JPH09228139A - Fiber capable of decomposing nitrogen oxide - Google Patents

Fiber capable of decomposing nitrogen oxide

Info

Publication number
JPH09228139A
JPH09228139A JP8069267A JP6926796A JPH09228139A JP H09228139 A JPH09228139 A JP H09228139A JP 8069267 A JP8069267 A JP 8069267A JP 6926796 A JP6926796 A JP 6926796A JP H09228139 A JPH09228139 A JP H09228139A
Authority
JP
Japan
Prior art keywords
fiber
nox
particles
decomposing
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8069267A
Other languages
Japanese (ja)
Inventor
Shigeki Iwai
茂樹 岩井
Masatoshi Morita
正敏 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP8069267A priority Critical patent/JPH09228139A/en
Publication of JPH09228139A publication Critical patent/JPH09228139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a fiber capable of decomposing nitrogen oxides, composed of a fiber and particles capable of decomposing nitrogen oxides by photocatalytic action, containing the particles on more than a prescribed ratio of the surface area of the fiber, easily decomposing nitrogen oxides under the sunlight or a fluorescent lamp without heating and useful for an air cleaner, etc. SOLUTION: This fiber is composed of a fiber such as a polyester fiber and particles capable of decomposing nitrogen oxides by photocatalytic action such as photochemically activated titanium oxide (having an average particle diameter of preferably 0.01-5μm). The particles are present on >=0.5% of the surface area of the fiber. The single fiber fineness of the fiber is preferably 0.01-10 denier.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気清浄機、排ガ
ス処理装置等に利用できる窒素酸化物(以下、NOxと
略す)を30%以上分解することのできるNOx分解繊
維に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a NOx decomposing fiber capable of decomposing 30% or more of nitrogen oxides (hereinafter abbreviated as NOx) which can be used in air purifiers, exhaust gas treatment devices and the like.

【0002】[0002]

【従来の技術】従来、NOxを分解するものとして、
「ポリファイル」(1994年7月号、第19〜33
頁)に自動車用の三元触媒、あるいは工場からの排ガス
処理用の触媒などが紹介されているが、これらが十分な
機能を発揮するには熱が必要であり、低いものでも20
0〜400℃の熱が必要となる。例えば、工場の排ガス
処理に用いられている乾式アンモニア選択接触還元法で
は、NOxを含む排ガスにアンモニアを混合し、200
〜400℃の触媒層を通過させ、NOxを窒素と水に還
元する。このような方法では、熱を要するために加熱装
置が必要となり、装置が大きくなったり加熱のためのエ
ネルギー費がかかるといった問題だけでなく、使用でき
る箇所が制限される等の問題もあった。また、還元剤と
して危険なアンモニアや炭化水素等が必要となるという
問題もあった。
2. Description of the Related Art Conventionally, as one for decomposing NOx,
"Polyfile" (July 1994 issue, 19th to 33rd)
Page 3) introduces three-way catalysts for automobiles, catalysts for treating exhaust gas from factories, etc. However, heat is required for these catalysts to exert their full functions, and even low catalysts can be used.
Heat of 0 to 400 ° C is required. For example, in the dry ammonia selective catalytic reduction method used for treating exhaust gas in a factory, ammonia is mixed with exhaust gas containing NOx to obtain 200
NOx is reduced to nitrogen and water by passing through a catalyst layer at 400 ° C. In such a method, since a heating device is required because it requires heat, there is a problem that the device is large and energy cost for heating is required, and there is a problem that usable places are limited. There is also a problem that dangerous ammonia and hydrocarbons are required as a reducing agent.

【0003】さらに、光触媒を合成樹脂に練り込んだシ
ートによりNOx分解を行う試みが「化学と工業」〔第
46巻 第12号(1993)、第61〜63頁〕に紹
介されているが、このような方法ではシートの比表面積
が小さいためにNOxの分解率はせいぜい20〜30%
程度であった。
Further, an attempt to decompose NOx with a sheet in which a photocatalyst is kneaded into a synthetic resin is introduced in "Chemistry and Industry" [Vol. 46, No. 12 (1993), pp. 61-63]. In such a method, since the specific surface area of the sheet is small, the decomposition rate of NOx is at most 20 to 30%.
It was about.

【0004】[0004]

【発明が解決しようとする課題】本発明は、加熱を必要
とせず、太陽光あるいは蛍光灯下でNOxを30%以上
分解できるNOx分解繊維を提供することを目的とする
ものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a NOx decomposing fiber capable of decomposing NOx by 30% or more under sunlight or fluorescent light without requiring heating.

【0005】[0005]

【課題を解決するための手段】本発明者らは、このよう
な課題を解決するために鋭意検討の結果、NOxを光触
媒作用により分解する粒子が繊維表面積の0.5%以上
存在している繊維が、290〜800nmの波長をもつ
光源下でNOxを30%以上分解することができるとい
う事実を見出し、本発明に到達した。すなわち、本発明
は、窒素酸化物を光触媒作用により分解する粒子と繊維
とからなり、その粒子が繊維表面積の0.5%以上存在
してなることを特徴とする窒素酸化物分解繊維を要旨と
するものである。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that 0.5% or more of the surface area of the fiber decomposes NOx by photocatalysis. The present invention was reached by finding the fact that fibers can decompose NOx by 30% or more under a light source having a wavelength of 290 to 800 nm. That is, the gist of the present invention is a nitrogen oxide-decomposing fiber, which is composed of particles and fibers that decompose nitrogen oxides by photocatalysis, and the particles are present in an amount of 0.5% or more of the fiber surface area. To do.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のNOx分解繊維には、光触媒作用によりNOx
を分解する粒子が繊維表面積の0.5%以上存在(以
下、表面存在量という。この定義は以下に示す。)して
いることが必要であり、さらには、繊維表面積の0.5
〜20%存在していることが好ましい。NOxを分解す
る粒子の表面存在量が0.5%未満の場合には、繊維表
面の粒子とNOxとの接触割合が低くなりNOx分解が
著しく低下してしまう。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The NOx-decomposing fiber of the present invention has NOx by photocatalysis.
0.5% or more of the fiber surface area (hereinafter, referred to as surface abundance. This definition is shown below) must be present, and further, 0.5% of the fiber surface area.
-20% is preferable. When the surface abundance of NOx decomposing particles is less than 0.5%, the contact ratio between the particles on the fiber surface and NOx decreases, and NOx decomposition remarkably decreases.

【0007】本発明において、光触媒作用によりNOx
を分解する粒子としては、例えば、光化学活性化酸化チ
タンあるいは銅イオン又は銀イオンをゼオライトに担持
させたものなどが好適に用いられる。また、この粒子の
平均粒子径としては、0.01〜5μmであることが好
ましい。平均粒子径が0.01μm未満になると、粒子
の表面積が大きくなって粒子の二次凝集が起こりやすく
なり,操業性が悪化する傾向がある。一方、平均粒子径
が5μmを越えると、粒子の表面存在量が大幅に減少し
て十分なNOx分解性能が得られにくくなり、また、操
業性も悪化する傾向がある。
In the present invention, NOx is produced by photocatalysis.
As the particles for decomposing, for example, photochemically activated titanium oxide, or those in which copper ions or silver ions are supported on zeolite are preferably used. The average particle size of the particles is preferably 0.01 to 5 μm. If the average particle size is less than 0.01 μm, the surface area of the particles becomes large, and secondary aggregation of the particles easily occurs, and the operability tends to deteriorate. On the other hand, if the average particle size exceeds 5 μm, the amount of particles present on the surface is greatly reduced, and it becomes difficult to obtain sufficient NOx decomposing performance, and operability tends to deteriorate.

【0008】次に、本発明のNOx分解繊維の製造方法
について説明する。本発明のNOx分解繊維において、
NOxを分解する粒子を付着させる繊維としては、ポリ
エステル、ポリアミド、ポリオレフィン等の熱可塑性ポ
リマーからなる繊維が好適に用いられる。このとき、こ
れらの繊維に配合されるNOxを分解する粒子の配合量
としては、1〜30重量部であることが好ましく、さら
に5〜10重量部であることが好ましい。配合される粒
子の量が1重量部未満になると、粒子の表面存在量が少
なくなり、十分なNOx分解性能が得られにくくなる。
一方、配合される粒子の量が30重量部を越えると、糸
切れが多発し、操業性が悪化する傾向がある。
Next, a method for producing the NOx decomposing fiber of the present invention will be described. In the NOx decomposing fiber of the present invention,
Fibers made of thermoplastic polymers such as polyester, polyamide, and polyolefin are preferably used as the fibers to which the particles that decompose NOx are attached. At this time, the amount of the NOx-decomposing particles blended in these fibers is preferably 1 to 30 parts by weight, more preferably 5 to 10 parts by weight. When the amount of the particles to be blended is less than 1 part by weight, the amount of the particles present on the surface becomes small, and it becomes difficult to obtain sufficient NOx decomposition performance.
On the other hand, when the amount of the blended particles exceeds 30 parts by weight, yarn breakage occurs frequently, and the operability tends to deteriorate.

【0009】具体的には、長繊維にする場合には、NO
xを分解する粒子をポリエステルなどの熱可塑性ポリマ
ーからなる繊維に練り込み、これを公知の紡糸延伸装置
を用いて製造することにより得られる。また、短繊維に
する場合には、延伸した後、所定の長さにカットされ用
いられる。さらに、不織布にする場合には、紡糸ノズル
から繊維が出た直後に公知のメルトブロー法を用いるこ
とにより直接捕集機にて繊維を捕集し、ウェブを巻取る
方法も用いられる。
[0009] Specifically, when the long fiber is used, NO
It is obtained by kneading particles decomposing x into a fiber made of a thermoplastic polymer such as polyester, and producing this by using a known spin-drawing apparatus. In the case of making short fibers, after being drawn, they are cut into a predetermined length and used. Further, in the case of forming a non-woven fabric, there is also used a method in which the fibers are directly collected by a collector by using a known melt blow method immediately after the fibers are discharged from the spinning nozzle, and the web is wound.

【0010】また、本発明のNOx分解繊維の断面形状
は、特に限定されるものではなく、丸、異形、中空のい
ずれの形状でもよい。さらに、本発明のNOx分解繊維
の繊度としては、単糸繊度が0.01〜10デニールで
あることが好ましい。また、織物や編物にする場合に
は、合計繊度が10〜300デニールであることが好ま
しい。
The cross-sectional shape of the NOx decomposing fiber of the present invention is not particularly limited, and may be round, irregular or hollow. Further, as the fineness of the NOx decomposing fiber of the present invention, the single yarn fineness is preferably 0.01 to 10 denier. In the case of making a woven or knitted fabric, the total fineness is preferably 10 to 300 denier.

【0011】本発明のNOx分解繊維は、光触媒作用を
利用してNOxを分解する。本発明のNOx分解繊維に
よりNOxを分解させるためには、290〜800nm
の波長をもつ光源が、NOxを分解する粒子に照射させ
て行う。この波長をもつ光源は、太陽光であっても蛍光
灯であってもよい。
The NOx decomposing fiber of the present invention decomposes NOx by utilizing a photocatalytic action. In order to decompose NOx with the NOx decomposition fiber of the present invention, 290 to 800 nm
This is done by irradiating a particle that decomposes NOx with a light source having a wavelength of. The light source having this wavelength may be sunlight or a fluorescent lamp.

【0012】[0012]

【実施例】次に、本発明を実施例及び比較例によって具
体的に説明する。なお、実施例及び比較例中の測定及び
評価法は、以下の通りである。 (1)繊度(デニール) 90cmの繊維を5つサンプリングし、その重量を測定
し、9000mに換算した重量値(g)の平均値を繊度
とした。 (2)表面存在量(%) 紡糸・延伸した糸の表面を電子顕微鏡にて観察し、表面
写真を撮影した。そして、糸の表面積に占めるNOxを
分解する粒子の面積の割合を表面存在量とした。 表面存在量(%)=(粒子の面積/糸の表面積)×100 (3)平均粒子径(μm) LUZEX III U (ニレコ社製)を用いて、NOxを分解す
る粒子の平均粒子径を測定した。
Next, the present invention will be described specifically with reference to examples and comparative examples. The measuring and evaluating methods in Examples and Comparative Examples are as follows. (1) Fineness (denier) Five 90 cm fibers were sampled, the weight was measured, and the average value of the weight values (g) converted to 9000 m was taken as the fineness. (2) Surface abundance (%) The surface of the spun / drawn yarn was observed with an electron microscope, and a surface photograph was taken. The ratio of the area of the particles that decompose NOx to the surface area of the yarn was defined as the surface abundance. Surface abundance (%) = (area of particles / surface area of yarn) × 100 (3) Average particle diameter (μm) Using LUZEX III U (manufactured by Nireco), the average particle diameter of particles that decompose NOx is measured. did.

【0013】(4)NOx分解性能評価 図1に示すような、直径20cm、長さ1.5mの円筒
の内側に筒編みサンプルが均一に張られ、円筒の中央に
は光強度365nm(0.5mW/cm2 )の紫外蛍光
灯が設けられた装置に、1ppmの一酸化窒素(以下、
NOと略す)を含む空気を1m/sで連続的に流した。
円筒の出口でNOの量を測定し、この操作を5回繰り返
し行った。下記式による計算結果をNOx分解率とし、
この平均値をNOx分解性能とした。 NOx分解率(%)=(出口のNO量/入口のNO量)×100 (5)操業性 紡糸あるいは延伸工程で糸切れが1時間に全く無いもの
を○、1〜3回のものを△、3回以上のものを×とし
た。
(4) Evaluation of NOx decomposition performance As shown in FIG. 1, a cylinder knitting sample is uniformly stretched inside a cylinder having a diameter of 20 cm and a length of 1.5 m, and a light intensity of 365 nm (0. A device equipped with an ultraviolet fluorescent lamp of 5 mW / cm 2 ) has 1 ppm of nitric oxide (hereinafter,
Air containing NO) was continuously flowed at 1 m / s.
The amount of NO was measured at the outlet of the cylinder, and this operation was repeated 5 times. The calculation result by the following formula is taken as the NOx decomposition rate,
This average value was used as the NOx decomposition performance. NOx decomposition rate (%) = (NO amount at the outlet / NO amount at the inlet) × 100 (5) Operability O: No yarn breakage during spinning or drawing process in 1 hour, △: 1 to 3 times Three times or more were marked as x.

【0014】実施例1〜4 極限粘度0.69のポリエチレンテレフタレートに、N
Oxを分解する粒子として平均粒子径が0.32μmの
酸化チタン(石原産業社製)を配合し、公知の溶融紡糸
装置を用いて紡糸温度300℃、紡糸速度1400m/
minで225デニール36フィラメントの未延伸糸を
得た。これを通常の延伸方法で3倍に引き延ばし150
℃で熱処理を行い、75デニール36フィラメントの延
伸糸を得た。そして、この延伸糸を前記したように筒編
みし、NOx分解性能を調べた。なお、実施例1〜4で
は、配合量及び表面存在量を表1のように変化させて、
NOx分解性能を調べた。それらの結果を表1に示す。
Examples 1 to 4 Polyethylene terephthalate having an intrinsic viscosity of 0.69 was added with N
Titanium oxide (manufactured by Ishihara Sangyo Co., Ltd.) having an average particle diameter of 0.32 μm was blended as particles for decomposing Ox, and the spinning temperature was 300 ° C. and the spinning speed was 1400 m / using a known melt spinning device.
An undrawn yarn of 225 denier 36 filaments was obtained at min. This is stretched three times by a normal stretching method to 150
Heat treatment was performed at 0 ° C. to obtain a drawn yarn of 75 denier 36 filaments. Then, this drawn yarn was knitted as described above, and the NOx decomposition performance was examined. In Examples 1 to 4, the blending amount and the surface existing amount were changed as shown in Table 1,
The NOx decomposition performance was investigated. Table 1 shows the results.

【0015】表1から明らかなように、NOxを分解す
る粒子の表面存在量が0.5%以上の実施例1〜4で
は、NOx分解率が30%以上と良好な分解性能を示し
た。
As is clear from Table 1, in Examples 1 to 4 in which the surface abundance of NOx decomposing particles was 0.5% or more, the NOx decomposing rate was 30% or more, which was a good decomposition performance.

【0016】比較例1、2 比較例1、2において、製造条件を表1のよう代えた点
以外は実施例1〜4と同様にして製造し、それぞれのN
Ox分解性能を調べた。それらの結果も表1にあわせて
示す。
Comparative Examples 1 and 2 Comparative Examples 1 and 2 were produced in the same manner as in Examples 1 to 4 except that the production conditions were changed as shown in Table 1, and N of each was obtained.
The Ox decomposition performance was investigated. The results are also shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から明らかなように、比較例1では操
業性は良かったものの、NOxを分解する粒子の表面存
在量が0.5%未満であるため、NOxの分解率が低い
ものであった。また、比較例2においても、比較例1と
同様に粒子の表面存在量が少ないためNOxの分解率は
低いものであり、さらに糸切れも多発して操業性の悪い
ものであった。
As is clear from Table 1, in Comparative Example 1, the operability was good, but since the amount of NOx decomposing particles on the surface was less than 0.5%, the NOx decomposing rate was low. It was In Comparative Example 2 as well, as in Comparative Example 1, the NOx decomposition rate was low because the amount of particles present on the surface was small, and moreover thread breakage occurred frequently, resulting in poor operability.

【0019】[0019]

【発明の効果】本発明のNOx分解繊維は、繊維表面に
存在するNOxを分解する粒子が光触媒作用を有するた
め、加熱することなく、太陽光あるいは蛍光灯下におい
て空気中のNOxを分解することが可能となる。
INDUSTRIAL APPLICABILITY Since the NOx decomposing fiber of the present invention has a photocatalytic effect on the NOx decomposing particles present on the fiber surface, it can decompose NOx in the air under sunlight or fluorescent light without heating. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のNOx分解繊維のNOx分解性能評価
するための装置を示す概略図である。
FIG. 1 is a schematic view showing an apparatus for evaluating NOx decomposing performance of NOx decomposing fiber of the present invention.

【符号の説明】 1 紫外蛍光灯 2 NOx分解繊維[Explanation of symbols] 1 UV fluorescent lamp 2 NOx decomposition fiber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 35/06 D01F 6/92 301M D01F 6/90 301 301Q 6/92 301 B01D 53/36 ZABJ 101Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location B01J 35/06 D01F 6/92 301M D01F 6/90 301 301Q 6/92 301 B01D 53/36 ZABJ 101Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物を光触媒作用により分解する
粒子と繊維とからなり、その粒子が繊維表面積の0.5
%以上存在してなることを特徴とする窒素酸化物分解繊
維。
1. Particles which decompose nitrogen oxides by photocatalysis and fibers, the particles having a fiber surface area of 0.5.
% Nitrogen-decomposing fiber.
JP8069267A 1996-02-28 1996-02-28 Fiber capable of decomposing nitrogen oxide Pending JPH09228139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8069267A JPH09228139A (en) 1996-02-28 1996-02-28 Fiber capable of decomposing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8069267A JPH09228139A (en) 1996-02-28 1996-02-28 Fiber capable of decomposing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH09228139A true JPH09228139A (en) 1997-09-02

Family

ID=13397750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8069267A Pending JPH09228139A (en) 1996-02-28 1996-02-28 Fiber capable of decomposing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH09228139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062898A (en) * 2009-01-29 2015-04-09 ビーエーエスエフ コーポレーション Mechanically fused materials for pollution abatement in mobile and stationary sources
KR20220160945A (en) * 2021-05-28 2022-12-06 주식회사 휴비스 Surface-heated Polyphenylene Sulfide Composite Fiber Capable Of Removing Nitrogen Oxides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062898A (en) * 2009-01-29 2015-04-09 ビーエーエスエフ コーポレーション Mechanically fused materials for pollution abatement in mobile and stationary sources
KR20220160945A (en) * 2021-05-28 2022-12-06 주식회사 휴비스 Surface-heated Polyphenylene Sulfide Composite Fiber Capable Of Removing Nitrogen Oxides

Similar Documents

Publication Publication Date Title
JP4742127B2 (en) Method for producing catalyst-supported fiber structure
EP2140047B1 (en) Improved fabrics
CN1240004A (en) Fibrous materials of fluororesins and deodorant and antibacterial fabrics made by using the same
CN110652974A (en) Adsorption type composite nanofiber membrane with photocatalytic function and preparation method
CN108265345A (en) A kind of synthetic fibers with air-cleaning function and preparation method thereof
JP2007100230A (en) Inorganic particle-bearing polytetrafluoroethylene fiber and method for producing the same
JP2007031845A (en) Nonwoven fabric, method for producing the nonwoven fabric, and bag filter
JPH09228139A (en) Fiber capable of decomposing nitrogen oxide
JPH08257360A (en) Photoreactive material for removing harmful substance
JP2007014851A (en) Porous product
CN205412676U (en) Compound filter screen and air purifier
JP3306046B2 (en) Method for producing synthetic fiber and method for producing synthetic fiber cloth
KR102600617B1 (en) Surface-heated Polyphenylene Sulfide Fiber Capable Of Removing Nitrogen Oxides
CN110938890A (en) Production method of polyester colored yarn
JPH11124769A (en) Production of fiber decomposing nitrogen oxide
CN113181714B (en) Bi-component filter cotton, and manufacturing method and application thereof
CN108728933A (en) A kind of compound colored light catalysis fibre of core-skin type and its preparation method and application
JP7297161B2 (en) Method for producing degradable polyester fiber
JP3979545B2 (en) Functional fiber and production method thereof
JP2003103142A (en) Gas cleaning device
JP2003082557A (en) Fiber product capable of removing chemical pollutant
JP3658463B2 (en) Deodorant fiber product and its manufacturing method
JP2007196182A (en) Bag filter cloth and bag filter
JP2000096344A (en) Deodorant thermofusible fiber
JP3571103B2 (en) Method for producing titanium oxide-containing harmful substance removing material