JPH09228012A - Shape memory alloy leaf spring and its production - Google Patents

Shape memory alloy leaf spring and its production

Info

Publication number
JPH09228012A
JPH09228012A JP3364896A JP3364896A JPH09228012A JP H09228012 A JPH09228012 A JP H09228012A JP 3364896 A JP3364896 A JP 3364896A JP 3364896 A JP3364896 A JP 3364896A JP H09228012 A JPH09228012 A JP H09228012A
Authority
JP
Japan
Prior art keywords
leaf spring
alloy
rolling
shape memory
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3364896A
Other languages
Japanese (ja)
Inventor
Hirohisa Iwai
博久 岩井
Seiji Hirano
清司 平野
Yoshinori Mugishima
義則 麦島
Takeo Nakamura
竹夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3364896A priority Critical patent/JPH09228012A/en
Publication of JPH09228012A publication Critical patent/JPH09228012A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an Ni-Ti alloy leaf spring in which the wide degree of freedom in design can be taken in the case of combined use with a bias spring or the like. SOLUTION: The leaf spring is the one in which a sheet material cut out of a rolling stock obtd. by rolling an ingot of an Ni-Ti alloy in which, in an Ni-Ti alloy composed of, by atom, 49.5 to 52.0% Ni and 50.5 to 48.0% Ti or an Ni-Ti alloy composed of 49.5 to 52.0% Ni and 50.5 to 48.0% Ti, a part of Ni or/and Ti is substituted with one or >=two kinds of elements among V, Cr, Fe and Co in the range of 0.01 to 0.5% is allowed to shape-memorize into a prescribed bent shape. The total working ratio from the ingot of the sheet material is regulated to >=90%, and the angle θ between the rolling direction of the sheet material and the bending direction of the leaf spring is regulated to >=45 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ばね、クリップ、
アクチュエータをはじめとする各種機械部品、バーンイ
ン用ICソケット等の電子部品、マイクロマシン等の医
療分野に適用されるNi−Ti系形状記憶合金板ばねと
その製造方法に関する。
TECHNICAL FIELD The present invention relates to springs, clips,
The present invention relates to various mechanical parts such as actuators, electronic parts such as IC sockets for burn-in, Ni-Ti-based shape memory alloy leaf springs applied to the medical field such as micromachines, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】Ni−Ti系形状記憶合金板ばねは、図
1a〜cに例示した角状板ばね(a) 、円弧状板ばね(b)
、直線と円弧からなる板ばね(c) 等で、これらはバイ
アスばねと組合わせて二方向動作を行わせるアクチュエ
ータ等として用いられている。ところで、前記アクチュ
エータ等はNi−Ti系合金板ばねの相変態に伴う発生
荷重、たわみ、サイズから近似的に求めた見かけの縦弾
性係数を基に一律に設計されている。しかし、前記見か
けの縦弾性係数については、例えば、文献(形状記憶合
金の機械的性質;田中喜久昭他2名著、P56、図3.14、
縦弾性係数と温度の関係、養賢堂、1993)に高温時(オ
ーステナイト相、以下A相と記す)の縦弾性係数が約70
00kgf/mm2 、低温時(ロンボヘドラル相、以下R相と記
す)の縦弾性係数が約2000kgf/mm2 と記載されているだ
けで板の圧延方向等による縦弾性係数の異方性について
は一切触れられていない。このようなことから、形状記
憶合金の板ばねについては、その設計自由度を広げる手
掛かりを掴むことができない状況にあった。ここで板ば
ねの設計自由度とは、板ばねのストロークを大きくす
ること、板ばねの作動荷重を大きくすること、板ば
ねのサイズを小さくしてその単位重量あたりの発生荷重
を大きくすること、板ばねの高さを低くしてその収容
スペースを狭めること、バイアスばねと組合わせて用
いるときのバイアスばねのばね定数を小さくすること等
である。
2. Description of the Related Art Ni-Ti-based shape memory alloy leaf springs include rectangular leaf springs (a) and arc leaf springs (b) illustrated in FIGS.
, A leaf spring (c) composed of a straight line and an arc, and these are used as an actuator or the like for performing a bidirectional operation in combination with a bias spring. By the way, the actuators and the like are uniformly designed on the basis of the apparent longitudinal elastic modulus which is approximately obtained from the load generated by the phase transformation of the Ni-Ti alloy leaf spring, the deflection, and the size. However, regarding the apparent longitudinal elastic modulus, for example, refer to the literature (mechanical properties of shape memory alloys; Yoshihisa Tanaka et al., P56, Figure 3.14,
The relationship between longitudinal elastic modulus and temperature, Yokendo, 1993) shows that the longitudinal elastic modulus at high temperature (austenite phase, hereinafter referred to as A phase) is about 70.
00kgf / mm 2 , the longitudinal elastic modulus at low temperature (rombohedral phase, hereinafter referred to as R phase) is described as about 2000kgf / mm 2 , but there is no anisotropy of longitudinal elastic modulus depending on the rolling direction of the plate. Not touched. For this reason, it has been difficult to grasp the clue for expanding the degree of freedom in designing the shape memory alloy leaf spring. Here, the design freedom of the leaf spring is to increase the stroke of the leaf spring, increase the working load of the leaf spring, reduce the size of the leaf spring and increase the generated load per unit weight, For example, the height of the leaf spring is reduced to narrow the accommodation space, and the spring constant of the bias spring when used in combination with the bias spring is reduced.

【0003】[0003]

【発明が解決しようとする課題】Ni−Ti系合金板ば
ねの設計自由度を広げる方法の1つとして、A相の見か
けの縦弾性係数をより大きくし、R相の見かけの縦弾性
係数をより小さくすることが考えられる。そこで、本発
明者等は、A相とR相の縦弾性系数の差を大きくする方
法について鋭意研究を行った。その結果、見かけの縦弾
性係数は圧延板の加工条件に影響されること、見かけの
縦弾性係数は板ばね材の圧延方向に対して異方性を有す
ることを知見し、更に研究を重ねて本発明を完成させる
に到った。本発明は、バイアスばねと組合わせて用いる
場合等で広い設計自由度が採れるNi−Ti系合金板ば
ねとその製造方法の提供を目的とする。
As one of the methods for increasing the degree of freedom in designing a Ni-Ti alloy leaf spring, the apparent longitudinal elastic modulus of the A phase is increased and the apparent longitudinal elastic modulus of the R phase is increased. It is possible to make it smaller. Therefore, the present inventors have conducted earnest research on a method of increasing the difference in longitudinal elastic modulus between the A phase and the R phase. As a result, we found that the apparent longitudinal elastic modulus is affected by the processing conditions of the rolled plate, and that the apparent longitudinal elastic modulus has anisotropy with respect to the rolling direction of the leaf spring material. The present invention has been completed. It is an object of the present invention to provide a Ni—Ti based alloy leaf spring and a method for manufacturing the same, which allows a wide degree of design freedom when used in combination with a bias spring.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
Ni49.5〜52.0at%、Ti50.5〜48.0at%からなるNi
−Ti系合金、又はNi49.5〜52.0at%、Ti50.5〜4
8.0at%からなるNi−Ti系合金のNi又は/及びT
iの一部を0.01〜 0.5at%の範囲で、V、Cr、Fe、
Coの元素の何れか1種または2種以上で置換したNi
−Ti系合金の鋳塊を圧延して得た圧延材から所定形状
に切断した板材を所定の曲げ形状に形状記憶させた板ば
ねであって、前記板材の鋳塊からの全加工率が90%以
上、前記板材の圧延方向と前記板ばねの曲げ方向とのな
す角度θが45°以下であることを特徴とする形状記憶合
金板ばねである。
According to the first aspect of the present invention,
Ni consisting of Ni 49.5-52.0 at% and Ti 50.5-48.0 at%
-Ti-based alloy, or Ni49.5-52.0at%, Ti50.5-4
Ni or / and T of a Ni-Ti alloy consisting of 8.0 at%
Part of i is 0.01 to 0.5 at% in the range of V, Cr, Fe,
Ni substituted with any one element or two or more elements of Co
-A leaf spring in which a plate material cut from a rolled material obtained by rolling an ingot of a Ti-based alloy into a predetermined shape is memorized in a predetermined bending shape, and the total processing rate of the plate material from the ingot is 90 % Or more, the angle θ formed by the rolling direction of the plate material and the bending direction of the plate spring is 45 ° or less, which is a shape memory alloy plate spring.

【0005】この発明において、板ばねの曲げ方向と
は、図2に示すようにR相からA相へ変態する際に板ば
ねが曲がる方向である。又前記板材の圧延方向と前記板
ばねの曲げ方向とのなす角度θとは図3に示す角度であ
る。この発明において、板ばねの設計自由度を十分大き
くとるには、Ni−Ti系合金板ばねのA相の見かけの
縦弾性係数EA とR相の見かけの縦弾性係数ER との比
〔EA /ER 〕が 7.0以上にするのが望ましい。
In the present invention, the bending direction of the leaf spring is the direction in which the leaf spring bends when transforming from the R phase to the A phase as shown in FIG. The angle θ formed by the rolling direction of the plate material and the bending direction of the plate spring is the angle shown in FIG. In the present invention, the sufficiently large degree of freedom in designing the plate spring, the ratio of the longitudinal elastic modulus E R of the apparent modulus of longitudinal elasticity E A and R-phase of the apparent phase A of Ni-Ti-based alloy plate springs [ It is desirable that E A / E R ] be 7.0 or more.

【0006】請求項3記載の発明は、Ni49.5〜52.0at
%、Ti50.5〜48.0at%からなるNi−Ti系合金、又
はNi49.5〜52.0at%、Ti50.5〜48.0at%からなるN
i−Ti系合金のNi又は/及びTiの一部を0.01〜
0.5at%の範囲で、V、Cr、Fe、Coの元素の何れ
か1種または2種以上で置換したNi−Ti系合金の鋳
塊に、熱間圧延と、温間又は/及び冷間圧延を施し、更
に必要に応じて生地焼鈍と冷間仕上圧延を施してNi−
Ti系合金圧延材を作製し、次いで前記圧延材から板材
を所定形状に切断し、この板材を所定の曲げ形状に拘束
して形状記憶熱処理する形状記憶合金板ばねの製造方法
であって、前記熱間圧延と、温間又は/及び冷間圧延に
おける全加工率を90%以上とし、前記圧延材からの板材
の切断を、前記圧延材の圧延方向と前記板材の形状記憶
熱処理時の曲げ方向とのなす角度θが45°以下になるよ
うに行うことを特徴とする請求項1又は請求項2記載の
形状記憶合金板ばねの製造方法である。
The invention according to claim 3 is Ni 49.5 to 52.0 at
%, Ni-Ti based alloy consisting of Ti50.5 to 48.0 at%, or N consisting of Ni49.5 to 52.0 at% and Ti50.5 to 48.0 at%.
Part of Ni or / and Ti in the i-Ti alloy is 0.01 to
In a range of 0.5 at%, ingot of Ni-Ti alloy substituted with any one or more elements of V, Cr, Fe, and Co, hot rolling and warm or / and cold After rolling, if necessary, dough annealing and cold finish rolling are performed to obtain Ni-
A method for producing a shape memory alloy leaf spring, which comprises producing a rolled Ti-based alloy, cutting the plate into a predetermined shape from the rolled material, restraining the plate in a predetermined bending shape, and performing shape memory heat treatment. The hot rolling and the total working rate in the warm or / and cold rolling is 90% or more, and the cutting of the plate material from the rolled material is performed in the rolling direction of the rolled material and the bending direction during the shape memory heat treatment of the plate material. The method for manufacturing a shape memory alloy leaf spring according to claim 1 or 2, wherein the angle θ formed by and is 45 ° or less.

【0007】[0007]

【発明の実施の形態】請求項1記載の発明において、合
金組成をNi49.5〜52.0at%、Ti50.5〜48.0at%とし
たのは、Niが49.5at%未満でも、Niが52.0at%を超
えても、形状記憶効果を示さなくなるばかりか、圧延加
工途中に、材料に割れ等のトラブルが発生して加工が困
難になる為である。上記のNi又は/及びTiの一部を
V、Cr、Fe、Coの元素の何れか1種又は2種以上
で置換すると、形状記憶合金としての特性を害さずに、
A相とR相の変態温度を種々に制御でき、又合金の強度
や加工性を向上できる。前記置換元素量を0.01〜 0.5at
%に限定した理由は、0.01at%未満ではその効果が十分
に得られず、 0.5at%を超えると圧延加工性が低下する
為である。
BEST MODE FOR CARRYING OUT THE INVENTION In the invention according to claim 1, the alloy composition is Ni 49.5 to 52.0 at% and Ti 50.5 to 48.0 at% because the Ni content is 52.0 at% even if the Ni content is less than 49.5 at%. Even if it exceeds%, not only the shape memory effect is not exhibited, but also troubles such as cracks occur in the material during the rolling process, which makes the process difficult. When a part of the above Ni or / and Ti is replaced with one or more elements of V, Cr, Fe and Co, the characteristics as a shape memory alloy are not impaired,
The transformation temperatures of the A phase and R phase can be controlled in various ways, and the strength and workability of the alloy can be improved. The substitution element amount is 0.01 to 0.5 at
The reason for limiting to 0.1% is that if it is less than 0.01 at%, the effect cannot be sufficiently obtained, and if it exceeds 0.5 at%, the rolling workability is deteriorated.

【0008】この発明において、圧延板の全加工率を90
%以上とし、板材の圧延方向と板ばねの曲げ方向とのな
す角度θを45°以下にした理由は、全加工率が90%未満
では角度θを45°以下にしても、又角度θが45°を超え
ては全加工率を90%以上にしても、Ni−Ti系合金の
A相の見かけの縦弾性係数EA とR相の見かけの縦弾性
係数ER との比〔EA /ER 〕が小さくなる為である。
このことはバイアスばねと組合わせて用いるときの板ば
ねの設計自由度が小さくなることを意味する。
In the present invention, the total processing rate of the rolled plate is 90%.
% And the angle θ between the rolling direction of the plate material and the bending direction of the leaf spring is 45 ° or less, the reason why the angle θ is 45 ° or less even if the total processing rate is less than 90% 45 also ° beyond is the total working rate of 90% or more, Ni-Ti-based ratio [E a the modulus of longitudinal elasticity E R of the apparent modulus of longitudinal elasticity E a and R-phase of the apparent phase a of the alloy This is because / E R ] becomes small.
This means that the degree of freedom in designing the leaf spring when used in combination with the bias spring is reduced.

【0009】請求項3記載の発明では、必要に応じて、
冷間圧延後の板ばね材に生地焼鈍と冷間仕上圧延を施す
が、この場合、加工率を20%以上にすると〔EA
R 〕が著しく向上する。板ばね材は、図1a、b、c
に示したような曲げ形状に拘束して形状記憶熱処理が施
される。中間焼鈍、生地焼鈍、形状記憶熱処理等はNi
−Ti系合金で採られる通常の加熱条件で行う。
According to the invention of claim 3, if necessary,
While subjected to finish rolling between fabrics annealing and cold in the leaf spring material after cold rolling, in this case, when the working ratio 20% or more [E A /
E R ] is significantly improved. The leaf spring material is as shown in FIGS.
The shape memory heat treatment is performed while restraining the bending shape as shown in FIG. Ni for intermediate annealing, dough annealing, shape memory heat treatment, etc.
-It is performed under normal heating conditions adopted for Ti-based alloys.

【0010】本発明において、板ばねには、圧延材から
板材を幅狭のリボン状に切断して形状記憶させたものも
含まれる。又本発明の板ばねは圧延材を形状記憶熱処理
し、これを所定形状に切断して製造することもできる。
In the present invention, the leaf spring includes a leaf material obtained by cutting a leaf material into a narrow ribbon shape from a rolled material and memorizing the shape. The leaf spring of the present invention can also be manufactured by subjecting a rolled material to shape memory heat treatment and cutting it into a predetermined shape.

【0011】[0011]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)表1に示す種々組成のNi−Ti系合金を
常法により真空溶解鋳造して、厚さ30mm、幅 160mm、長
さ 500mmの鋳塊とし、これを外削後、 850℃で熱間圧延
して厚さ3mmの熱延材とし、次いでこの熱延材を、焼鈍
と冷間圧延を繰返し施して厚さ 0.6mmの圧延材とした。
鋳塊から圧延材までの全圧延加工率は98%である。この
圧延材から板材を所定寸法に切断した。切断した板材を
図1c に示した直線と円弧からなる曲げ形状に拘束しつ
つ 450℃で1時間の形状記憶熱処理を施して板ばねを製
造した。板材の圧延方向と板ばねの曲げ方向とのなす角
度θは0°とした。
The present invention will be described below in detail with reference to examples. (Example 1) Ni-Ti alloys having various compositions shown in Table 1 were vacuum melt-cast by a conventional method to form an ingot having a thickness of 30 mm, a width of 160 mm and a length of 500 mm. Was hot-rolled into a hot-rolled material having a thickness of 3 mm, and the hot-rolled material was repeatedly annealed and cold-rolled to give a rolled material having a thickness of 0.6 mm.
The total rolling rate from the ingot to the rolled material is 98%. A plate material was cut into a predetermined size from this rolled material. A leaf spring was manufactured by performing shape memory heat treatment at 450 ° C for 1 hour while constraining the cut plate material to the bent shape consisting of straight lines and arcs shown in Fig. 1c. The angle θ formed by the rolling direction of the plate material and the bending direction of the plate spring was 0 °.

【0012】得られた板ばねについて形状回復性と鋳塊
の圧延加工性を調べた。結果を表1に併記する。形状回
復性は、板ばねにR相の温度で最大歪み5%の曲げ変形
を加え、次いでこれを加熱してA相に逆変態させて形状
回復させ、そのときに残留歪みが生じるかどうかで評価
した。残留歪みが生じなかったものを○、残留歪みが生
じたものを×で表した。圧延加工性は、材料に割れ等が
生じなかったものを○、材料に割れ等が生じたものを×
で表した。
The obtained leaf spring was examined for shape recovery and ingot rolling workability. The results are also shown in Table 1. The shape recovery depends on whether the leaf spring is subjected to bending deformation with a maximum strain of 5% at the temperature of the R phase, and then heated to reverse transform into the A phase to recover the shape, at which time residual strain occurs. evaluated. The case where the residual strain did not occur was represented by O, and the case where the residual strain occurred was represented by X. For rolling workability, ○ indicates that the material did not crack, and × indicates that the material did not crack.
It was expressed by.

【0013】[0013]

【表1】 注)単位:at%、切出角度θ=0°[Table 1] Note) Unit: at%, cutting angle θ = 0 °

【0014】表1より明らかなように、本発明例品 (N
o.1〜28) は形状回復性と加工性のいずれも良好であっ
た。これに対し、比較例品(No.29〜33) は、本発明の合
金組成を外れた為、いずれも形状回復性と加工性が不良
となった。
As is clear from Table 1, the product of the present invention (N
o.1-28) had good shape recovery and workability. On the other hand, the comparative examples (Nos. 29 to 33) were out of the alloy composition of the present invention, so that the shape recoverability and the workability were all poor.

【0015】(実施例2)表1のNo.2,9,13 の組成のN
i−Ti系合金を常法により真空溶解鋳造して、厚さ 5
〜30mm、幅 160mm、長さ 500mmの鋳塊とし、これを外削
後、 850℃で熱間圧延して厚さ3mmの熱延材とし、次い
でこの熱延材に冷間圧延を施して厚さ 0.6mmの圧延材を
得た。前記冷間圧延では必要に応じて 650℃×1Hrの焼
鈍を入れた。鋳塊から圧延材までの全加工率は88〜98%
である。この圧延材から板材を所定寸法に切断した。切
断した板材を図1c に示した曲げ形状に拘束しつつ 450
℃で1時間の形状記憶熱処理を施して板ばねを製造し
た。板材の圧延方向と板材の曲げ方向とのなす角度θは
種々に変化させた。
(Embodiment 2) N of the compositions of Nos. 2, 9 and 13 in Table 1
The i-Ti alloy is vacuum melt cast by a conventional method to obtain a thickness of 5
~ 30mm, width 160mm, length 500mm, ingot, after external cutting, hot-rolled at 850 ℃ to make hot-rolled material with thickness of 3mm. A rolled material having a thickness of 0.6 mm was obtained. In the cold rolling, annealing of 650 ° C. × 1 Hr was added as needed. Overall processing rate from ingot to rolled material is 88-98%
It is. A plate material was cut into a predetermined size from this rolled material. 450 while restraining the cut plate material into the bent shape shown in Fig. 1c.
A leaf spring was manufactured by performing shape memory heat treatment at 1 ° C. for 1 hour. The angle θ formed by the rolling direction of the plate and the bending direction of the plate was changed variously.

【0016】得られた板ばねについてばね特性を調べ
た。A相(80℃)の見かけの縦弾性係数EA 、R相(25
℃)の見かけの縦弾性係数ER 、両者の比〔EA
R 〕を表2に示す。尚、形状記憶合金のばね特性は、
一般に、定温状態での荷重−たわみ特性、定たわみ
状態での温度−荷重特性、定荷重状態での温度−たわ
み特性のいずれかを求めて評価される。形状記憶合金ば
ねをバイアスばねと組合わせたアクチュエータ等に応用
する場合は又はが採用される。ここではを採用し
た。の評価法は、例えば、図4に示す断面形状に記憶
させた板ばねの点Cに定たわみδを付与し温度変化に伴
い点Cに発生する荷重Pを測定し、δとPを下記関係式
(出典:“ばね”第3版、ばね技術研究会編、P302、19
82、丸善)に代入して見かけの縦弾性係数Eを算出する
方法である。δ= PL3cos2α/3EI+ (Prcos2α/EI) [L2
β+2Lr(1 − cosβ) +(r2/2) (β−sin2β/2)]。但
し、I は断面2次モーメント。図5に発生荷重と温度と
の関係を例示する。
The spring characteristics of the obtained leaf spring were examined. Longitudinal elastic coefficient of the apparent phase A (80 ℃) E A, R-phase (25
℃) apparent longitudinal elastic modulus E R , the ratio of the two [E A /
E R ] is shown in Table 2. The spring characteristics of shape memory alloy are
Generally, it is evaluated by obtaining any one of the load-deflection characteristic in the constant temperature state, the temperature-load characteristic in the constant deflection state, and the temperature-deflection characteristic in the constant load state. When the shape memory alloy spring is applied to an actuator or the like in combination with a bias spring, or is adopted. Here is adopted. The evaluation method is, for example, by applying a fixed deflection δ to the point C of the leaf spring stored in the sectional shape shown in FIG. 4 and measuring the load P generated at the point C with temperature change, Ceremony (Source: “Spring” 3rd edition, edited by Spring Technology Research Group, P302, 19
82, Maruzen) to calculate the apparent longitudinal elastic modulus E. δ = PL 3 cos 2 α / 3EI + (Prcos 2 α / EI) [L 2
β + 2Lr (1 - cosβ) + (r 2/2) (β-sin 2 β / 2)]. However, I is the second moment of area. FIG. 5 illustrates the relationship between the generated load and the temperature.

【0017】[0017]

【表2】 [Table 2]

【0018】表2より明らかなように、本発明例品(No.
34〜45) はいずれも、EA が高く、ER が低く、従って
両者の比〔EA /ER 〕は大きい値となった。これに対
し比較例品のNo.46,48は加工率が90%未満だった為、又
No.47,49は切断角度θが45°を超えた為いずれもER
増加し、両者の比〔EA /ER 〕が低下した。
As is apparent from Table 2, the product of the present invention (No.
34-45) Both, E A is high, E R is low, hence their ratio [E A / E R] was a large value. On the other hand, since the processing rate of the comparative example No. 46, 48 was less than 90%,
No.47,49 the cutting angle θ is increased both E R for exceeds 45 °, the ratio of the two [E A / E R] is lowered.

【0019】(実施例3)表1のNo.2のNi−Ti系合
金を常法により真空溶解鋳造して、厚さ30mm、幅160m
m、長さ 500mmの鋳塊とし、これを外削後、 850℃で熱
間圧延して厚さ3mmの熱延材とし、次いでこの熱延材を
冷間圧延して厚さ 0.6mmの圧延材を得た。必要に応じて
650℃×1Hrの焼鈍を入れた。鋳塊から圧延材までの全
加工率は98%である。次にこれを生地焼鈍後、冷間圧延
と同じ方向に仕上冷間圧延して仕上材を得た。生地焼鈍
後の加工率は10〜51%の間で種々に変化させた。この仕
上材から板材を所定寸法に切断した。切断した板材を図
1c に示した曲げ形状に拘束しつつ 450℃で1時間の形
状記憶熱処理を施して板ばねを製造した。前記仕上材の
圧延方向と前記板材の曲げ方向とのなす角度θは種々に
変化させた。
(Example 3) No. 2 Ni-Ti alloy in Table 1 was vacuum melt cast by a conventional method to obtain a thickness of 30 mm and a width of 160 m.
After making an ingot of m and length of 500 mm, after cutting it, hot rolling at 850 ℃ to hot rolled material with thickness of 3 mm, and then cold rolling this hot rolled material with thickness of 0.6 mm I got the material. If necessary
Annealing was performed at 650 ° C x 1 hr. The total processing rate from ingot to rolled material is 98%. Next, after dough annealing, this was finish cold-rolled in the same direction as cold-rolling to obtain a finish material. The working ratio after annealing of the dough was varied between 10 and 51%. A plate material was cut into a predetermined size from this finish material. A leaf spring was manufactured by subjecting the cut leaf material to a shape memory heat treatment at 450 ° C for 1 hour while restraining the bent shape shown in Fig. 1c. The angle θ formed by the rolling direction of the finish material and the bending direction of the plate material was variously changed.

【0020】得られた板ばねについて、実施例2と同じ
の評価法により、A相(80℃)の見かけの縦弾性係数
A 、R相(25℃)の見かけの縦弾性係数ER 、及び両
者の比〔EA /ER 〕を求めた。結果を表3に示す。
[0020] The obtained plate spring, by the same evaluation methods as in Example 2, a longitudinal elastic coefficient of the apparent phase A (80 ° C.) E A longitudinal elastic modulus of apparent R-phase (25 ° C.) E R, And the ratio of both [E A / E R ] were determined. The results are shown in Table 3.

【0021】[0021]

【表3】 注)合金No.2。[Table 3] Note) Alloy No. 2.

【0022】表3より明らかなように、本発明例品の N
o.50〜55はいずれもER が一段と低下し、両者の比〔E
A /ER 〕が著しく向上した。No.56,57は仕上冷間圧延
の加工率が低かった為、両者の比はあまり向上しなかっ
た。
As is clear from Table 3, the N
o.50~55 are all reduced E R is more, both the ratio of [E
A / E R ] was significantly improved. In Nos. 56 and 57, the work ratio of finish cold rolling was low, so the ratio of the two did not improve so much.

【0023】[0023]

【発明の効果】以上に述べたように、本発明によれば、
Ni−Ti系合金の板ばね特性が向上するので、バイア
スばねと組合わせたアクチュエータ等での前記板ばねの
設計自由度が広がり、工業上顕著な効果を奏する。
As described above, according to the present invention,
Since the leaf spring characteristics of the Ni-Ti alloy are improved, the degree of freedom in designing the leaf spring in the actuator or the like combined with the bias spring is expanded, and a remarkable effect is industrially achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のNi−Ti系合金板ばねの態様を示す
斜視図である。
FIG. 1 is a perspective view showing an embodiment of a Ni—Ti alloy leaf spring of the present invention.

【図2】本発明における板ばねの曲げ方向の説明図であ
る。
FIG. 2 is an explanatory view of a bending direction of a leaf spring according to the present invention.

【図3】本発明における圧延材の圧延方向と前記圧延材
から切断する板材の曲げ方向とのなす角度θの説明図で
ある。
FIG. 3 is an explanatory view of an angle θ formed by a rolling direction of a rolled material and a bending direction of a plate material cut from the rolled material in the present invention.

【図4】形状記憶合金の板ばね特性を求めるときの板ば
ねの説明図である。
FIG. 4 is an explanatory diagram of a leaf spring when obtaining leaf spring characteristics of a shape memory alloy.

【図5】発生荷重と温度の関係を示す説明図である。FIG. 5 is an explanatory diagram showing a relationship between generated load and temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 竹夫 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeo Nakamura 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ni49.5〜52.0at%、Ti50.5〜48.0at
%からなるNi−Ti系合金、又はNi49.5〜52.0at
%、Ti50.5〜48.0at%からなるNi−Ti系合金のN
i又は/及びTiの一部を0.01〜 0.5at%の範囲で、
V、Cr、Fe、Coの元素の何れか1種または2種以
上で置換したNi−Ti系合金の鋳塊を圧延して得た圧
延材から所定形状に切断した板材を所定の曲げ形状に形
状記憶させた板ばねであって、前記板材の鋳塊からの全
加工率が90%以上、前記板材の圧延方向と前記板ばねの
曲げ方向とのなす角度θが45°以下であることを特徴と
する形状記憶合金板ばね。
1. Ni 49.5 to 52.0 at%, Ti 50.5 to 48.0 at
% Ni-Ti alloy, or Ni49.5-52.0at
%, N of Ni-Ti based alloy consisting of Ti 50.5 to 48.0 at%
i or / and a part of Ti in the range of 0.01 to 0.5 at%,
A plate material cut into a predetermined shape from a rolled material obtained by rolling an ingot of a Ni—Ti alloy substituted with any one or more elements of V, Cr, Fe, and Co is formed into a predetermined bent shape. A shape-memorized leaf spring, the total processing rate from the ingot of the plate material is 90% or more, the angle θ formed by the rolling direction of the plate material and the bending direction of the plate spring is 45 ° or less. Characteristic shape memory alloy leaf spring.
【請求項2】 板ばねのオーステナイト相の見かけの縦
弾性係数EA とロンボヘドラル相の見かけの縦弾性係数
R との比〔EA /ER 〕が 7.0以上であることを特徴
とする請求項1記載の形状記憶合金板ばね。
2. The ratio [E A / E R ] of the apparent longitudinal elastic modulus E A of the austenite phase and the apparent longitudinal elastic modulus E R of the rhombohedral phase of the leaf spring is 7.0 or more. The shape memory alloy leaf spring according to item 1.
【請求項3】 Ni49.5〜52.0at%、Ti50.5〜48.0at
%からなるNi−Ti系合金、又はNi49.5〜52.0at
%、Ti50.5〜48.0at%からなるNi−Ti系合金のN
i又は/及びTiの一部を0.01〜 0.5at%の範囲で、
V、Cr、Fe、Coの元素の何れか1種または2種以
上で置換したNi−Ti系合金の鋳塊に、熱間圧延と、
温間又は/及び冷間圧延を施し、更に必要に応じて生地
焼鈍と冷間仕上圧延を施してNi−Ti系合金圧延材を
作製し、次いで前記圧延材から板材を所定形状に切断
し、この板材を所定の曲げ形状に拘束して形状記憶熱処
理する形状記憶合金板ばねの製造方法であって、前記熱
間圧延と、温間又は/及び冷間圧延における全加工率を
90%以上とし、前記圧延材からの板材の切断を、前記圧
延材の圧延方向と前記板材の形状記憶熱処理時の曲げ方
向とのなす角度θが45°以下になるように行うことを特
徴とする請求項1又は請求項2記載の形状記憶合金板ば
ねの製造方法。
3. Ni49.5-52.0at%, Ti50.5-48.0at
% Ni-Ti alloy, or Ni49.5-52.0at
%, N of Ni-Ti based alloy consisting of Ti 50.5 to 48.0 at%
i or / and a part of Ti in the range of 0.01 to 0.5 at%,
Hot rolling an ingot of a Ni—Ti based alloy substituted with any one or more of V, Cr, Fe and Co elements;
Performing warm or / and cold rolling, further subjecting to dough annealing and cold finish rolling to produce a Ni-Ti alloy rolled material, and then cutting a plate material into a predetermined shape from the rolled material, A method for producing a shape memory alloy leaf spring, which comprises subjecting this plate material to a predetermined bending shape and performing a shape memory heat treatment, comprising: a hot rolling and a total working rate in warm or / and cold rolling.
90% or more, the cutting of the plate material from the rolled material is performed so that the angle θ formed by the rolling direction of the rolled material and the bending direction during shape memory heat treatment of the plate material is 45 ° or less. The method for manufacturing the shape memory alloy leaf spring according to claim 1 or 2.
JP3364896A 1996-02-21 1996-02-21 Shape memory alloy leaf spring and its production Pending JPH09228012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3364896A JPH09228012A (en) 1996-02-21 1996-02-21 Shape memory alloy leaf spring and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3364896A JPH09228012A (en) 1996-02-21 1996-02-21 Shape memory alloy leaf spring and its production

Publications (1)

Publication Number Publication Date
JPH09228012A true JPH09228012A (en) 1997-09-02

Family

ID=12392278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3364896A Pending JPH09228012A (en) 1996-02-21 1996-02-21 Shape memory alloy leaf spring and its production

Country Status (1)

Country Link
JP (1) JPH09228012A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138297A (en) * 1999-11-18 2001-05-22 Hitachi Ltd Grip mechanism
JP2003247053A (en) * 2002-02-25 2003-09-05 Daido Steel Co Ltd Parts partially having superelasticity, and its manufacturing method
CN105603344A (en) * 2016-01-17 2016-05-25 北京工业大学 Method for optimizing Ni9.3W alloy substrate strip rolling texture for coated conductors
WO2018211911A1 (en) * 2017-05-16 2018-11-22 住友重機械工業株式会社 Freezer, and support structure for extending/retracting member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138297A (en) * 1999-11-18 2001-05-22 Hitachi Ltd Grip mechanism
JP2003247053A (en) * 2002-02-25 2003-09-05 Daido Steel Co Ltd Parts partially having superelasticity, and its manufacturing method
CN105603344A (en) * 2016-01-17 2016-05-25 北京工业大学 Method for optimizing Ni9.3W alloy substrate strip rolling texture for coated conductors
WO2018211911A1 (en) * 2017-05-16 2018-11-22 住友重機械工業株式会社 Freezer, and support structure for extending/retracting member
JP2018194218A (en) * 2017-05-16 2018-12-06 住友重機械工業株式会社 Freezer and support structure of advancing/retracting member

Similar Documents

Publication Publication Date Title
US5641364A (en) Method of manufacturing high-temperature shape memory alloys
Zhou et al. Pseudo-elastic deformation behavior in a Ti/Mo-based alloy
JPH0543969A (en) Shape-memory alloy of high critical temperature
JP4415992B2 (en) Deformed nail corrector and method for manufacturing the same
JPH09228012A (en) Shape memory alloy leaf spring and its production
JPH05263191A (en) Hot rolled steel sheet high in young's modulus in width direction and its manufacture
US4131720A (en) Heavy-duty heat-responsive bimetallic material
US6371463B1 (en) Constant-force pseudoelastic springs and applications thereof
JP5512145B2 (en) Shape memory alloy
US6664702B2 (en) Pseudoelastic springs with concentrated deformations and applications thereof
JP3749589B2 (en) Hot-rolled strip, hot-rolled sheet or hot-rolled strip made of Ti-Fe-O-N-based titanium alloy and method for producing them
JP6781960B2 (en) Manufacturing method of Fe-Ni alloy sheet and Fe-Ni alloy sheet
JPS6356033B2 (en)
JP2884913B2 (en) Manufacturing method of α + β type titanium alloy sheet for superplastic working
JP2001247938A (en) Austenitic stainless steel sheet for electronic equipment component
JP3297798B2 (en) Manufacturing method of austenitic stainless steel sheet for roll forming
JPH1136024A (en) High-temperature-functioning shape memory alloy, and its production
JP4641099B2 (en) Manufacturing method of high strength austenitic stainless steel sheet
JP2003105438A (en) WORKING AND HEAT-TREATING METHOD FOR Fe-Mn-Si BASED SHAPE MEMORY ALLOY ADDED WITH NbC
JPS60141852A (en) Manufacture of shape memory alloy
JPS624462B2 (en)
JPS62199757A (en) Manufacture of shape memory alloy material
JP2851160B2 (en) Method of manufacturing superelastic alloy wire
JP2573499B2 (en) TiNiCuV quaternary shape memory alloy
JPH09125212A (en) High silicon steel excellent in workability and its production