JPH09227157A - Non-fogging film-forming base material, non-fogging film using the same and its production - Google Patents

Non-fogging film-forming base material, non-fogging film using the same and its production

Info

Publication number
JPH09227157A
JPH09227157A JP6162096A JP6162096A JPH09227157A JP H09227157 A JPH09227157 A JP H09227157A JP 6162096 A JP6162096 A JP 6162096A JP 6162096 A JP6162096 A JP 6162096A JP H09227157 A JPH09227157 A JP H09227157A
Authority
JP
Japan
Prior art keywords
metal oxide
film
ultrafine particles
titania
antifogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6162096A
Other languages
Japanese (ja)
Inventor
Yasuaki Kai
康朗 甲斐
Ichiro Nakamura
一郎 中村
Satoko Sugawara
聡子 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6162096A priority Critical patent/JPH09227157A/en
Publication of JPH09227157A publication Critical patent/JPH09227157A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a non-fogging film-forming base material excellent in initial non-fogging properties and their durability and having electric wave penetrability and excellent heat insulation and a non-fogging film using the same and provide a method for producing the same. SOLUTION: This non-fogging film-forming base material contains a titania- containing metal oxide and electroconductive metal oxide superfine particles. This non-fogging film is obtained by coating a transparent base board with a non-fogging film comprising the non-fogging film-forming base material. This production of the non-fogging film comprises coating the transparent base board with a compound sol containing a titania sol-containing metal oxide sol and the electroconductive metal oxide super fine particles, and baking it at 300-850 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス等の透明基
材の表面に防曇性被膜を形成するための基材に係り、更
に詳細には、得られる防曇性被膜の防曇性を長期間持続
させ、且つ断熱性能などを付与できる防曇性被膜形成基
材並びにこれを用いた防曇膜及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for forming an antifogging film on the surface of a transparent substrate such as glass, and more specifically, to the antifogging property of the obtained antifogging film. The present invention relates to an antifogging film-forming substrate that can be maintained for a long period of time and can be provided with heat insulating performance, etc., an antifogging film using the same, and a method for producing the same.

【0002】[0002]

【従来の技術及びその問題点】従来から、無機ガラス等
は透明基材としての性質が活用されており、例えば窓ガ
ラス、鏡面、眼鏡レンズなどの物品に広く利用されてい
る。しかし、これら透明基材を用いた物品では、高温高
湿の場所、又は温度や湿度差の大きい境界面などにおい
て使用されると物品の表面に結露を生じ、これに起因し
て物品の表面に曇りが発生するという問題がある。これ
まで各方面からこれら透明基材の改良に関する要望がな
され、これに対応するために、防曇性、耐久性を付与し
ようとする試みが種々提案されている。
2. Description of the Related Art Conventionally, inorganic glass and the like have been utilized for their properties as a transparent base material, and are widely used for articles such as window glass, mirror surface and spectacle lenses. However, in articles using these transparent substrates, dew condensation occurs on the surface of the article when used in a high-temperature and high-humidity place or a boundary surface with a large difference in temperature and humidity, which causes the surface of the article to dew. There is the problem of clouding. Up to now, there have been demands for improvement of these transparent base materials from various fields, and in order to meet these demands, various attempts have been proposed to impart antifogging property and durability.

【0003】基材表面の曇りを防止する方法としては、
ガラス等の表面に親水性の被膜を形成することが行われ
ている。最も簡単な手法として、界面活性剤を基材表面
に塗布することで曇りを防ぐことができることは古くか
ら知られており、また、界面活性剤にポリアクリル酸や
ポリビニルアルコールなどの水溶性ポリマーを配合する
ことでその効果の持続性を向上させる試みがなされてい
る(例えば、特開昭52−101680号公報等)。し
かしながら、このような方法においては一時的に防曇性
を付与するのみであり、連続的な効果を期待することは
できなかった。
As a method for preventing fogging on the surface of the substrate,
2. Description of the Related Art A hydrophilic film is formed on a surface of glass or the like. As the simplest method, it has been known for a long time that coating a surface of a substrate with a surfactant can prevent fogging, and the surfactant should be a water-soluble polymer such as polyacrylic acid or polyvinyl alcohol. Attempts have been made to improve the durability of the effect by compounding (for example, JP-A-52-101680). However, in such a method, only the anti-fogging property is temporarily provided, and a continuous effect cannot be expected.

【0004】また、特開昭55−154351号公報に
は、ガラス基材表面に、モリブデン酸化物とタングステ
ン酸化物のうちのいずれか1種以上とリン酸化物とを含
む薄膜を物理蒸着や化学蒸着等で形成することにより防
曇性に優れた親水性薄膜を得る方法、特開昭54−10
5120号公報には、P2Oを含むガスに、P25の液
体又は蒸気を接触させることにより防曇性を付与する方
法、及び特開昭53−58492号公報には、スルホン
酸型両性界面活性剤及び無機塩類又は酢酸塩を含む組成
物を低級アルコール溶液を用いて基材に塗布することに
より密着性に優れた防曇膜を形成する方法がそれぞれ提
案されているが、いずれの方法においても防曇性能の長
期持続性を実現するのは困難であった。
Further, in Japanese Patent Laid-Open No. 55-154351, a thin film containing at least one of molybdenum oxide and tungsten oxide and phosphorus oxide is formed on a glass substrate surface by physical vapor deposition or chemical vapor deposition. Method for obtaining a hydrophilic thin film excellent in antifogging property by forming by vapor deposition or the like, JP-A-54-10
The 5120 discloses, in a gas containing P 2 O, a method for imparting anti-fogging properties by contacting the liquid or vapor of P 2 O 5, and Sho 53-58492 and JP-sulfonic acid A method of forming an antifogging film having excellent adhesiveness by applying a composition containing an amphoteric surfactant and an inorganic salt or an acetate salt to a substrate using a lower alcohol solution has been proposed, whichever method is used. Even in the method, it was difficult to realize long-term durability of the antifogging performance.

【0005】一方、自動車や建物の窓ガラスからの直射
光の暑さを緩和したいという要望は古くからあり、透明
断熱ガラスとして熱線反射ガラスや熱線吸収ガラスが開
発され、自動車の窓ガラスなどに採用されている。代表
的なものとしては、Agなどの金属膜をTiO2などの
高屈折率の透明誘電体でサンドイッチした積層構造をガ
ラス基板上に形成したもの(熱線反射ガラス)、屈折率
の異なる誘電体多層膜をガラス基板上に形成したもの
(熱線反射ガラス)、及びFe、Ce、Co、Seなど
の遷移金属イオンをソーダライムガラスに添加したもの
(熱線吸収ガラス)などがある。
On the other hand, there has been a long-standing desire to mitigate the heat of direct light from the window glass of automobiles and buildings, and heat ray reflecting glass and heat ray absorbing glass have been developed as transparent heat insulating glass and adopted for window glass of automobiles. Has been done. Typical examples include a laminated structure in which a metal film such as Ag is sandwiched by a transparent dielectric material having a high refractive index such as TiO 2 (heat-reflecting glass), and dielectric multilayers having different refractive indexes. There are those in which a film is formed on a glass substrate (heat ray reflecting glass) and those in which transition metal ions such as Fe, Ce, Co, and Se are added to soda lime glass (heat ray absorbing glass).

【0006】しかしながら、上述のような金属膜を用い
た熱線反射ガラスでは、日射透過率を抑制でき断熱効果
は大きいが、電波が遮蔽されてしまうという問題があっ
た。また、誘電体多層膜を用いた熱線反射ガラスにあっ
ては、電波透過性は確保できるが、十分な断熱効果が得
られないという問題があった。一方、熱線吸収ガラスで
は、遷移金属添加量を増すことにより断熱効果を高める
ことができるが、特に自動車用としては可視光線透過率
の確保の面から限界があった。
However, in the heat ray reflective glass using the metal film as described above, the solar radiation transmittance can be suppressed and the heat insulating effect is great, but there is a problem that radio waves are shielded. Further, in the heat ray reflective glass using the dielectric multilayer film, there is a problem that a sufficient heat insulating effect cannot be obtained although the radio wave transmission can be secured. On the other hand, in the heat ray absorbing glass, the heat insulating effect can be enhanced by increasing the addition amount of the transition metal, but there is a limit in terms of securing the visible light transmittance particularly for automobiles.

【0007】また、超微粒子を用いた断熱ガラスとして
は、ITO(錫をドープした酸化インジウム)超微粒子
をアクリル樹脂に分散させた近赤外線反射塗料を粘着剤
付きポリエステルフィルムにコーティングしたものが日
本油業(株)より市販されている。しかしながら、この
フィルムはバインダとしてアクリル樹脂を用いているた
め、防曇性を発揮することはできなかった。
Further, as a heat insulating glass using ultrafine particles, one prepared by coating a polyester film with a pressure-sensitive adhesive with a near-infrared reflective coating in which ITO (tin-doped indium oxide) ultrafine particles are dispersed in an acrylic resin is NOF. It is marketed by the industry. However, since this film uses an acrylic resin as a binder, it cannot exhibit antifogging properties.

【0008】[0008]

【発明が解決しようとする課題】上述のように、従来の
技術においては、持続性のある防曇性及び耐候性を満足
する防曇膜であって、透明で電波透過性を確保でき且つ
断熱性を有するものは存在しなかったという課題があっ
た。本発明は、かかる従来技術の課題を解決しようとす
るものであり、初期防曇性とその持続性に優れるととも
に、電波透過性と優れた断熱性を有する防曇性被膜形成
基材、これを用いた防曇膜及びその製造方法を提供する
ことを目的とする。
As described above, according to the prior art, an antifogging film satisfying persistent antifogging property and weather resistance, which is transparent and capable of ensuring radio wave transmission and heat insulation. There was a problem that there was nothing that had sex. The present invention is intended to solve the problems of the related art, and is excellent in initial antifogging property and its durability, and also has an antifogging film forming substrate having radio wave transmission and excellent heat insulation, It is an object to provide an antifogging film used and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意検討を重ねた結果、チタニアと導電性
金属酸化物超微粒子とを併用することにより、上記目的
が達成できることを見出し、本発明を完成するに至っ
た。即ち、本発明の防曇性被膜形成基材は、チタニアを
含む金属酸化物と導電性金属酸化物超微粒子とを含有す
ることを特徴とする。また、本発明の防曇膜は、上述の
防曇性被膜形成基材から成る基材層を、透明基板上に被
覆して成ることを特徴とする。更に、本発明の防曇膜の
製造方法は、チタニアゾルを含む金属酸化物ゾルと導電
性金属酸化物超微粒子とを含有する複合ゾル溶液を透明
基板に塗布し、300〜850℃で焼成することを特徴
とする。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by using titania in combination with conductive metal oxide ultrafine particles. Heading out, the present invention has been completed. That is, the antifogging film-forming substrate of the present invention is characterized by containing a metal oxide containing titania and conductive metal oxide ultrafine particles. Further, the antifogging film of the present invention is characterized in that a transparent substrate is coated with a base material layer comprising the above-mentioned antifogging film-forming base material. Furthermore, in the method for producing an antifogging film of the present invention, a composite sol solution containing a metal oxide sol containing a titania sol and conductive metal oxide ultrafine particles is applied to a transparent substrate and baked at 300 to 850 ° C. Is characterized by.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の防曇性被膜形成基材は、上述の如く、チタニア
を含む金属酸化物と導電性金属酸化物超微粒子とを含有
する。ここで、被膜形成材料としてチタニアを用いるの
は、得られる防曇性被膜表面に汚れが付着して防曇性が
低下しても、チタニアが400nm以下の紫外線を吸収
することにより、電子や正孔が生成して酸化還元反応が
生じ、これにより、付着した汚れが分解され防曇性が維
持できるためである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The antifogging film-forming substrate of the present invention contains the metal oxide containing titania and the conductive metal oxide ultrafine particles as described above. Here, the use of titania as the film-forming material means that even if dirt is attached to the surface of the obtained anti-fog film and the anti-fog property is deteriorated, the titania absorbs ultraviolet rays of 400 nm or less, and This is because pores are generated and an oxidation-reduction reaction occurs, whereby the attached dirt is decomposed and the antifogging property can be maintained.

【0011】上述のように、汚れを分解させるのに有効
なチタニアの光触媒特性を発揮させるための光源として
は、400nm以下の紫外線を含むものがよく、例えば
太陽光、水銀灯、蛍光灯、ハロゲンランプ、ショートア
ークキセノン光及びレーザー光などを挙げることができ
る。また、本発明では、防曇性被膜を形成した部分に直
接光が照射されるように光源を設けてもよいが、通常は
特別な光源を要せず、例えば室内の蛍光灯や太陽などの
自然光によって十分に性能を得ることができる。なお、
チタニアに、シリカ、アルミナ、ジルコニアなどの金属
酸化物を添加して被膜形成材料を複合金属酸化物とし、
得られる防曇性被膜の屈折率を調整したり被膜形成性を
改良することも可能である。
As described above, the light source for exerting the photocatalytic property of titania effective for decomposing dirt is preferably one containing ultraviolet rays of 400 nm or less, for example, sunlight, mercury lamp, fluorescent lamp, halogen lamp. , Short arc xenon light and laser light. Further, in the present invention, a light source may be provided so that the portion on which the anti-fog coating is formed is directly irradiated with light, but usually a special light source is not required, and for example, indoor fluorescent lamps, the sun, etc. It is possible to obtain sufficient performance by natural light. In addition,
Silica, alumina, a metal oxide such as zirconia is added to titania to form a film-forming material as a composite metal oxide,
It is also possible to adjust the refractive index of the resulting anti-fogging film and improve the film forming property.

【0012】次に、導電性金属酸化物超微粒子は、太陽
光のうち熱的作用の大きい近赤外線を選択的遮蔽するた
めに用いられるものであり、かかる微粒子の表面で反射
した近赤外線は微粒子間で反射を繰り返すうちに吸収さ
れるので、日射透過率を抑制することができる。また、
かかる超微粒子は、その導電性から光触媒機能の量子効
率を上げることにも寄与できる。
Next, the conductive metal oxide ultrafine particles are used to selectively shield near-infrared rays having a large thermal action in sunlight, and the near-infrared rays reflected on the surface of such fine particles are fine particles. Since it is absorbed while the reflection is repeated between, the solar radiation transmittance can be suppressed. Also,
Such ultrafine particles can also contribute to increasing the quantum efficiency of the photocatalytic function due to their conductivity.

【0013】なお、Ag、Cu、Pt及びZnなどの金
属を添加して光触媒機能の量子効率を向上させることも
可能であるが、防曇性被膜に断熱性能を発揮させるため
には量子効率向上の場合に比較して多量に添加する必要
があり、これら金属を用いると高い透明性の維持を阻害
することがある。従って、添加する導電性超微粒子とし
ては、透明性にほとんど影響を与えない金属酸化物の超
微粒子を用いるのがよい。以上の理由から、導電性金属
酸化物超微粒子の具体例としては、In23、In
23:Sn、In23:F、CdSnO3、CdSn
4、SnO2、SnO2:F、SnO2:P、SnO2
Sbなどを挙げることができるが、導電性の面からはI
23:Sn(ITO)、CdSnO4、SnO2:Sb
を特に好ましく使用できる。
It is possible to improve the quantum efficiency of the photocatalytic function by adding a metal such as Ag, Cu, Pt, and Zn, but in order to make the antifogging coating exhibit adiabatic performance, the quantum efficiency is improved. It is necessary to add a large amount as compared with the above case, and use of these metals may hinder the maintenance of high transparency. Therefore, as the conductive ultrafine particles to be added, it is preferable to use metal oxide ultrafine particles that have little effect on the transparency. For the above reasons, specific examples of the conductive metal oxide ultrafine particles include In 2 O 3 and In.
2 O 3 : Sn, In 2 O 3 : F, CdSnO 3 , CdSn
O 4 , SnO 2 , SnO 2 : F, SnO 2 : P, SnO 2 :
Sb and the like can be mentioned, but from the viewpoint of conductivity, I
n 2 O 3: Sn (ITO ), CdSnO 4, SnO 2: Sb
Can be used particularly preferably.

【0014】ここで、超微粒子形態としたのは、粒子に
よる光散乱に起因する白濁を防止するとともに、電波透
過性を確保するためである。可視光領域での散乱を防止
するためには、超微粒子の粒径は100nm以下とする
のが好ましい。また、粒径が余りに小さくなると微粒子
の製造が困難になるとともに、凝集し易くなるため、粒
径は1nm以上とするのがよい。更に、導電性金属酸化
物超微粒子の添加量としては、1重量%未満では有効な
断熱性能が得られず、30重量%を超えるとチタニアに
よる光触媒効果が十分には得られないので、1〜30重
量%とするのがよい。
Here, the ultrafine particles are used for the purpose of preventing white turbidity due to light scattering by particles and ensuring radio wave transmission. In order to prevent scattering in the visible light region, the particle size of the ultrafine particles is preferably 100 nm or less. Further, if the particle size is too small, it becomes difficult to produce the fine particles and the particles easily aggregate. Therefore, the particle size is preferably 1 nm or more. Further, as the addition amount of the conductive metal oxide ultrafine particles, if the amount is less than 1% by weight, effective heat insulating performance cannot be obtained, and if it exceeds 30% by weight, the photocatalytic effect due to titania cannot be sufficiently obtained. It is preferably 30% by weight.

【0015】次に、本発明の防曇膜について説明する。
本発明の防曇膜は、上述の防曇性被膜形成基材から成る
基材層(防曇性被膜)を、ガラス等の透明基板上に被覆
することにより構成される。この防曇性被膜において、
チタニアは、アナターゼ構造、ルチル構造及びアモルフ
ァスの結晶多形をとることが可能であるが、アナターゼ
構造の光触媒機能が大きいので、アナターゼ構造をとる
のが好ましい。
Next, the antifogging film of the present invention will be described.
The antifogging film of the present invention is formed by coating a base layer (antifogging film) made of the above-mentioned antifogging film-forming substrate on a transparent substrate such as glass. In this anti-fog coating,
Titania can have an anatase structure, a rutile structure, and an amorphous crystal polymorphism. However, since the anatase structure has a large photocatalytic function, the anatase structure is preferable.

【0016】また、本発明の防曇膜では、防曇性被膜と
基板との界面に中間層として金属酸化物層を設けてもよ
い。このような中間層を設けることによって、基板中の
元素が防曇性被膜中に拡散するのを防止することがで
き、光触媒機能の量子効率の低下を防止することができ
る。また、密着性を向上させる上でも有効である。中間
層の作成方法としては、ゾル−ゲル法、真空蒸着法、ス
パッタリング法、CVD法、メッキ法などが挙げられる
が、いずれの方法でもよい。
In the antifogging film of the present invention, a metal oxide layer may be provided as an intermediate layer at the interface between the antifogging film and the substrate. By providing such an intermediate layer, it is possible to prevent the elements in the substrate from diffusing into the antifogging film and prevent the quantum efficiency of the photocatalytic function from decreasing. It is also effective in improving the adhesion. Examples of the method for forming the intermediate layer include a sol-gel method, a vacuum vapor deposition method, a sputtering method, a CVD method, and a plating method, but any method may be used.

【0017】次に、本発明の防曇膜の製造方法について
説明する。本発明の防曇膜は、チタニアゾルを含む金属
酸化物ゾルと導電性金属酸化物超微粒子とを含有する複
合ゾル溶液を透明基板に塗布し、300〜850℃で焼
成することにより得られる。この場合、導電性金属酸化
物超微粒子としては、上述の如く、In23、In
23:Sn、In23:F、CdSnO3、CdSn
4、SnO2、SnO2:F、SnO2:P、SnO2
Sbの少なくとも1種以上のものを用いることができ
る。
Next, the method for producing the antifogging film of the present invention will be described. The antifogging film of the present invention is obtained by applying a composite sol solution containing a metal oxide sol containing titania sol and conductive metal oxide ultrafine particles to a transparent substrate and firing at 300 to 850 ° C. In this case, as the conductive metal oxide ultrafine particles, as described above, In 2 O 3 , In
2 O 3 : Sn, In 2 O 3 : F, CdSnO 3 , CdSn
O 4 , SnO 2 , SnO 2 : F, SnO 2 : P, SnO 2 :
At least one kind of Sb can be used.

【0018】また、チタニアゾルを含む金属酸化物ゾル
としては、チタニアゾルを含んでいれば十分であり、チ
タニアゾル単独又はチタニアゾルと他の金属酸化物ゾル
との混合物であってもよい。なお、焼成温度を300〜
850℃の範囲とすると、チタニアゾルは光触媒機能の
大きいアナターゼ構造のチタニアを生成するが、300
℃未満ではアモルファス、850℃を超えるとルチル構
造を生成し易く、光触媒機能が低下し易くなるため、焼
成温度としては300〜850℃が好都合である。
The metal oxide sol containing the titania sol is sufficient if it contains the titania sol, and may be the titania sol alone or a mixture of the titania sol and another metal oxide sol. The firing temperature is 300-
In the range of 850 ° C., titania sol produces titania with anatase structure having a large photocatalytic function,
If the temperature is lower than ℃, amorphous, and if it exceeds 850 ℃, a rutile structure is likely to be generated, and the photocatalytic function is easily deteriorated. Therefore, the firing temperature is preferably 300 to 850 ℃.

【0019】本発明で使用する各種金属酸化物ゾルの出
発原料としては、代表的に金属アルコキシドが用いら
れ、他の原料としては、金属の硫酸塩、硝酸塩、炭酸
塩、アンモニウム塩、塩化物や臭化物などのハロゲン化
物、ステアリン酸塩や酢酸塩などの有機の塩などの種々
の塩が挙げられるが、これらに限定されるものではな
い。また、これらを出発原料として作成したゾルの混合
物でもよい。
A metal alkoxide is typically used as a starting material for various metal oxide sols used in the present invention, and other materials include metal sulfates, nitrates, carbonates, ammonium salts, chlorides, and the like. Examples thereof include, but are not limited to, various salts such as halides such as bromide and organic salts such as stearates and acetates. Also, a mixture of sols prepared by using these as starting materials may be used.

【0020】更に、市販されているゾルを用いることも
できる。具体的には、チタニアゾルとして商品名TA−
10、TA−15(日産化学工業(株)製)、アトロン
(日本曹達(株)製などがあり、アルミナゾルとして商
品名アルミナゾル−100、アルミナゾル−200、ア
ルミナゾル−300(日産化学工業(株)製)、AS−
3(触媒化成工業(株)製)などがあり、シリカゾルと
して商品名スーパーセラ(大八化学工業(株)製)、セ
ラミカ(日板研究所製)、HAS(コルコート社製)、
アトロンSiN−500(日本曹達(株)製)、CGS
−DI−600(チッソ(株)製)などがあり、ジルコ
ニアゾルとして商品名NZS−30A、NZS−30B
(日産化学工業(株)製)、AZS−A、AZS−N
B、AZS−B(日本触媒化学工業(株)製)などがあ
る。
Further, a commercially available sol can also be used. Specifically, as the titania sol, trade name TA-
There are 10, TA-15 (manufactured by Nissan Chemical Industries, Ltd.), Atron (manufactured by Nippon Soda Co., Ltd., etc.), and alumina sol under the trade name Aluminasol-100, Aluminasol-200, Aluminasol-300 (manufactured by Nissan Chemical Industries, Ltd.). ), AS-
3 (manufactured by Catalysts & Chemicals Co., Ltd.), etc., and as silica sol under the trade names Super Cera (manufactured by Daihachi Chemical Co., Ltd.), Ceramica (manufactured by Nitlab Research Institute), HAS (manufactured by Colcoat)
Atron SiN-500 (manufactured by Nippon Soda Co., Ltd.), CGS
-DI-600 (manufactured by Chisso Co., Ltd.) and the like, and trade names NZS-30A and NZS-30B as zirconia sol.
(Manufactured by Nissan Chemical Industries, Ltd.), AZS-A, AZS-N
B, AZS-B (manufactured by Nippon Shokubai Chemical Co., Ltd.) and the like.

【0021】また、本発明の製造方法においては、チタ
ニアゾルと金属酸化物超微粒子とをを含む複合ゾル溶液
(コーティング液)に、有機高分子を添加してゾル溶液
を作成し、これをコーティング液として基板に塗布し、
上記温度範囲で焼成してもよく、これにより、多孔質な
防曇膜を製造することもできる。多孔質にすることによ
り、水との濡れ性が向上したり、光触媒能の量子効率が
向上する。ここで用いる有機高分子としては、ポリエチ
レングリコールなどの水溶性高分子やポリテトラフルオ
ロエチレン(PTFE)などの非水溶性高分子を挙げる
ことができる。なお、基板上へのコーティング方法とし
ては、ディップコーティング法やスピンコーティング
法、塗布法、スプレー熱分解法など各種方法を適用する
ことが可能である。
In the production method of the present invention, an organic polymer is added to a composite sol solution (coating solution) containing titania sol and metal oxide ultrafine particles to prepare a sol solution, which is used as a coating solution. Applied to the substrate as
Firing may be carried out within the above temperature range, whereby a porous antifogging film can also be produced. By making it porous, the wettability with water is improved and the quantum efficiency of photocatalytic activity is improved. Examples of the organic polymer used here include water-soluble polymers such as polyethylene glycol and water-insoluble polymers such as polytetrafluoroethylene (PTFE). As a method of coating on the substrate, various methods such as a dip coating method, a spin coating method, a coating method, and a spray pyrolysis method can be applied.

【0022】[0022]

【実施例】以下、本発明を実施例により詳細に説明する
が、本発明はこれら実施例に限定されるものではない。
なお、各例で得られた被膜について下記の性能評価を行
い、得られた結果を各例における成分組成などとともに
表1に示した。 [防曇性の評価方法]防曇性の評価は水との濡れ性、即
ち接触角にて評価した。防曇性能として良好な接触角は
15°以下であり、それ以上大きくなると防曇性能とし
て悪化する傾向にある。 [耐候性の評価方法]耐候性の評価は、評価用試料を南
向き45°に傾斜した暴露台に設置して屋外暴露を行
い、その後接触角を測定することによって行った。 [断熱性能の評価]断熱性能の評価は、分光光度計での
透過率測定データからJIS R3106−1985に
準拠して、日射透過率を計算することによって行った。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.
The following performance evaluations were performed on the coating films obtained in each example, and the obtained results are shown in Table 1 together with the component composition in each example. [Evaluation Method of Antifogging Property] The antifogging property was evaluated by the wettability with water, that is, the contact angle. The contact angle which is good as the antifogging performance is 15 ° or less, and when it is more than 15 °, the antifogging performance tends to deteriorate. [Evaluation Method of Weather Resistance] The weather resistance was evaluated by setting the sample for evaluation on an exposure table inclined at 45 ° to the south, performing outdoor exposure, and then measuring the contact angle. [Evaluation of heat insulation performance] The heat insulation performance was evaluated by calculating the solar radiation transmittance in accordance with JIS R3106-1985 from the transmittance measurement data with a spectrophotometer.

【0023】(実施例1)大きさ100mm×100m
m、厚さ3.5mmのグリーン熱線吸収ガラス基板を中
性洗剤、水、エタノールで順次洗浄、乾燥して被膜形成
基板とした。チタニアゾルにIn23:Sn(ITO)
超微粒子(粒径5〜15nm)を所定量になるように混
合し、コーティング用溶液とした。このコーティング用
溶液を被膜形成基板上にスピンコーティング法にて塗布
し、乾燥後に400℃で焼成した。これを10回繰り返
した後、550℃で焼成して約2.5μm厚のITO超
微粒子分散チタニア膜を得た。被膜の組成はチタニア9
9重量%、ITO1重量%であった。そのチタニアには
アナターゼ構造が生成していた。得られた被膜の防曇性
を評価したところ、初期接触角は6°で良好な防曇性能
を発現した。日射透過率は57%であり、グリーン熱線
吸収ガラス基板のみの場合の60%から向上していた。
また、6カ月間屋外暴露した後の接触角を測定したとこ
ろ、11°で防曇性は維持していた。更に表面の導電性
はなく、電波透過性は確保されていた。
Example 1 Size 100 mm × 100 m
A green heat ray absorbing glass substrate having a thickness of 3.5 mm and a thickness of 3.5 mm was sequentially washed with a neutral detergent, water and ethanol and dried to obtain a film-forming substrate. Titania sol to In 2 O 3: Sn (ITO )
Ultrafine particles (particle size 5 to 15 nm) were mixed in a predetermined amount to prepare a coating solution. This coating solution was applied onto a film-forming substrate by a spin coating method, dried and baked at 400 ° C. This was repeated 10 times and then baked at 550 ° C. to obtain an ITO ultrafine particle-dispersed titania film having a thickness of about 2.5 μm. The coating composition is Titania 9
It was 9% by weight and 1% by weight of ITO. An anatase structure had formed in the titania. When the anti-fogging property of the obtained coating film was evaluated, the initial contact angle was 6 ° and good anti-fogging performance was exhibited. The solar radiation transmittance was 57%, which was improved from 60% in the case of only the green heat ray absorbing glass substrate.
Further, when the contact angle after outdoor exposure for 6 months was measured, it was 11 ° and the antifogging property was maintained. Furthermore, there was no conductivity on the surface, and radio wave transmission was secured.

【0024】(実施例2)チタニアとITO超微粒子の
比率を変えたこと以外は実施例1と同様の操作を行っ
た。得られた被膜の組成はチタニア70重量%、ITO
30重量%であった。そのチタニアにはアナターゼ構造
が生成していた。得られた被膜の防曇性を評価したとこ
ろ、初期接触角は8°で良好な防曇性能を発現した。日
射透過率は41%であり、グリーン熱線吸収ガラス基板
のみの場合の60%から大幅に向上していた。また、6
カ月間屋外暴露した後の接触角を測定したところ、15
°で防曇性は維持していた。更に表面の導電性はなく、
電波透過性は確保されていた。
Example 2 The same operation as in Example 1 was performed except that the ratio of titania and ITO ultrafine particles was changed. The composition of the obtained coating was 70% by weight of titania and ITO.
It was 30% by weight. An anatase structure had formed in the titania. When the anti-fogging property of the obtained coating film was evaluated, the initial contact angle was 8 ° and good anti-fogging performance was exhibited. The solar radiation transmittance was 41%, which was significantly improved from 60% in the case of only the green heat ray absorbing glass substrate. Also, 6
When the contact angle was measured after outdoor exposure for 15 months, it was 15
The antifogging property was maintained at °. Furthermore, there is no surface conductivity,
Radio wave transparency was secured.

【0025】(実施例3)チタニアゾルの代わりにチタ
ニアゾルとシリカゾルの複合ゾルを用い、ITO超微粒
子の添加量を増したこと以外は実施例1と同様の操作を
行った。得られた被膜の組成はチタニア70重量%、シ
リカ20重量%、ITO10重量%であり、そのチタニ
アにはアナターゼ構造が生成していた。得られた被膜の
防曇性を評価したところ、初期接触角は7°で良好な防
曇性能を発現した。日射透過率は54%であり、グリー
ン熱線吸収ガラス基板のみの場合の60%から向上して
いた。また、6カ月間屋外暴露した後の接触角を測定し
たところ、13°で防曇性は維持していた。更に表面の
導電性はなく、電波透過性は確保されていた。
Example 3 The same operation as in Example 1 was performed except that a composite sol of titania sol and silica sol was used in place of the titania sol and the amount of the ITO ultrafine particles added was increased. The composition of the obtained coating film was 70% by weight of titania, 20% by weight of silica, and 10% by weight of ITO, and an anatase structure was formed in the titania. When the antifogging property of the obtained coating film was evaluated, the initial contact angle was 7 ° and good antifogging performance was exhibited. The solar radiation transmittance was 54%, which was improved from 60% in the case of only the green heat ray absorbing glass substrate. Further, when the contact angle after outdoor exposure for 6 months was measured, it was 13 ° and the antifogging property was maintained. Furthermore, there was no conductivity on the surface, and radio wave transmission was secured.

【0026】(実施例4)チタニアゾルの代わりにチタ
ニアゾルとアルミナゾルの複合ゾルを用い、ITO超微
粒子の添加量を増したこと以外は実施例1と同様の操作
を行った。得られた被膜の組成は、チタニア75重量
%、アルミナ15重量%、ITO10重量%であり、そ
のチタニアにはアナターゼ構造が生成していた。得られ
た被膜の防曇性を評価したところ、初期接触角は7°で
良好な防曇性能を発現した。日射透過率は52%であ
り、グリーン熱線吸収ガラス基板のみの場合の60%か
ら向上していた。また、6カ月間屋外暴露した後の接触
角を測定したところ、13°で防曇性は維持していた。
更に表面の導電性はなく、電波透過性は確保されてい
た。
Example 4 The same operation as in Example 1 was carried out except that a composite sol of titania sol and alumina sol was used in place of the titania sol and the amount of ITO ultrafine particles added was increased. The composition of the obtained film was 75% by weight of titania, 15% by weight of alumina, and 10% by weight of ITO, and an anatase structure was formed in the titania. When the antifogging property of the obtained coating film was evaluated, the initial contact angle was 7 ° and good antifogging performance was exhibited. The solar radiation transmittance was 52%, which was improved from 60% in the case of only the green heat ray absorbing glass substrate. Further, when the contact angle after outdoor exposure for 6 months was measured, it was 13 ° and the antifogging property was maintained.
Furthermore, there was no conductivity on the surface, and radio wave transmission was secured.

【0027】(実施例5)大きさ100mm×100m
m、厚さ3.5mmのグリーン熱線吸収ガラス基板を中
性洗剤、水、エタノールで順次洗浄、乾燥して被膜形成
基板とした。シリカゾルを被膜形成基板上にスピンコー
ティング法にて塗布し、乾燥後に400℃で焼成して、
約0.2μm厚のシリカ膜を得た。チタニアゾルとシリ
カゾルの複合ゾルにIn23:Sn(ITO)超微粒子
(粒径5〜15nm)を所定量になるように混合し、コ
ーティング用溶液とした。このコーティング用溶液を被
膜形成基板上のシリカ膜上にスピンコーティング法にて
塗布し、乾燥後に400℃で焼成した。これを10回繰
り返した後、550℃で焼成して約2.5μm厚のIT
O超微粒子分散チタニア膜を得た。被膜の組成はチタニ
ア70重量%、シリカ20重量%、ITO10重量%で
あった。そのチタニアにはアナターゼ構造が生成してい
た。得られた被膜の防曇性を評価したところ、初期接触
角は7°で良好な防曇性能を発現した。日射透過率は5
5%であり、グリーン熱線吸収ガラス基板のみの場合の
60%から向上していた。また、6カ月間屋外暴露した
後の接触角を測定したところ、9°で防曇性は維持して
いた。更に表面の導電性はなく、電波透過性は確保され
ていた。
Example 5 Size 100 mm × 100 m
A green heat ray absorbing glass substrate having a thickness of 3.5 mm and a thickness of 3.5 mm was sequentially washed with a neutral detergent, water and ethanol and dried to obtain a film-forming substrate. Silica sol is applied onto the film-forming substrate by spin coating, dried and baked at 400 ° C.,
A silica film having a thickness of about 0.2 μm was obtained. In 2 O 3 : Sn (ITO) ultrafine particles (particle size 5 to 15 nm) were mixed with a composite sol of titania sol and silica sol in a predetermined amount to prepare a coating solution. This coating solution was applied onto a silica film on a film-forming substrate by a spin coating method, dried and then baked at 400 ° C. After repeating this 10 times, it is fired at 550 ° C. and IT of about 2.5 μm thick is formed.
An ultrafine particle dispersed titania film was obtained. The composition of the coating was 70% by weight titania, 20% by weight silica, and 10% by weight ITO. An anatase structure had formed in the titania. When the antifogging property of the obtained coating film was evaluated, the initial contact angle was 7 ° and good antifogging performance was exhibited. Solar transmittance is 5
It was 5%, which was improved from 60% in the case of only the green heat ray absorbing glass substrate. Further, when the contact angle after outdoor exposure for 6 months was measured, it was 9 ° and the antifogging property was maintained. Furthermore, there was no conductivity on the surface, and radio wave transmission was secured.

【0028】(実施例6)焼成温度を850℃に変えた
以外は実施例5と同様の操作を行った。得られた被膜の
組成は、チタニア70重量%、シリカ20重量%、IT
O10重量%であり、そのチタニアにはアナターゼ構造
が生成していた。得られた被膜の防曇性を評価したとこ
ろ、初期接触角は7°で良好な防曇性能を発現した。日
射透過率は50%であり、グリーン熱線吸収ガラス基板
のみの場合の60%から向上していた。また、6カ月間
屋外暴露した後の接触角を測定したところ、15°で防
曇性は維持していた。更に表面の導電性はなく、電波透
過性は確保されていた。
(Example 6) The same operation as in Example 5 was performed except that the firing temperature was changed to 850 ° C. The composition of the obtained coating is 70% by weight of titania, 20% by weight of silica, IT
O was 10% by weight, and an anatase structure was formed in the titania. When the antifogging property of the obtained coating film was evaluated, the initial contact angle was 7 ° and good antifogging performance was exhibited. The solar radiation transmittance was 50%, which was improved from 60% in the case of using only the green heat ray absorbing glass substrate. Further, when the contact angle was measured after the outdoor exposure for 6 months, it was 15 ° and the antifogging property was maintained. Furthermore, there was no conductivity on the surface, and radio wave transmission was secured.

【0029】(実施例7)焼成温度を300℃に変えた
以外は実施例5と同様の操作を行った。得られた被膜の
組成は、チタニア70重量%、シリカ20重量%、IT
O10重量%であった。そのチタニアにはアナターゼ構
造が生成していた。得られた被膜の防曇性を評価したと
ころ、初期接触角は8°で良好な防曇性能を発現した。
日射透過率は56%であり、グリーン熱線吸収ガラス基
板のみの場合の60%から向上していた。また、6カ月
間屋外暴露した後の接触角を測定したところ、14°で
防曇性は維持していた。更に表面の導電性はなく、電波
透過性は確保されていた。
(Example 7) The same operation as in Example 5 was performed except that the firing temperature was changed to 300 ° C. The composition of the obtained coating is 70% by weight of titania, 20% by weight of silica, IT
It was 10% by weight of O. An anatase structure had formed in the titania. When the anti-fogging property of the obtained coating film was evaluated, the initial contact angle was 8 ° and good anti-fogging performance was exhibited.
The solar radiation transmittance was 56%, which was improved from 60% in the case of only the green heat ray absorbing glass substrate. Further, when the contact angle was measured after the outdoor exposure for 6 months, it was 14 ° and the antifogging property was maintained. Furthermore, there was no conductivity on the surface, and radio wave transmission was secured.

【0030】(実施例8)ITO超微粒子の代わりにS
nO2:Sb超微粒子(粒径10〜20nm)を用いた
以外は実施例5と同様の操作を行った。得られた被膜の
組成は、チタニア70重量%、シリカ20重量%、Sn
2:Sb10重量%であった。そのチタニアにはアナ
ターゼ構造が生成していた。得られた被膜の防曇性を評
価したところ、初期接触角は7°で良好な防曇性能を発
現した。日射透過率は47%であり、グリーン熱線吸収
ガラス基板のみの場合の60%から向上していた。ま
た、6カ月間屋外暴露した後の接触角を測定したとこ
ろ、11°で防曇性は維持していた。更に表面の導電性
はなく、電波透過性は確保されていた。
(Example 8) S instead of ITO ultrafine particles
The same operation as in Example 5 was carried out except that nO 2 : Sb ultrafine particles (particle size 10 to 20 nm) were used. The composition of the obtained coating was as follows: titania 70% by weight, silica 20% by weight, Sn
It was 10% by weight of O 2 : Sb. An anatase structure had formed in the titania. When the antifogging property of the obtained coating film was evaluated, the initial contact angle was 7 ° and good antifogging performance was exhibited. The solar radiation transmittance was 47%, which was improved from 60% in the case of only the green heat ray absorbing glass substrate. Further, when the contact angle after outdoor exposure for 6 months was measured, it was 11 ° and the antifogging property was maintained. Furthermore, there was no conductivity on the surface, and radio wave transmission was secured.

【0031】(実施例9)ITO超微粒子の代わりにC
dSnO4超微粒子(粒径10〜20nm)を用い、シ
リカゾルを減量したこと以外は実施例5と同様の操作を
行った。得られた被膜の組成は、チタニア70重量%、
シリカ10重量%、CdSnO420重量%であった。
そのチタニアにはアナターゼ構造が生成していた。得ら
れた被膜の防曇性を評価したところ、初期接触角は7°
で良好な防曇性能を発現した。日射透過率は48%であ
り、グリーン熱線吸収ガラス基板のみの場合の60%か
ら向上していた。また、6カ月間屋外暴露した後の接触
角を測定したところ、12°で防曇性は維持していた。
更に表面の導電性はなく、電波透過性は確保されてい
た。
Example 9 C instead of ITO ultrafine particles
The same operation as in Example 5 was performed except that dSnO 4 ultrafine particles (particle diameter 10 to 20 nm) were used and the amount of silica sol was reduced. The composition of the obtained coating was 70% by weight of titania,
It was 10% by weight of silica and 20% by weight of CdSnO 4 .
An anatase structure had formed in the titania. When the anti-fogging property of the obtained coating film was evaluated, the initial contact angle was 7 °.
And exhibited good anti-fogging performance. The solar radiation transmittance was 48%, which was improved from 60% in the case of only the green heat ray absorbing glass substrate. Further, when the contact angle was measured after the outdoor exposure for 6 months, it was 12 ° and the antifogging property was maintained.
Furthermore, there was no conductivity on the surface, and radio wave transmission was secured.

【0032】(比較例1)ITO超微粒子をチタニアゾ
ルに添加しなかったこと以外は実施例1と同様の操作を
行った。日射透過率は60%であり、グリーン熱線吸収
ガラス基板のみの場合からの変化はなかった。 (実施例10)ITO超微粒子の添加量を減少させたこ
と以外は実施例1と同様の操作を行った。得られた被膜
の組成は、チタニア99.9重量%、ITO0.1重量
%であった。日射透過率は60%であり、グリーン熱線
吸収ガラス基板のみの場合からの変化はなかった。
Comparative Example 1 The same operation as in Example 1 was carried out except that the ITO ultrafine particles were not added to the titania sol. The solar radiation transmittance was 60%, which was unchanged from the case of using only the green heat ray absorbing glass substrate. (Example 10) The same operation as in Example 1 was performed except that the amount of the ITO ultrafine particles added was reduced. The composition of the obtained coating was 99.9% by weight of titania and 0.1% by weight of ITO. The solar radiation transmittance was 60%, which was unchanged from the case of using only the green heat ray absorbing glass substrate.

【0033】(実施例11)ITO超微粒子の添加量を
増加させたこと以外は実施例1と同様の操作を行った。
得られた被膜の組成は、チタニア60重量%、ITO4
0重量%であった。得られた被膜の防曇性を評価したと
ころ、初期接触角は10°で良好な防曇性能を発現し、
日射透過率は39%であり、グリーン熱線吸収ガラス基
板のみの場合の60%から向上していた。しかし、6カ
月間屋外暴露した後の接触角を測定したところ、19°
で防曇性は維持されていなかった。
Example 11 The same operation as in Example 1 was performed except that the amount of the ITO ultrafine particles added was increased.
The composition of the obtained coating was 60% by weight of titania and ITO4.
It was 0% by weight. When the anti-fogging property of the obtained coating film was evaluated, the initial contact angle was 10 ° and good anti-fogging performance was exhibited.
The solar radiation transmittance was 39%, which was improved from 60% in the case of only the green heat ray absorbing glass substrate. However, when the contact angle after outdoor exposure for 6 months was measured, it was 19 °
Therefore, the antifogging property was not maintained.

【0034】(実施例12)焼成温度を875℃とした
以外は実施例5と同様の操作を行った。得られた被膜の
防曇性を評価したところ、初期接触角は7°で良好な防
曇性能を発現し、日射透過率は39%であり、グリーン
熱線吸収ガラス基板のみの場合の60%から向上してい
た。しかし、アナターゼ構造は検出されず、全てルチル
構造となっていた。6カ月間屋外暴露した後の接触角を
測定したところ、21°で防曇性は維持されていなかっ
た。
(Example 12) The same operation as in Example 5 was performed except that the firing temperature was 875 ° C. When the anti-fogging property of the obtained coating film was evaluated, the initial contact angle was 7 °, good anti-fogging performance was exhibited, and the solar radiation transmittance was 39%, which was 60% of the case of only the green heat ray absorbing glass substrate. It was improving. However, no anatase structure was detected, and all had a rutile structure. When the contact angle after outdoor exposure for 6 months was measured, it was 21 ° and the antifog property was not maintained.

【0035】(実施例13)焼成温度を280℃とした
以外は実施例5と同様の操作を行った。得られた被膜の
防曇性を評価したところ、初期接触角は8°で良好な防
曇性能を発現し、日射透過率は52%であり、グリーン
熱線吸収ガラス基板のみの場合の60%から向上してい
た。しかし、結晶構造は検出されず、全てアモルファス
構造となっていた。6カ月間屋外暴露した後の接触角を
測定したところ、40°で防曇性は維持されていなかっ
た。
(Example 13) The same operation as in Example 5 was performed except that the firing temperature was 280 ° C. When the anti-fogging property of the obtained coating film was evaluated, the initial contact angle was 8 °, good anti-fogging performance was exhibited, and the solar radiation transmittance was 52%, which was 60% of the case of only the green heat absorbing glass substrate. It was improving. However, no crystal structure was detected, and all had an amorphous structure. When the contact angle after outdoor exposure for 6 months was measured, it was 40 ° and the antifog property was not maintained.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】以上説明してきたように、本発明によれ
ば、チタニアと導電性金属酸化物超微粒子とを併用する
こととしたため、初期防曇性とその持続性に優れるとと
もに、電波透過性と優れた断熱性を有する防曇性被膜形
成基材、これを用いた防曇膜及びその製造方法を提供す
ることができる。即ち、親水性のチタニアを含む金属酸
化物被膜(防曇性被膜)により防曇性を発現させるとと
もに、アナターゼ構造のチタニア膜の光触媒効果によ
り、表面に付着した有機疎水性成分を分解し、防曇性を
長く持続させることができる。また、防曇性被膜に含有
される導電性金属酸化物超微粒子によって太陽光の近赤
外線が遮蔽されるため、断熱性が向上する。更に、導電
性金属酸化物は超微粒子となって被膜中に分散されてい
るため、白濁、吸収による透明度の低下はほとんどな
く、電波透過性も確保することができる。従って、本発
明の防曇膜を窓ガラスに用いた場合には、高湿度環境下
でもエアコンを作動させるまでもなく窓ガラスの透明性
を維持できる。特に、自動車の窓ガラスに用いた場合に
は、視界確保の面で特に有用である。更に、断熱性能を
も有するため、直射光による暑さの緩和にも効果を発揮
する。
As described above, according to the present invention, since titania and the conductive metal oxide ultrafine particles are used in combination, the initial antifogging property and its durability are excellent, and the radio wave permeability is excellent. It is possible to provide an antifogging film-forming substrate having excellent heat insulating properties, an antifogging film using the same, and a method for producing the same. That is, the metal oxide coating containing hydrophilic titania (anti-fog coating) develops anti-fog properties, and the photocatalytic effect of the titania film with an anatase structure decomposes the organic hydrophobic component attached to the surface to prevent The cloudiness can be maintained for a long time. In addition, since the near-infrared rays of sunlight are shielded by the conductive metal oxide ultrafine particles contained in the antifogging coating, the heat insulating property is improved. Furthermore, since the conductive metal oxide is dispersed in the film as ultrafine particles, there is almost no deterioration in transparency due to cloudiness or absorption, and radio wave transparency can be secured. Therefore, when the antifogging film of the present invention is used for a window glass, the transparency of the window glass can be maintained even in a high humidity environment without operating the air conditioner. In particular, when it is used for a window glass of an automobile, it is particularly useful in terms of securing a visual field. Furthermore, since it also has a heat insulating property, it is effective in mitigating the heat caused by direct light.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 チタニアを含む金属酸化物と導電性金属
酸化物超微粒子とを含有することを特徴とする防曇性被
膜形成基材。
1. An antifogging film-forming substrate comprising a metal oxide containing titania and conductive metal oxide ultrafine particles.
【請求項2】 上記導電性金属酸化物超微粒子が、In
23、In23:Sn、In23:F、CdSnO3
CdSnO4、SnO2、SnO2:F、SnO2:P及び
SnO2:Sbよりなる群から選ばれた少なくとも1種
の超微粒子であることを特徴とする請求項1記載の防曇
性被膜形成基材。
2. The conductive metal oxide ultrafine particles are In
2 O 3 , In 2 O 3 : Sn, In 2 O 3 : F, CdSnO 3 ,
The antifogging coating film according to claim 1, which is at least one kind of ultrafine particles selected from the group consisting of CdSnO 4 , SnO 2 , SnO 2 : F, SnO 2 : P and SnO 2 : Sb. Base material.
【請求項3】 上記導電性金属酸化物超微粒子の粒径
が、1〜100nmであることを特徴とする請求項1又
は2記載の防曇性被膜形成基材。
3. The antifogging film-forming substrate according to claim 1, wherein the conductive metal oxide ultrafine particles have a particle size of 1 to 100 nm.
【請求項4】 上記導電性金属酸化物超微粒子の含有量
が、1〜30重量%であることを特徴とする請求項1〜
3のいずれか1つの項に記載の防曇性被膜形成基材。
4. The content of the conductive metal oxide ultrafine particles is 1 to 30% by weight.
The antifogging film-forming substrate according to any one of item 3.
【請求項5】 請求項1〜4のいずれか1つの項に記載
の防曇性被膜形成基材から成る基材層を、透明基板上に
被覆して成ることを特徴とする防曇膜。
5. An antifogging film comprising a transparent substrate and a substrate layer comprising the antifogging film-forming substrate according to any one of claims 1 to 4.
【請求項6】 上記基材層と透明基板との間に金属酸化
物層を備えることを特徴とする請求項5記載の防曇膜。
6. The antifogging film according to claim 5, further comprising a metal oxide layer between the base material layer and the transparent substrate.
【請求項7】 上記基材層におけるチタニアがアナター
ゼ構造を有することを特徴とする請求項5又は6記載の
防曇膜。
7. The antifogging film according to claim 5, wherein the titania in the base material layer has an anatase structure.
【請求項8】 チタニアゾルを含む金属酸化物ゾルと導
電性金属酸化物超微粒子とを含有する複合ゾル溶液を透
明基板に塗布し、300〜850℃で焼成することを特
徴とする防曇膜の製造方法。
8. An anti-fogging film characterized in that a composite sol solution containing a metal oxide sol containing titania sol and conductive metal oxide ultrafine particles is applied to a transparent substrate and baked at 300 to 850 ° C. Production method.
【請求項9】 上記導電性金属酸化物超微粒子が、In
23、In23:Sn、In23:F、CdSnO3
CdSnO4、SnO2、SnO2:F、SnO2:P及び
SnO2:Sbよりなる群から選ばれた少なくとも1種
の超微粒子であることを特徴とする請求項8記載の防曇
膜の製造方法。
9. The conductive metal oxide ultrafine particles are In
2 O 3 , In 2 O 3 : Sn, In 2 O 3 : F, CdSnO 3 ,
9. The antifogging film according to claim 8, which is at least one kind of ultrafine particles selected from the group consisting of CdSnO 4 , SnO 2 , SnO 2 : F, SnO 2 : P and SnO 2 : Sb. Method.
【請求項10】 上記導電性金属酸化物超微粒子の粒径
が、1〜100nmであることを特徴とする請求項8又
は9記載の防曇膜の製造方法。
10. The method for producing an anti-fogging film according to claim 8, wherein the conductive metal oxide ultrafine particles have a particle size of 1 to 100 nm.
【請求項11】 上記導電性金属酸化物超微粒子の添加
量が、1〜30重量%であることを特徴とする請求項8
〜10のいずれか1つの項に記載の防曇膜の製造方法。
11. The conductive metal oxide ultrafine particles are added in an amount of 1 to 30% by weight.
10. The method for producing an antifogging film according to any one of items 10 to 10.
JP6162096A 1996-02-26 1996-02-26 Non-fogging film-forming base material, non-fogging film using the same and its production Pending JPH09227157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6162096A JPH09227157A (en) 1996-02-26 1996-02-26 Non-fogging film-forming base material, non-fogging film using the same and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6162096A JPH09227157A (en) 1996-02-26 1996-02-26 Non-fogging film-forming base material, non-fogging film using the same and its production

Publications (1)

Publication Number Publication Date
JPH09227157A true JPH09227157A (en) 1997-09-02

Family

ID=13176413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6162096A Pending JPH09227157A (en) 1996-02-26 1996-02-26 Non-fogging film-forming base material, non-fogging film using the same and its production

Country Status (1)

Country Link
JP (1) JPH09227157A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068091A (en) * 1996-08-26 1998-03-10 Central Glass Co Ltd Hydrophilic coating film and its production
US6013372A (en) * 1995-03-20 2000-01-11 Toto, Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with superhydrophilic photocatalytic surface, and method of making thereof
JP2000143292A (en) * 1998-11-06 2000-05-23 Central Glass Co Ltd Porous photo-catalyst film coating glass and its coating method
US6090489A (en) * 1995-12-22 2000-07-18 Toto, Ltd. Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
US6337129B1 (en) 1997-06-02 2002-01-08 Toto Ltd. Antifouling member and antifouling coating composition
US6673433B1 (en) 1998-10-19 2004-01-06 Toto Ltd. Stainproof material and method for manufacturing the same, and coating composition and apparatus thereof
US6680135B2 (en) 1995-09-15 2004-01-20 Saint-Gobain Glass France Substrate with a photocatalytic coating
US6722159B2 (en) 1997-03-14 2004-04-20 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning article and method of making same
US6830785B1 (en) 1995-03-20 2004-12-14 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
JP2006197924A (en) * 2004-12-24 2006-08-03 Tokyo Univ Of Science Light transmitting material for plant growth control, translucent material for plant growth control and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013372A (en) * 1995-03-20 2000-01-11 Toto, Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with superhydrophilic photocatalytic surface, and method of making thereof
US6830785B1 (en) 1995-03-20 2004-12-14 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
US6680135B2 (en) 1995-09-15 2004-01-20 Saint-Gobain Glass France Substrate with a photocatalytic coating
US6846556B2 (en) 1995-09-15 2005-01-25 Saint-Gobain Glass France Substrate with a photocatalytic coating
US7597930B2 (en) 1995-09-15 2009-10-06 Saint-Gobain Glass France Substrate with a photocatalytic coating
US6090489A (en) * 1995-12-22 2000-07-18 Toto, Ltd. Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
JPH1068091A (en) * 1996-08-26 1998-03-10 Central Glass Co Ltd Hydrophilic coating film and its production
US6722159B2 (en) 1997-03-14 2004-04-20 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning article and method of making same
US6337129B1 (en) 1997-06-02 2002-01-08 Toto Ltd. Antifouling member and antifouling coating composition
US6673433B1 (en) 1998-10-19 2004-01-06 Toto Ltd. Stainproof material and method for manufacturing the same, and coating composition and apparatus thereof
JP2000143292A (en) * 1998-11-06 2000-05-23 Central Glass Co Ltd Porous photo-catalyst film coating glass and its coating method
JP2006197924A (en) * 2004-12-24 2006-08-03 Tokyo Univ Of Science Light transmitting material for plant growth control, translucent material for plant growth control and method for producing the same

Similar Documents

Publication Publication Date Title
JP3781888B2 (en) Hydrophilic substrate and method for producing the same
KR101265729B1 (en) Substrate having a photocatalytic coating
JP3384284B2 (en) Hydrophilic coating, hydrophilic substrate provided with the same, and methods for producing them
JPH09241037A (en) Anti-clouding film coated substrate and its production
US20100130348A1 (en) Photocatalytic composition for anti-reflection and the glass substrate coated with the composition
JP2001254072A (en) Preparation process of anti-fogging composition, anti- fogging coating agent and anti-fogging coated film- forming base material
JPH09227157A (en) Non-fogging film-forming base material, non-fogging film using the same and its production
JPH0956549A (en) Anti-fogging mirror
JP2000239047A (en) Hydrophilic photocatalytic member
JP2000192021A (en) Hydrophilic, antifogging and antistaining substrate and its preparation
WO1997025287A1 (en) Coated glass for buildings
JP3514065B2 (en) Laminate and manufacturing method thereof
JPWO2003049123A1 (en) Conductive film, method for producing the same, and substrate having the same
JP2007241177A (en) Antireflection structure and structure
JP2004352524A (en) Low reflective article and manufacturing method therefor
JP2002365403A (en) Low reflective film and transparent laminated body using the same
JPH09227158A (en) Non-fogging film-forming base material, non-fogging film using the same and its production
JP3649596B2 (en) Substrate on which hydrophilic oxide film is formed and method for producing the same
JP3261689B2 (en) High visible light transmissive heat reflective glass
JPH1017336A (en) Ultraviolet ray and heat ray shielding antifouling film and its production
JP2000262367A (en) Antifogging mirror and its production
JPH10194780A (en) Glass having performance for cutting ultraviolet ray and heat ray and having antifouling performance and its production
JP2001055527A (en) Colored coated film and formation thereof
JPH1045435A (en) Low-reflection glass
JP3400259B2 (en) Hydrophilic coating and method for producing the same