すフロー
チャートである。
FIG. 4 is a flowchart showing an operation of the first exemplary embodiment of the present invention.

【図5】本発明の実施の形態における水温Twと燃料補
正率ktwR、ktwLの関係を示す図である。
FIG. 5 is a diagram showing a relationship between a water temperature Tw and fuel correction factors ktwR and ktwL in the embodiment of the present invention.

【図6】本発明の実施の形態における燃料補正率ktw
R、ktwLと点火時期補正量advtwR、advt
wLの関係を示す図である。
FIG. 6 is a fuel correction rate ktw according to the embodiment of the present invention.
R, ktwL and ignition timing correction amount advtwR, advt
It is a figure which shows the relationship of wL.

【図7】本発明の実施の形態における燃料噴射弁の駆動
パルスと実際の動きを示す図である。
FIG. 7 is a diagram showing drive pulses and actual movements of the fuel injection valve according to the embodiment of the present invention.

【図8】本発明の実施の形態における燃料噴射パルス幅
を示す図である。
FIG. 8 is a diagram showing a fuel injection pulse width in the embodiment of the present invention.

【図9】本発明の実施の形態における各気筒の空燃比を
示す図である。
FIG. 9 is a diagram showing an air-fuel ratio of each cylinder in the embodiment of the present invention.

【図10】従来の空燃比制御を説明する図である。FIG. 10 is a diagram illustrating conventional air-fuel ratio control.

【符号の説明】[Explanation of symbols]

a 触媒暖機状態検出手段 b 燃料量設定手段 c 燃料噴射分割手段 d 燃料噴射弁 e 噴射回数演算手段 f 噴射終了時期設定手段 g 噴射開始時期設定手段 1 エアクリーナ 2 エアフローメータ 3 スロットルバルブ 4 スロットル開度センサ 5 冷却水温センサ 6 クランク角度センサ 7 コントロールユニット 8 コレクタ 9 吸気マニホールド 10 インジェクタ 11 排気マニホールド 12 O2 センサ 13 点火プラグa catalyst warm-up state detecting means b fuel amount setting means c fuel injection dividing means d fuel injection valve e injection number calculating means f injection end timing setting means g injection start timing setting means 1 air cleaner 2 air flow meter 3 throttle valve 4 throttle opening Sensor 5 Cooling water temperature sensor 6 Crank angle sensor 7 Control unit 8 Collector 9 Intake manifold 10 Injector 11 Exhaust manifold 12 O 2 sensor 13 Spark plug

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 触媒の暖機状態を検出する触媒暖機状態
検出手段と、触媒が冷機状態にあるとき特定気筒へ供給
する燃料量を他の気筒よりも多く設定する燃料量設定手
段と、前記燃料量を所定パルス幅に分割して噴射する燃
料噴射分割手段とを備えることを特徴とする内燃機関の
空燃比制御装置。
1. A catalyst warm-up state detecting means for detecting a warm-up state of a catalyst, and a fuel amount setting means for setting a fuel amount supplied to a specific cylinder when the catalyst is in a cold state to be larger than those of other cylinders. An air-fuel ratio control apparatus for an internal combustion engine, comprising: a fuel injection dividing unit that divides the fuel amount into a predetermined pulse width and injects the divided fuel into a predetermined pulse width.
【請求項2】 前記燃料量を噴射するのに必要な噴射回
数を所定パルス幅に基づいて演算する噴射回数演算手段
と、燃料の噴射終了時期を設定する噴射終了時期設定手
段と、噴射終了時期に噴射が終了するように所定パルス
幅と噴射回数とに基づいて噴射開始時期を設定する噴射
開始時期設定手段とを備えることを特徴とする請求項1
記載の内燃機関の空燃比制御装置。
2. An injection number calculation means for calculating the number of injections required to inject the fuel amount based on a predetermined pulse width, an injection end timing setting means for setting an injection end timing of the fuel, and an injection end timing. 2. An injection start timing setting means for setting an injection start timing based on a predetermined pulse width and the number of injections so that the injection is completed.
An air-fuel ratio control device for an internal combustion engine according to the above.
【請求項3】 所定パルス幅は、燃料噴射弁の設定可能
な最小パルス幅であることを特徴とする請求項1,2記
載の内燃機関の空燃比制御装置。
3. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the predetermined pulse width is a minimum pulse width that can be set for the fuel injection valve.
JP3622796A 1996-02-23 1996-02-23 Air-fuel ratio control device for internal combustion engine Pending JPH09228869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3622796A JPH09228869A (en) 1996-02-23 1996-02-23 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3622796A JPH09228869A (en) 1996-02-23 1996-02-23 Air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH09228869A true JPH09228869A (en) 1997-09-02

Family

ID=12463900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3622796A Pending JPH09228869A (en) 1996-02-23 1996-02-23 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH09228869A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087801A (en) * 2000-07-14 2002-03-27 Toyota Motor Corp Warming-up control for reformer
US6499474B2 (en) * 2001-01-09 2002-12-31 Mitsubishi Denki Kabushiki Kaisha Air/fuel ratio control apparatus for internal combustion engine
CN100342124C (en) * 2003-11-07 2007-10-10 三菱自动车工业株式会社 Air-fuel ratio controller of IC engine
US7779623B2 (en) 2005-12-28 2010-08-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
WO2021249214A1 (en) * 2020-06-09 2021-12-16 中国第一汽车股份有限公司 Fuel injection control method for direct injection engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087801A (en) * 2000-07-14 2002-03-27 Toyota Motor Corp Warming-up control for reformer
US6499474B2 (en) * 2001-01-09 2002-12-31 Mitsubishi Denki Kabushiki Kaisha Air/fuel ratio control apparatus for internal combustion engine
CN100342124C (en) * 2003-11-07 2007-10-10 三菱自动车工业株式会社 Air-fuel ratio controller of IC engine
US7779623B2 (en) 2005-12-28 2010-08-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
WO2021249214A1 (en) * 2020-06-09 2021-12-16 中国第一汽车股份有限公司 Fuel injection control method for direct injection engine

Similar Documents

Publication Publication Date Title
US7047727B2 (en) Rapid catalyst warm-up control device for internal combustion engine
JPH0646011B2 (en) Air-fuel ratio controller for internal combustion engine
JPH09228869A (en) Air-fuel ratio control device for internal combustion engine
JP4254021B2 (en) Catalyst early warm-up control device for in-cylinder internal combustion engine
JP2503387B2 (en) Electronic internal combustion engine controller
JP3393626B2 (en) Ignition timing control device for internal combustion engine
JP3203440B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH0463936A (en) Air-fuel ratio control device for internal combustion engine
JPH09273415A (en) Fuel supply control device for internal combustion engine
JPS61108847A (en) Control device of fuel increase in quantity in internal-combustion engine
JP3489204B2 (en) Control device for internal combustion engine
JP2000257476A (en) Control unit for in-cylinder injection engine
JPH0726566B2 (en) Fuel injection control device for internal combustion engine
JP2712255B2 (en) Fuel supply control device for internal combustion engine
JPH09236034A (en) Exhaust gas purifier for engine
JP3561142B2 (en) Control device for internal combustion engine
JP2684885B2 (en) Fuel injection amount control device for internal combustion engine
JP3770256B2 (en) Engine exhaust purification system
JP3528315B2 (en) Engine air-fuel ratio control device
JP2807554B2 (en) Air-fuel ratio control method for internal combustion engine
JP2689779B2 (en) Fuel injection amount control device for internal combustion engine
JP3667520B2 (en) Air-fuel ratio control device for internal combustion engine
JPH1162560A (en) Exhaust emission control device of engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2917417B2 (en) Engine control device