JPH09227919A - Smelting reduction method of chromium ore - Google Patents

Smelting reduction method of chromium ore

Info

Publication number
JPH09227919A
JPH09227919A JP32943196A JP32943196A JPH09227919A JP H09227919 A JPH09227919 A JP H09227919A JP 32943196 A JP32943196 A JP 32943196A JP 32943196 A JP32943196 A JP 32943196A JP H09227919 A JPH09227919 A JP H09227919A
Authority
JP
Japan
Prior art keywords
chromium ore
ore
reduction
chromium
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32943196A
Other languages
Japanese (ja)
Other versions
JP3580059B2 (en
Inventor
Yasuo Kishimoto
康夫 岸本
Hiroshi Nishikawa
廣 西川
Fumio Sudo
文夫 数土
Yoshihisa Kitano
嘉久 北野
Kyoichi Kameyama
恭一 亀山
Tomomichi Terabatake
知道 寺畠
Kimiharu Aida
公治 会田
Hideji Takeuchi
秀次 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32943196A priority Critical patent/JP3580059B2/en
Publication of JPH09227919A publication Critical patent/JPH09227919A/en
Application granted granted Critical
Publication of JP3580059B2 publication Critical patent/JP3580059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To promote reduction reaction and, at the same time, to reduce the erosion of refractory of a reaction vessel by specifying a Hardgrove index and volatile matter content of carbonaceous material simultaneously added with an ore, at the time of executing smelting reduction of chromium ore in a metallurgical reaction vessel of a converter, etc. SOLUTION: The carbonaceous material added together with the chromium ore into molten iron in the converter, uses a coal having >=45 Hardgrove index(HGI) and <=10% volatile matter(VM). Further, at least 90% of this coal have >=3mm grain diameter and the secondary combustion ratio in the furnace is regulated to >=30%. By this method, the reduction of the chromium ore in slag is promoted and reduction efficiency is improved, and further, the erosion of the refractory can be reduced. Then, an Mg-C brick having 8-25% C content is preferably used for at least a part of the wall part being in contact with the slag in the furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、クロム鉱石の溶
融還元方法に関し、特に安価なクロム鉱石を直接用いて
ステンレス鋼の母溶湯である含クロム溶湯を効果的に溶
製しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for smelting and reducing chromium ore, and more particularly to an attempt to effectively produce a chromium-containing molten metal, which is a mother molten metal of stainless steel, by directly using inexpensive chromium ore. .

【0002】[0002]

【従来の技術】近年、転炉等の溶融還元炉において、高
価な合金鉄を用いる代わりに、安価なクロム鉱石を直接
用いて含クロム溶湯を得る、いわゆる溶融還元技術が開
発された。この溶融還元においては、使用されるクロム
鉱石の大半が粒径の小さい砂状鉱石であることから、か
ような砂状のクロム鉱石を飛散させることなく転炉内に
投入することが重要である。また、クロム鉱石は極めて
硬いことから、供給配管の摩耗を軽減することも重要な
技術である。
2. Description of the Related Art In recent years, in a smelting reduction furnace such as a converter, a so-called smelting reduction technology has been developed in which a chromium-containing molten metal is obtained by directly using an inexpensive chromium ore instead of using expensive alloy iron. In this smelting reduction, most of the chromium ore used is a sandy ore with a small particle size, so it is important to put such a sandy chromium ore into the converter without scattering. . Moreover, since chromium ore is extremely hard, it is also an important technique to reduce the wear of the supply pipe.

【0003】発明者らは、かような事情に鑑み、その上
記の問題の解決策について研究を重ねた結果、粉状クロ
ム鉱石を配管の摩耗が無い状態で供給できるだけでな
く、高い歩留りの下で炉内に投入できる方法を見い出
し、特公平7-33536号公報において開示した。この方法
は、上底吹き転炉において、上吹きランスと独立に操作
可能な鉱石投入用のランスを転炉の中心より半径の2/
3以内の領域に設置し、かつランスの高さを上吹きラン
スとの関係で所定レベルに設定することにより、鉱石を
配管の摩耗が無い低速で供給した場合であっても、添加
歩留りの高い炉内投入を可能にしたものである。
In view of such circumstances, the inventors have conducted researches on a solution to the above problem, and as a result, not only can the powdery chromium ore be supplied without the wear of the pipe, but also at a high yield. Then, a method for charging the material into the furnace was found and disclosed in Japanese Patent Publication No. 7-33536. In this method, in the top-bottom blowing converter, an ore charging lance that can be operated independently of the top-blowing lance has a radius of 2 /
By setting the height of the lance to a predetermined level in relation to the top blowing lance, the ore is supplied at a low speed without wear of the pipes, and the addition yield is high. It is possible to put in the furnace.

【0004】[0004]

【発明が解決しようとする課題】上記の方法により、ク
ロム鉱石を安定して高い歩留りの下で投入することがで
きるようになったが、依然として、以下に述べるような
問題を残していた。すなわち、クロム鉱石は、酸化鉄・
酸化クロム等の金属酸化物を含有する鉱石であり、かか
る金属酸化物を溶融スラグ中にてコークス等の炭材で還
元するのが溶融還元プロセスである。ここに、炉壁耐火
物としては、いわゆるMgO系耐火物、中でも耐酸化性に
優れるMgO−Cレンガが用いられることが多い。このよ
うに、金属酸化物はスラグ中の炭材で還元されるわけで
あるが、かかる金属酸化物は耐火物中の炭素とも反応す
るため、MgO−Cレンガから炭素が消費され、結果とし
てレンガが溶損することになる。その結果、耐火物寿命
は通常の転炉使用の場合に比べて大幅に短いという問題
があった。
By the above method, it becomes possible to stably charge chromium ore with a high yield, but still the following problems remain. That is, chrome ore is iron oxide
It is an ore containing metal oxides such as chromium oxide, and the smelting reduction process reduces such metal oxides with carbonaceous materials such as coke in molten slag. Here, as the furnace wall refractory, so-called MgO-based refractory, in particular, MgO-C brick having excellent oxidation resistance is often used. In this way, the metal oxide is reduced by the carbonaceous material in the slag, but since the metal oxide also reacts with the carbon in the refractory, carbon is consumed from the MgO-C brick, and as a result, the brick is consumed. Will be melted. As a result, there is a problem that the refractory life is significantly shorter than in the case of using a normal converter.

【0005】なお、溶融還元炉における耐火物溶損を防
止する技術としては、MgO−C組織からのMgOの溶出を
防止することが有効であろうとの観点から、MgO源を添
加する技術が特開平7-11319号公報および同7-11321号
に提案されているが、かかる技術では満足いく結果が得
られるまでには至っていない。
As a technique for preventing the refractory melting loss in the smelting reduction furnace, the technique of adding a MgO source is particularly advantageous from the viewpoint of preventing the elution of MgO from the MgO-C structure. Although proposed in Kaihei No. 7-11319 and No. 7-11321, such a technique has not yet achieved satisfactory results.

【0006】また、溶融還元炉では、熱供給がクロム鉱
石の供給を律速しており、熱供給能力を高めるためには
二次燃焼を高めることが有効であるが、二次燃焼率を高
くすると耐火物寿命が短くなる不利がある。
Further, in the smelting reduction furnace, the heat supply controls the supply of chromium ore, and it is effective to increase the secondary combustion in order to increase the heat supply capacity. However, when the secondary combustion rate is increased, It has the disadvantage of shortening the refractory life.

【0007】この発明は、上記の問題を有利に解決する
もので、クロム鉱石の溶融還元に際し、鉱石中の金属酸
化物と炭材との反応を促進させる一方で、耐火物中炭素
との反応を抑制することにより、クロム還元効率の向上
と共に、耐火物損耗の軽減ひいては転炉寿命の延長を実
現できるクロム鉱石の溶融還元方法を提案することを目
的とする。
The present invention advantageously solves the above-mentioned problems, and promotes the reaction between the metal oxide in the ore and the carbonaceous material and the reaction with the carbon in the refractory during the smelting reduction of the chromium ore. It is an object of the present invention to propose a smelting reduction method for chromium ore, which can improve the chromium reduction efficiency and reduce the wear of refractory and thus extend the life of the converter by suppressing the above.

【0008】[0008]

【課題を解決するための手段】さて発明者らは、上記の
目的を達成すべく、数多くの研究を重ねた結果、熱源お
よび還元剤として供給する炭材が、クロム鉱石の還元の
みならず、転炉の耐火物寿命にも大きな影響を与えてい
ることを新たに見い出した。この発明は、上記の知見に
立脚するものである。
[Means for Solving the Problems] As a result of many studies to achieve the above object, the inventors have found that the carbonaceous materials supplied as a heat source and a reducing agent are not limited to the reduction of chromium ore, It was newly found that it also has a great influence on the refractory life of the converter. The present invention is based on the above findings.

【0009】すなわち、この発明の要旨構成は次のとお
りである。 1.転炉等の冶金反応容器内に収容した溶鉄中に、炭材
とクロム鉱石を添加し、酸素ガスを供給することにより
クロム含有溶湯を溶製するいわゆる溶融還元製錬法にお
いて、該炭材として、ハードグローブ指数(HGI)が
45以下で、かつ炭材中の揮発成分量(VM)が10%以下
である石炭を用いることを特徴とするクロム鉱石の溶融
還元方法。
That is, the gist of the present invention is as follows. 1. In the molten iron housed in a metallurgical reaction vessel such as a converter, carbon material and chromium ore are added, in a so-called melting reduction smelting method of melting a chromium-containing molten metal by supplying oxygen gas, as the carbon material , Hard Globe Index (HGI)
A method for smelting and reducing chromium ore, which comprises using a coal having a volatile component amount (VM) in carbonaceous material of 45 or less and 10% or less.

【0010】2.上記1において、反応容器が、スラグ
に接触する部位の少なくとも一部にC含有率が8〜25%
のMgO−Cレンガを用いた転炉であることを特徴とする
クロム鉱石の溶融還元方法。 3.上記1または2において、反応容器炉内の二次燃焼
率が30%以下であることを特徴とするクロム鉱石の溶融
還元方法。 4.上記1,2または3において、粒径:3mm以上のも
のが少なくとも90%以上存在する石炭を使用することを
特徴とするクロム鉱石の溶融還元方法。
[0010] 2. In the above 1, in the reaction vessel, the C content is 8 to 25% in at least a part of the portion contacting the slag
1. A method for smelting reduction of chromium ore, which is a converter using MgO-C bricks. 3. 1. The method for smelting reduction of chromium ore according to 1 or 2, wherein the secondary combustion rate in the reactor furnace is 30% or less. 4. In the above 1, 2 or 3, a method for smelting reduction of chromium ore, characterized in that coal containing at least 90% of particles having a particle size of 3 mm or more is used.

【0011】[0011]

【発明の実施の形態】以下、この発明の解明経緯につい
て説明する。さて、発明者らはまず、小型試験転炉を用
いて、クロム鉱石を投入した際のスラグの還元状況およ
び耐火物の溶損機構・速度を調査した。一般に、クロム
投入ランスからクロム鉱石を投入した場合、図1に示す
ように、鉱石は1個1個の粒子ではなく、粒子群となっ
て上昇流にほとんど影響されずにまっすぐ落下してスラ
グ中に入り、スラグに到達したクロム鉱石はスラグ中で
溶解しながら、スラグの中の炭材により還元されていく
ものと考えられる。
DETAILED DESCRIPTION OF THE INVENTION The clarification process of the present invention will be described below. By the way, the inventors first investigated the reduction state of slag and the melting mechanism / speed of refractory when a chrome ore was charged, using a small test converter. Generally, when chromium ore is charged from the chromium charging lance, as shown in FIG. 1, the ore does not form particles one by one, but becomes a group of particles and falls straight without being affected by the upward flow and falls into the slag. It is considered that the chromium ore that has entered and reached the slag is reduced by the carbonaceous material in the slag while melting in the slag.

【0012】しかしながら、実際の試験転炉の結果によ
れば、図2に示すように、鉱石の一部は未溶解のまま耐
火物壁まで到達し、その鉱石中の酸化物、中でも鉄酸化
物が耐火物中の炭素と反応し、MgO−Cレンガの溶損を
助長していることが判明した。また、かようなスラグの
過酸化状態は、上吹きランスの二次燃焼率が高い条件下
で極端に大きくなることも明らかにされた。なお、図
1,2中において、番号1は転炉、2は上吹きランス、
3はクロム投入ランスである。
However, according to the result of the actual test converter, as shown in FIG. 2, a part of the ore reaches the refractory wall without being melted, and the oxide in the ore, especially the iron oxide, is present. Has been found to react with the carbon in the refractory and promote the melting damage of the MgO-C brick. It was also clarified that the peroxide state of such slag becomes extremely large under the condition that the secondary combustion rate of the top blowing lance is high. In FIGS. 1 and 2, numeral 1 is a converter, 2 is an upper blowing lance,
3 is a chrome charging lance.

【0013】そこで、発明者らは、スラグ中におけるク
ロム鉱石の還元を促進させることが、還元効率を向上さ
せるだけでなく、耐火物の溶損を低減する上でも有効で
あると考え、炭材の種類を種々に変えて同様の実験を行
った。一般に、クロム鉱石の溶融還元に用いられる炭材
としては、コークスが多用されており、特開昭58−9959
号公報および特開昭55-91913号公報にその例が示されて
いる。また、鉄鉱石の溶融還元では、コークスよりも安
価ないわゆる一般石炭(揮発分VM:25〜40%程度)を
用い、塊炭は炉上から、粉炭は炉肩に設けたノズルから
直接吹き付ける方法が、特開平3-177513号に開示されて
いる。さらに、最近では、クロム鉱石の溶融還元に際
し、予め水を含有させた無煙炭を使用する方法が、特開
平7-41872号公報に開示されている。
Therefore, the present inventors believe that promoting the reduction of chromium ore in the slag is effective not only for improving the reduction efficiency but also for reducing the melting loss of the refractory material. The same experiment was carried out by changing the kind of the above. Generally, coke is often used as a carbonaceous material used for the smelting reduction of chromium ores.
Examples are shown in Japanese Patent Laid-Open No. 55-91913 and Japanese Patent Laid-Open No. 55-91913. In the smelting reduction of iron ore, so-called general coal (volatile matter VM: about 25 to 40%), which is cheaper than coke, is used, and lump coal is directly sprayed from the top of the furnace and pulverized coal is directly sprayed from a nozzle provided on the shoulder of the furnace. Are disclosed in JP-A-3-177513. Further, recently, a method of using anthracite containing water in advance in the smelting reduction of chromium ore is disclosed in JP-A-7-41872.

【0014】さて、上記した炭材も含め種々の炭材を用
いてクロム鉱石の溶融還元実験を行った結果では、特定
の石炭を用いるとクロム鉱石の還元率と耐火物寿命が飛
躍的に改善されることが判明した。そこで、飛躍的な改
善結果が得られた石炭について、その性状を調査したと
ころ、炭材としては、JIS M 8801で定めるハードグロー
ブ指数(HGI)が45以下で、かつ炭材中の揮発成分量
(VM)が10%以下を満足するものが、クロム鉱石の還
元率と耐火物寿命の改善に有効であることが究明され
た。ここに、HGIとは、JIS M 8801に定められている
もので、所定の試料(粒径が約1mmの粉体:約50g)
を、ハードグローブ試験機で粉砕した後、所定のふるい
(74μm )でふるい分け、ふるい下の質量(W)を、次
式に代入して求めたもので、粉砕性の指標となるもので
ある。 HGI= 13 + 6.93 W
The results of smelting reduction experiments of chrome ores using various carbon materials including the above-mentioned carbon materials show that the reduction rate of chrome ores and the refractory life are dramatically improved when a specific coal is used. Turned out to be. Therefore, when the properties of the coal for which dramatic improvement results were obtained were investigated, it was found that the carbonaceous material had a Hard Globe Index (HGI) of 45 or less and a volatile component content in the carbonaceous material. It has been determined that those satisfying (VM) of 10% or less are effective for improving the reduction rate of chrome ore and the life of refractory. Here, HGI is defined in JIS M 8801 and is a predetermined sample (powder having a particle size of about 1 mm: about 50 g).
Is crushed by a hard glove tester, sieved with a predetermined sieve (74 μm), and the mass (W) under the sieve is substituted into the following equation to obtain an index of crushability. HGI = 13 + 6.93 W

【0015】次に、これらの石炭が飛躍的改善効果を持
つ原因を探るべく、図2に示したように、炉上のホッパ
ーから石炭4を投入し、添加直後ただちに倒炉して、添
加直後のスラグ中よりサンプリングを行った。その結果
を、図3(a), (b)に、投入前と投入後スラグ中から回収
した炭材の粒度分布について調べた結果を、比較して示
す。同図から明らかなように、上記の条件を満足する炭
材は、投入後、炉内において速やかに細粒化しているこ
とが判明した。また、5ton 試験転炉実験において、還
元率の低かったコークスやHGIが45を超える炭材につ
いて同様の実験を行ったところ、粒径は投入前後でやや
減少するだけであり、熱崩壊は認められなかった。
Next, in order to find out the reason why these coals have a dramatic improvement effect, as shown in FIG. 2, coal 4 is charged from the hopper on the furnace, and immediately after the addition, the furnace is blasted immediately after the addition. Sampling was performed during the slag. The results are shown in FIGS. 3 (a) and 3 (b) for comparison with the results of examining the particle size distribution of the carbonaceous material recovered from the slag before and after the addition. As is clear from the figure, it was found that the carbonaceous material satisfying the above-mentioned conditions was rapidly atomized in the furnace after being charged. Also, in the 5 ton test converter experiment, the same experiment was carried out on the coke, which had a low reduction rate, and the carbonaceous material with HGI of more than 45, and the particle size was only slightly decreased before and after the introduction, and thermal collapse was observed. There wasn't.

【0016】このように、HGIが45以下で、かつVM
が10%以下の石炭を用いると、まず第1に、炉内添加後
に熱崩壊により細粒化することで還元反応に最も重要で
ある反応界面積が増大する。その結果、溶融還元工程に
おける還元率が向上するものと考えられる。また、第2
に、崩壊した炭材の一部は炉内の二次燃焼で形成される
CO2 を還元し、ガス温度を低下させる。従って、この C
O2の還元によるガス温度の低下と、既に述べた金属酸化
物をスラグ中で迅速に還元させることにより、耐火物の
溶損が軽減されるものと考えられる。
Thus, the HGI is 45 or less, and the VM
If coal of 10% or less is used, first of all, the reaction interfacial area, which is most important for the reduction reaction, increases by refining the particles by thermal decay after addition in the furnace. As a result, it is considered that the reduction rate in the smelting reduction step is improved. Also, the second
A part of the collapsed carbonaceous material is formed by secondary combustion in the furnace
It reduces CO 2 and lowers the gas temperature. Therefore, this C
It is considered that the melting temperature of the refractory is reduced by the reduction of the gas temperature due to the reduction of O 2 and the rapid reduction of the metal oxide described above in the slag.

【0017】なお、HGIは45以下であるが、VMが30
%程度の一般炭を炭材として用いた場合についても実験
したところ、投入後微細化することは確認されたが、操
業上以下のような問題が生じた。第1に、ダスト中への
C飛散が増加し、添加効率が極端に悪くなり、その結果
スラグ中に残留する炭材が減少し、鉱石の還元率が低下
した。この理由は、VMが高いと、炉内に入れた時に瞬
時に揮発分の反応が進行し、排ガス発生量が急激に増加
するため、炭材の系外への飛散が増大するためと考えら
れる。第2に、耐火物寿命の著しい劣化を招いた。この
原因は、VMが高いと排ガス温度が上昇していることか
ら、特に二次燃焼率の増加に伴いスラグ表面の温度が増
加したことによるものと考えられる。
The HGI is 45 or less, but the VM is 30
When an experiment was also performed using about% steaming coal as the carbonaceous material, it was confirmed that the carbonization became fine after charging, but the following problems occurred in operation. First, the amount of C scattered into the dust was increased, the addition efficiency was extremely deteriorated, and as a result, the carbonaceous material remaining in the slag was decreased and the reduction rate of the ore was decreased. The reason for this is considered to be that when the VM is high, the reaction of volatile components immediately progresses when placed in the furnace, and the amount of exhaust gas generated sharply increases, so that the scattering of carbonaceous materials to the outside of the system increases. . Secondly, the life of the refractory was significantly deteriorated. It is considered that this is because the exhaust gas temperature rises when the VM is high, so that the temperature of the slag surface increases particularly as the secondary combustion rate increases.

【0018】従って、この発明では、炭材として、揮発
分(VM)が10%以下と少なく、しかも炉内へ添加した
際に瞬時に熱崩壊し炉内ガス中で細粒化するHGI:45
以下を満足する石炭を用いることにしたのである。な
お、HGIが45を超える石炭を用いた場合は、耐火物寿
命の改善は望めなかった。この原因は、炉内からのサン
プリングでは炭材の熱割れが生じていなかったことか
ら、上記石炭は熱崩壊が生じないため、還元促進効果お
よび排ガスの温度低下効果が得られなかったことによる
ものと考えられる。
Therefore, in the present invention, the carbonaceous material has a low volatile content (VM) of 10% or less, and when added to the furnace, it is instantly thermally decomposed and atomized in the gas in the furnace.
We decided to use coal that satisfies the following requirements. In addition, when coal with HGI of more than 45 was used, improvement of refractory life could not be expected. The reason for this is that the thermal cracking of the carbonaceous material did not occur in the sampling from the inside of the furnace, and therefore the above-mentioned coal did not undergo thermal collapse, so the reduction promoting effect and the temperature lowering effect of the exhaust gas could not be obtained. it is conceivable that.

【0019】ところで、MgO−Cレンガとしては、レン
ガ中C量が通常用いられるC>5%のレンガを使用した
が、耐スラグ酸化性の観点からはC>8%の方が良好で
あり、Cを増加させると、耐スラグ酸化性と、スポーリ
ングの点で有利となる。実験では、Cの上限は25%まで
使用可能であったが、Cが高くなると耐磨耗性の面で重
要とされる緻密性、耐酸化性ガス防止の点では不利であ
った。
By the way, as the MgO-C brick, a brick whose C content in the brick is usually used is C> 5%, but from the viewpoint of slag oxidation resistance, C> 8% is better. Increasing C is advantageous in terms of slag oxidation resistance and spalling. In the experiment, the upper limit of C could be used up to 25%, but when C was high, it was disadvantageous in terms of denseness, which is important in terms of abrasion resistance, and prevention of oxidation resistant gas.

【0020】図4に、レンガ中C濃度とスラグライン
(図2参照)の溶損速度との関係について調べた結果を
示す。同図より明らかなように、C含有量が8〜25%と
くに13〜20%の範囲で優れた効果が得られている。しか
しながら、既に述べたように、スポーリング、耐酸化性
ガスなども部位によっては重要であるので、部位によっ
てC濃度の異なるレンガを適宜使用することが好まし
い。
FIG. 4 shows the result of investigation on the relationship between the C concentration in brick and the erosion rate of the slag line (see FIG. 2). As is clear from the figure, excellent effects are obtained when the C content is in the range of 8 to 25%, particularly 13 to 20%. However, as described above, spalling, oxidation resistant gas, etc. are also important depending on the site, so it is preferable to appropriately use bricks having different C concentrations depending on the site.

【0021】また、二次燃焼率が高くなるとスラグライ
ンの溶損速度は大きくなる。これは既に述べたように二
次燃焼率が増加すると、溶鋼に伝わる熱効率が低下し、
スラグ表面温度と排ガス温度が上昇するためであり、こ
のような条件では、スラグ中の酸化物によるレンガの酸
化が進行する。この点、HGIが45以下の石炭を使用す
れば、上述したとおり、還元速度が増加し、また排ガス
温度が低下するので、レンガの酸化防止には有利となる
が、それでも二次燃焼率が高い条件では耐火物の保護は
やはり不利である。
Further, as the secondary combustion rate increases, the erosion rate of the slag line increases. This is because, as already mentioned, when the secondary combustion rate increases, the thermal efficiency transmitted to molten steel decreases,
This is because the slag surface temperature and the exhaust gas temperature rise, and under such conditions, the oxidation of bricks by the oxides in the slag progresses. On the other hand, if coal with HGI of 45 or less is used, the reduction rate increases and the exhaust gas temperature decreases as described above, which is advantageous for preventing brick oxidation, but the secondary combustion rate is still high. Refractory protection is still disadvantageous under certain conditions.

【0022】図5に、二次燃焼率とスラグライン(スラ
グとガス相の境界面)の溶損速度の関係について調べた
結果を示す。ここで、石炭としては、ベトナム産(HG
I=35, VM=5.8 %)を用いた。粒度は6〜50mmが80
%以上であった。同図から明らかなように、二次燃焼率
が30%を超えると溶損速度が急激に増加した。従って、
二次燃焼率は30%以下の条件で操業することが好まし
い。なお、調査結果では、二次燃焼率が30%を超えると
排ガス温度が急激に上昇しており、二次燃焼率の着熱効
率の低下によって耐火物の溶損が進んだものと推定され
る。
FIG. 5 shows the results of an examination of the relationship between the secondary combustion rate and the erosion rate of the slag line (the interface between the slag and the gas phase). Here, as coal, Vietnam (HG
I = 35, VM = 5.8%) was used. Grain size is 6 to 50 mm is 80
% Or more. As is clear from the figure, when the secondary combustion rate exceeds 30%, the melting rate rapidly increases. Therefore,
It is preferable to operate at a secondary combustion rate of 30% or less. According to the survey results, the exhaust gas temperature rises sharply when the secondary combustion rate exceeds 30%, and it is estimated that the melting loss of the refractory has advanced due to the decrease in the heat efficiency of the secondary combustion rate.

【0023】上述したとおり、炭材としては、VMが10
%以下でHGIが45以下の石炭が最も有効で、その結果
MgO−Cレンガをスラグラインに用いた転炉耐火物寿命
が飛躍的に向上する。しかしながら、この炭材を用いた
場合、通常の塊コークスと比べるとダストへのC飛散率
が増加した。ダスト中の飛散したCの粒径を調べたとこ
ろ、2mm以下が99%,85%は0.5mm 以下であった。以上
の知見から、微粒の炭材はダストロスの点からは不利で
あると考え、装入する炭材粒度のダストロスへの影響を
調べるために、無煙炭を種々の方法でふるいに掛けて試
験を行った。表1に示す粒度分布の炭材をふるいに掛
け、表2に示す粒度分布の炭材を得た。表中、記号a〜
eは、主に3mm以下の粒度のものをカットすることを意
図したもの、またfは主に1.2mm 以下の粒度のものをカ
ットすることを意図したものである。
As described above, as the carbonaceous material, the VM is 10
% And coal with an HGI of 45 or less is most effective, and the result is
The life of converter refractory using MgO-C brick for slag line is dramatically improved. However, when this carbonaceous material was used, the C scattering rate to dust was increased as compared with the normal lump coke. When the particle size of scattered C in the dust was examined, it was 99% for 2 mm or less and 0.5 mm or less for 85%. Based on the above findings, it is considered that fine carbonaceous materials are disadvantageous in terms of dust loss, and in order to investigate the effect of charged carbonaceous material grain size on dust loss, tests were conducted by sieving anthracite by various methods. It was A carbonaceous material having a particle size distribution shown in Table 1 was sieved to obtain a carbonaceous material having a particle size distribution shown in Table 2. In the table, symbol a to
e is intended mainly for cutting particles having a particle size of 3 mm or less, and f is intended for mainly cutting particles having a particle size of 1.2 mm or less.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】このふるい掛けを行った無煙炭を用いて操
業を行った結果を、ふるい掛けを行わなかった場合およ
びコークスを用いた場合と比較して図6に示す。同図か
ら明らかなように、3mm以下の粒度のものを主にカット
した場合には、ダストロスが低減できたが、意外にも1.
2 mm以下の粒度のものを主にカットした場合はダストロ
スの低減効果はほとんど見られなかった。しかも、操業
上、1.2mmでふるった場合、ふるいの詰まりが多発する
不利があった。以上の知見より、炭材のダストロス低減
のためには、3mm以下の粉炭の比率を実質的に10%以
下、望ましくは5%以下に抑制することが有効であるこ
とが判明した。
FIG. 6 shows the results of the operation using the sieving anthracite charcoal as compared with the case without sieving and the case with coke. As is clear from the figure, dust loss could be reduced when cutting mainly those with a grain size of 3 mm or less, but surprisingly 1.
When the particles with a grain size of 2 mm or less were mainly cut, the effect of reducing dust loss was hardly seen. Moreover, in terms of operation, when sieved at 1.2 mm, there was a disadvantage that the sieve was frequently clogged. From the above findings, it has been found that it is effective to suppress the ratio of pulverized coal having a diameter of 3 mm or less to substantially 10% or less, preferably 5% or less, in order to reduce the dust loss of the carbonaceous material.

【0027】なお、この発明において、冶金反応容器に
ついては特に限定されることはなく、上吹き炉、底吹き
炉および横吹き炉いずれを用いても問題ないが、特に好
ましくは上底吹き転炉である。
In the present invention, the metallurgical reaction vessel is not particularly limited, and any of a top-blowing furnace, a bottom-blowing furnace and a side-blowing furnace can be used, but an upper-bottom blowing converter is particularly preferable. Is.

【0028】[0028]

【実施例】実験は、150tonの規模の上底吹き溶融還元炉
を用いて行った。130tonの予め脱珪・脱りん処理した溶
銑を、トピード台車にて運送した後、スクラップを30ト
ン前もって投入した後、溶融還元炉に装入した。クロム
鉱石を投入するランスと酸素を供給する上吹きランスと
は、図2に示すような配置とした。スラグラインとなる
部位には、カーボン含有量:13〜20%のMgO−Cレンガ
を用いた。
EXAMPLES Experiments were conducted using a 150 ton scale top-bottom blown smelting reduction furnace. 130 tons of hot metal that had been desiliconized and dephosphorized in advance was transported by a truck truck, 30 tons of scrap was loaded in advance, and then charged into a smelting reduction furnace. The lance for charging the chromium ore and the top blowing lance for supplying oxygen were arranged as shown in FIG. MgO—C bricks having a carbon content of 13 to 20% were used for the portion that became the slag line.

【0029】上吹きランス2の高さは静止溶鋼面から
4.2m、また投入ランスの高さは静止溶鋼面から 5.2m
の位置とし、上吹き酸素量:400 〜800 Nm3/min 、底吹
き酸素流量:80 Nm3/min、底吹き窒素:40 Nm3/minの条
件で吹錬を行った。溶銑温度が1550℃から1600℃になる
まで、各種の石炭 (A銘柄(ベトナム産):HGI=3
5, VM=5.8 %, B銘柄(ロシア産):HGI=38,
VM=3.7 %, C銘柄(中国産):HGI=42, VM=
9%)を炭材として1.60 kg/Nm3-O2の比率で供給した。
なお、炭材は、ジャンピングスクリーンと呼ばれる傾斜
振動ふるいに3〜4mm×17mm程度の横長の網目を用いて
ふるった。従って、ふるい掛け後の炭材は、表2中dに
示す粒度になっており、3mm以上の割合は96%以上にな
っていた。
The height of the upper blowing lance 2 is from the stationary molten steel surface.
4.2m, and the height of the input lance is 5.2m from the stationary molten steel surface.
Was blown, and blowing was carried out under the conditions of top-blowing oxygen amount: 400-800 Nm 3 / min, bottom-blowing oxygen flow rate: 80 Nm 3 / min, bottom-blowing nitrogen: 40 Nm 3 / min. Various types of coal (A brand (Vietnamese): HGI = 3 from 1550 ℃ to 1600 ℃
5, VM = 5.8%, B brand (Russia): HGI = 38,
VM = 3.7%, C brand (made in China): HGI = 42, VM =
9%) was supplied as a carbonaceous material at a ratio of 1.60 kg / Nm 3 -O 2 .
The carbonaceous material was sieved by using an inclined vibrating screen called a jumping screen with a horizontally long mesh of about 3 to 4 mm × 17 mm. Therefore, the carbonaceous material after sieving had the particle size shown in d in Table 2, and the ratio of 3 mm or more was 96% or more.

【0030】溶銑温度が所定の温度に達した時点で、ク
ロム鉱石の供給を行った。供給量は、クロム鉱石:1.35
kg/Nm3-O2、炭材:1.25〜1.4 kg/Nm3-O2 の比率とし
た。吹錬期スラグを定期的に採取すると共に温度を測定
して、温度を1570℃から1600℃の範囲に保持した。スラ
グ中のクロム濃度は約2〜4%の範囲で変動した。所定
の時間(約70〜80分) が過ぎてから、ランスを上昇させ
てクロム鉱石の供給を停止し、さらに酸素供給のみを行
う吹錬を約5〜7分行った。二次燃焼率は25%前後で操
業を行った。吹錬終了直後にコレマナイトを炉内に投入
し、処理後のスラグの改質を図った。このような操業を
約 100チャージ連続して行い、各耐火物の溶損部位をレ
ーザー式プロフィール計で測定した。得られた結果を、
表3に整理して示す。同表から、明らかなように、この
発明に従う炭材を用いた場合には、89%以上という高い
クロム還元率の下で、耐火物の損耗速度を 1.2 mm/ch以
下まで低減することができた。
When the hot metal temperature reached a predetermined temperature, chromium ore was supplied. Supply amount of chrome ore: 1.35
The ratio was kg / Nm 3 -O 2 and carbon material: 1.25 to 1.4 kg / Nm 3 -O 2 . The blowing slag was periodically sampled and the temperature was measured to maintain the temperature in the range of 1570 ° C to 1600 ° C. The chromium concentration in the slag varied in the range of about 2-4%. After the lapse of a predetermined time (about 70 to 80 minutes), the lance was raised to stop the supply of chromium ore, and further, the blowing for supplying only oxygen was carried out for about 5 to 7 minutes. The secondary combustion rate was around 25%. Immediately after the completion of blowing, colemanite was charged into the furnace to improve the slag after the treatment. This operation was continuously performed for about 100 charges, and the melting point of each refractory was measured with a laser profiler. The obtained result is
Table 3 shows the summary. As is clear from the table, when the carbonaceous material according to the present invention is used, the wear rate of the refractory can be reduced to 1.2 mm / ch or less under the high chromium reduction rate of 89% or more. It was

【0031】[0031]

【表3】 [Table 3]

【0032】また、比較例1〜2として、二次燃焼率を
35%,45%に上昇させること以外は実施例と同様にして
操業を行った。この場合は、クロム還元率は向上したも
のの、スラグラインの耐火物溶損が著しく劣化した。
Further, as Comparative Examples 1 and 2, the secondary combustion rate is
The operation was carried out in the same manner as in the example except that it was increased to 35% and 45%. In this case, although the chromium reduction rate was improved, the refractory melting loss of the slag line was significantly deteriorated.

【0033】さらに、比較例3〜7では、D銘柄(中国
産,HGI=49, VM=9.9 %)、E銘柄(ロシア炭,
HGI=75, VM=18%)、F銘柄(豪州炭,HGI=
68,VM=20%) 、G銘柄(豪州炭,HGI=70, VM
=25%) および高炉用コークスを使用した。操業条件
は、実施例と同じである。ただし、投入係数はコークス
は上記石炭と同じとしたが、ロシア炭と豪州炭では、昇
温期に 1.8 kg/Nm3-O2、溶融還元期に 1.6 kg/Nm3-O2
操業をしないとスロッピング、温度維持の観点で操業が
困難であった。さらに一般炭 (HGI=40, VM=30
%) を使用を試みたが、上述のダストへの飛散が大き
く、事実上操業が不可能であった。
Further, in Comparative Examples 3 to 7, D brand (made in China, HGI = 49, VM = 9.9%), E brand (Russian coal,
HGI = 75, VM = 18%), F brand (Australian coal, HGI =
68, VM = 20%), G brand (Australian coal, HGI = 70, VM
= 25%) and blast furnace coke were used. The operating conditions are the same as in the example. However, although the input coefficient was the same as that of the above-mentioned coal for coke, Russian coal and Australian coal were operated at 1.8 kg / Nm 3 -O 2 during the heating period and 1.6 kg / Nm 3 -O 2 during the smelting reduction period. Otherwise, operation was difficult from the viewpoint of sloping and temperature maintenance. Further steam coal (HGI = 40, VM = 30
%) Was attempted, but it was practically impossible to operate because of the large scattering to the above-mentioned dust.

【0034】比較例3〜7についても、約80チャージ連
続して行い各耐火物の溶損部位をレーザー式プロフィー
ル計で測定したが、クロム鉱石を供給するランスが存在
する側である出鋼サイドに局部的に溶損が大きい部分が
存在して修理をやむなくさせられた。また、クロムの還
元率も劣化していた。
In Comparative Examples 3 to 7 as well, about 80 charges were continuously carried out, and the erosion site of each refractory was measured by a laser profiler. There was a locally large amount of melting damage, and repairs were unavoidable. Further, the reduction rate of chromium was also deteriorated.

【0035】[0035]

【発明の効果】かくしてこの発明によれば、クロム鉱石
の還元率を向上できるだけでなく、従来問題とされた溶
融還元炉の耐火物の溶損、中でも局部溶損を格段に低減
でき、ひいては耐火物寿命を大幅に延長することができ
るので、クロム鉱石の溶融還元において、生産性の向上
と共に、耐火物コストの低減を併せて実現することがで
きる。
As described above, according to the present invention, not only the reduction rate of chromium ore can be improved, but also the melting loss of refractory material in the smelting reduction furnace, which has been a problem in the past, in particular the local melting loss, can be markedly reduced, and the fire resistance can be improved. Since the product life can be greatly extended, it is possible to achieve improvement in productivity and reduction in refractory cost in the smelting reduction of chromium ore.

【図面の簡単な説明】[Brief description of drawings]

【図1】クロム投入ランスからクロム鉱石を投入した場
合におけるクロム鉱石の落下状態を示した図である。
FIG. 1 is a diagram showing a state in which a chromium ore is dropped when a chromium ore is charged from a chromium charging lance.

【図2】上記の方法でクロム鉱石を投入した場合におけ
る炉壁耐火物の溶損状態を示した図である。
FIG. 2 is a diagram showing a melt-damaged state of a furnace wall refractory when chromium ore is added by the above method.

【図3】炉内への投入前と投入後における炭材の粒度分
布を示したグラフである。
FIG. 3 is a graph showing a particle size distribution of carbonaceous material before and after charging into a furnace.

【図4】レンガ中C濃度とスラグラインの溶損速度との
関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the C concentration in brick and the erosion rate of the slag line.

【図5】二次燃焼率とスラグラインの溶損速度との関係
を示したグラフである。
FIG. 5 is a graph showing the relationship between the secondary combustion rate and the slag line melting rate.

【図6】炭材の種類および大きさがダストへのC飛散に
及ぼす影響を示したグラフである。
FIG. 6 is a graph showing the influence of the type and size of carbonaceous material on C scattering to dust.

【符号の説明】[Explanation of symbols]

1 転炉 2 上吹きランス 3 クロム投入ランス 4 石炭 1 Converter 2 Top blowing lance 3 Chromium input lance 4 Coal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 数土 文夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 北野 嘉久 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 亀山 恭一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 寺畠 知道 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 会田 公治 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 竹内 秀次 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Fumio Sato Inventor 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Yoshihisa Kitano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Kyoichi Kameyama 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Terahata Chimichi, Kawasaki-cho, Chuo-ku, Chiba City 1 Address: Kawasaki Steel Co., Ltd., Chiba Steel Works (72) Inventor, Koji Aida, Kawasaki-machi, Chuo-ku, Chiba-shi, Chiba, No. 1 Inside Technical Research Institute, Kawasaki Steel Co., Ltd. (72) Shuji Takeuchi, Kawasaki-cho, Chuo-ku, Chiba, Chiba Address Inside Kawasaki Steel Corporation Technical Research Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 転炉等の冶金反応容器内に収容した溶鉄
中に、炭材とクロム鉱石を添加し、酸素ガスを供給する
ことによりクロム含有溶湯を溶製するいわゆる溶融還元
製錬法において、 該炭材として、ハードグローブ指数(HGI)が45以下
で、かつ炭材中の揮発成分量(VM)が10%以下である
石炭を用いることを特徴とするクロム鉱石の溶融還元方
法。
1. A so-called smelting reduction smelting method for melting a chromium-containing molten metal by adding carbonaceous material and chromium ore and supplying oxygen gas to the molten iron contained in a metallurgical reaction vessel such as a converter. A method for smelting reduction of chromium ore, characterized in that as the carbonaceous material, coal having a hard globe index (HGI) of 45 or less and a volatile component amount (VM) in the carbonaceous material of 10% or less is used.
【請求項2】 請求項1において、反応容器が、スラグ
に接触する部位の少なくとも一部にC含有率が8〜25%
のMgO−Cレンガを用いた転炉であることを特徴とする
クロム鉱石の溶融還元方法。
2. The reaction container according to claim 1, wherein the content of C is 8 to 25% in at least a part of the portion in contact with the slag.
1. A method for smelting reduction of chromium ore, which is a converter using MgO-C bricks.
【請求項3】 請求項1または2において、反応容器炉
内の二次燃焼率が30%以下であることを特徴とするクロ
ム鉱石の溶融還元方法。
3. The method for smelting reduction of chromium ore according to claim 1, wherein the secondary combustion rate in the reactor furnace is 30% or less.
【請求項4】 請求項1,2または3において、粒径:
3mm以上のものが少なくとも90%以上存在する石炭を使
用することを特徴とするクロム鉱石の溶融還元方法。
4. The particle size according to claim 1, 2 or 3, wherein:
A method for smelting reduction of chromium ore, characterized in that coal containing at least 90% of 3 mm or more is used.
JP32943196A 1995-12-13 1996-12-10 Smelting reduction method of chromium ore Expired - Fee Related JP3580059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32943196A JP3580059B2 (en) 1995-12-13 1996-12-10 Smelting reduction method of chromium ore

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-324522 1995-12-13
JP32452295 1995-12-13
JP32943196A JP3580059B2 (en) 1995-12-13 1996-12-10 Smelting reduction method of chromium ore

Publications (2)

Publication Number Publication Date
JPH09227919A true JPH09227919A (en) 1997-09-02
JP3580059B2 JP3580059B2 (en) 2004-10-20

Family

ID=26571508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32943196A Expired - Fee Related JP3580059B2 (en) 1995-12-13 1996-12-10 Smelting reduction method of chromium ore

Country Status (1)

Country Link
JP (1) JP3580059B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034022A1 (en) * 1997-12-26 1999-07-08 Nkk Corporation Refining method of molten iron and reduction smelting method for producing the molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034022A1 (en) * 1997-12-26 1999-07-08 Nkk Corporation Refining method of molten iron and reduction smelting method for producing the molten iron
US6837916B2 (en) 1997-12-26 2005-01-04 Nkk Corporation Smelting reduction method

Also Published As

Publication number Publication date
JP3580059B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
KR101176658B1 (en) Method for producing an alloy molten metal and associated production plant
RU2247161C2 (en) Method of regeneration of metallic chromium from slags containing chromium oxide
JPS6294792A (en) Method and device for continuously preheating charging material for steel-making furnace
US4756748A (en) Processes for the smelting reduction of smeltable materials
JP3580059B2 (en) Smelting reduction method of chromium ore
ES459836A1 (en) Treating molten metallurgical slag
JP5098518B2 (en) Hot phosphorus dephosphorization method
KR100257213B1 (en) Process for smelting reduction of chromium ore
EP3752650B1 (en) Method for refining molten metal using a converter
JP2005126732A (en) Smelting-reduction method for material containing metallic oxide, and smelting-reduction apparatus
JP3511808B2 (en) Stainless steel smelting method
JP4479541B2 (en) Method for producing high chromium molten steel
JP3364414B2 (en) Smelting reduction smelting of chrome ore
JP4767611B2 (en) Reduction method of iron oxide
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction
JP4637528B2 (en) Molten iron making material and method of using the same
JP2006241478A (en) Method for operating converter
JP3879539B2 (en) Blast furnace operation method
JP4466145B2 (en) Hot metal desiliconization method
JP2666396B2 (en) Hot metal production method
JPH08120318A (en) Method for reusing slag from refining furnace
JP3806282B2 (en) Method of melting iron-containing cold material
SU1632981A1 (en) Method of converter steelmaking from phosphoric iron
RU2068000C1 (en) Method of steel heating
RU2108399C1 (en) Method of steel melting from metal scrap in electric-arc furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees