JPH09225459A - Fluid treating device - Google Patents

Fluid treating device

Info

Publication number
JPH09225459A
JPH09225459A JP6393096A JP6393096A JPH09225459A JP H09225459 A JPH09225459 A JP H09225459A JP 6393096 A JP6393096 A JP 6393096A JP 6393096 A JP6393096 A JP 6393096A JP H09225459 A JPH09225459 A JP H09225459A
Authority
JP
Japan
Prior art keywords
fluid
treatment
magnetic
space
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6393096A
Other languages
Japanese (ja)
Inventor
Hiroshi Honma
汎 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONMA KOSAN KK
Original Assignee
HONMA KOSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONMA KOSAN KK filed Critical HONMA KOSAN KK
Priority to JP6393096A priority Critical patent/JPH09225459A/en
Publication of JPH09225459A publication Critical patent/JPH09225459A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fluid treating device capable of compactly executing in a short time a high frequency treatment or ultrasonic treatment and a magnetic treatment of a fluid by combining in a single housing. SOLUTION: This liquid treating device is constituted of the single housing 1 provided with a liquid flow-in port 5 and a liquid discharge port 6 and a high frequency treating space 9 and a magnetic treating space 12, which are provided in the housing 1. A high frequency vibrator 11 is provided in the high frequency treating space 9 to treat the flowing-in fluid with high frequency and a magnetic treating device 13 is incorporated in the magnetic treating space 12 to treat the flowing-in fluid and after that, the fluid is discharged to a pipe line from the fluid discharging port.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配管中に発生した赤
錆、スケール等を除去、あるいは赤錆、スケール等の発
生を防止、または重油、ヂーゼル油等の燃料油を改質処
理することができる流体処理装置に関する。なお、本明
細書において流体とは、水、湯等の供給水、あるいは重
油、ヂーゼル油等の燃料油等の流体全般を総称する。
INDUSTRIAL APPLICABILITY The present invention can remove red rust, scale, etc. generated in piping, prevent the generation of red rust, scale, etc., or can reform fuel oil such as heavy oil and diesel oil. The present invention relates to a fluid treatment device. In the present specification, the term "fluid" is used to collectively refer to water, feed water such as hot water, or fuel oil such as heavy oil or diesel oil.

【0002】[0002]

【従来の技術】例えば建築物等における給水(給湯)用
の配管は、長年使用している間に管の内壁が腐食されて
赤錆が発生したり、また水中の不純物が沈着したりして
管の内径がしだいに小さくなり、水圧が低下すると共
に、いわゆる赤水が発生し、最後には水漏れ、断水等が
起こるようになる。これらを防止するために従来採用さ
れている工法には、圧縮空気でけい砂等を吹き込んで赤
錆等を削り落とした後に、エポキシ樹脂等でライニング
処理を行う工法や、化学的な手段で赤錆等を除去した後
に、ライニング処理を行う工法等がある。
2. Description of the Related Art For example, a pipe for supplying water (hot water supply) in a building or the like is piped due to corrosion of an inner wall of the pipe to generate red rust or deposition of impurities in water during long use. The inner diameter of the water gradually decreases, the water pressure decreases, so-called red water is generated, and finally water leakage, water interruption, etc. occur. Conventionally adopted methods to prevent these are the method of blowing silica sand etc. with compressed air to scrape off the red rust, etc., and the lining treatment with epoxy resin etc., and the chemical method such as red rust etc. There is a method such as a method of performing a lining treatment after removing the.

【0003】しかしながら、給水(給湯)用の配管は長
く、また屈曲部位を有しているのが普通であり、これら
屈曲部位を有する長い管内から赤錆等を完全に除去し、
かつ均一にライニング処理することは困難であり、赤錆
が残留した箇所や不完全にライニング処理された箇所か
ら再び赤錆が発生するという問題があった。また、これ
ら工法による場合はいずれも長期にわたり断水させなけ
ればならないという問題や費用がかかる等の問題があっ
た。
However, pipes for supplying water (hot water) are usually long and have bent portions, and red rust and the like are completely removed from the long pipes having these bent portions.
Moreover, it is difficult to perform uniform lining treatment, and there is a problem that red rust is generated again from a portion where red rust remains or a portion where lining treatment is incomplete. Further, in the case of using these construction methods, there is a problem that water must be cut off for a long period of time, and there is a problem that it costs.

【0004】そこで、近年長期にわたり断水させること
なく工事が行なえ、水質についての問題もなく、かつ費
用も安価であるということから磁気処理工法が採用され
つつある。この磁気処理工法は、給水(給湯)設備に磁
石を設け、供給水を磁極間に通して磁気的に処理し、そ
してその磁気処理した供給水を配管中に通すことにより
管の内壁に形成された赤錆等を除去し、また赤錆の発生
や不純物の沈着を防止するものである。
Therefore, in recent years, the magnetic treatment method is being adopted because the construction can be carried out for a long period of time without water interruption, there is no problem in water quality, and the cost is low. In this magnetic treatment method, a magnet is provided in a water supply (hot water supply) facility, supply water is passed between magnetic poles to be treated magnetically, and the magnetically treated supply water is passed through a pipe to form on the inner wall of the pipe. It removes red rust and the like, and prevents generation of red rust and deposition of impurities.

【0005】このように、磁気処理した水を配管中に通
すことによりなぜ配管内壁の赤錆が除去されるのか、ま
たなぜ赤錆の発生や不純物の沈着が防止されるのかにつ
いては学問上の最終的な見解は示されてはいない。しか
し、水を磁界中に通すことによって水に含まれている不
純物、すなわちイオンの形で存在する電解質や、分子の
形で存在する非電解質や微小分散性の固体粒子や、溶解
したガス等が磁気的、電気的作用を受け、物理的、化学
的な変化を受けるためではないかと考えられている。
As described above, the reason why the red rust on the inner wall of the pipe is removed by passing the magnetically treated water through the pipe, and why the generation of the red rust and the deposition of impurities are prevented are the final studies. No such views have been given. However, when water is passed through a magnetic field, impurities contained in the water, that is, electrolytes existing in the form of ions, non-electrolytes existing in the form of molecules and finely dispersed solid particles, dissolved gas, etc. It is thought to be due to magnetic and electrical effects and physical and chemical changes.

【0006】また、ボイラーでの燃焼効率を高め、煤塵
を減少させる等の効果を奏するために、またヂーゼルエ
ンジン等のエンジンでの燃費を下げるために、重油、ヂ
ーゼル油等の燃料油を磁気処理することも行われてきて
おり、燃料油を磁気処理することにより、なぜボイラー
での燃焼効率が高められ、煤塵を減少させることができ
るのか、またなぜヂーゼルエンジン等のエンジンでの燃
費を下げることができるのかについても解明されていな
いが、燃料油を磁気処理することによって燃料の微細化
が促進されるためであると考えられている。
Further, in order to improve the combustion efficiency in the boiler and reduce the soot and dust, and to reduce the fuel consumption of an engine such as diesel engine, fuel oil such as heavy oil and diesel oil is magnetically treated. Has also been carried out.Why is it possible to improve combustion efficiency in a boiler and reduce soot and dust by magnetically treating fuel oil, and why to reduce fuel consumption in engines such as diesel engines. Although it has not been clarified whether or not it is possible, it is believed that the magnetic processing of the fuel oil promotes the miniaturization of the fuel.

【0007】[0007]

【発明が解決しようとする課題】これら流体を磁気処理
するのに用いられる装置としては種々のものが提案され
ており、本発明者も先に、多数直列方向に並設させた夫
々の磁石間に、非磁性材料で構成されたスペーサを介し
て磁石積層体を構成し、該磁石積層体が非磁性材料で構
成された多孔筒状体内に内装されると共に、該多孔筒状
体の外周には磁性材料あるいは非磁性材料からなる螺旋
構造体が巻回状に設けられてなる磁気処理装置(実願平
2−24690号)を提案している。
Various devices have been proposed as devices used for magnetically treating these fluids, and the inventor of the present invention has previously proposed that a large number of magnets are arranged between the magnets arranged in series. A magnet laminated body is formed via a spacer made of a non-magnetic material, and the magnet laminated body is housed inside a porous cylindrical body made of a non-magnetic material, and the magnet laminated body is provided on the outer periphery of the porous cylindrical body. Proposes a magnetic processing device (Japanese Patent Application No. 24-24690) in which a spiral structure made of a magnetic material or a non-magnetic material is provided in a wound shape.

【0008】しかし、上記のような磁気処理装置によれ
ば、効率よく流体を磁気処理し、管内壁に形成された赤
錆等の除去、赤錆の発生や不純物の沈着防止等の優れた
磁気処理効果や燃料油の磁気処理効果も得られてはいた
が、さらに優れた効果の得られる流体処理装置の出現が
切望されているのが現実である。
However, according to the above magnetic treatment device, the magnetic treatment of the fluid is efficiently performed, and the excellent magnetic treatment effect such as the removal of red rust formed on the inner wall of the pipe, the generation of red rust and the prevention of the deposition of impurities is achieved. Although the magnetic treatment effect of fuel oil and fuel oil has been obtained, the reality is that the advent of a fluid treatment device that can obtain a further excellent effect is earnestly desired.

【0009】本発明は、従来技術の有するこのような問
題点に鑑みなされたものであり、その目的とするところ
は、流体の高周波処理あるいは超音波処理と磁気処理と
を単一のハウジング内にて組み合わせコンパクトかつ短
期間に流体処理を行うことが可能な流体処理装置を提供
することである。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to carry out high frequency treatment or ultrasonic treatment of a fluid and magnetic treatment in a single housing. It is an object of the present invention to provide a fluid treatment apparatus which is compact and combined to perform fluid treatment in a short period of time.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明がなした技術的手段は、流体流入口および流体
排出口を備えた単一ハウジング内を高周波処理空間と磁
気処理空間とに分け、高周波処理空間には高周波発振子
が備えられて流入される流体を高周波処理し、磁気処理
空間には磁気処理装置が内装されて流入される流体を磁
気処理することである。
To achieve the above object, the technical means of the present invention is to provide a high-frequency processing space and a magnetic processing space within a single housing having a fluid inlet and a fluid outlet. Separately, a high-frequency oscillator is provided in the high-frequency processing space to perform high-frequency processing on the inflowing fluid, and a magnetic processing device is installed in the magnetic processing space to magnetically process the inflowing fluid.

【0011】高周波処理空間を流体流入口側に配し、流
入される流体をまず高周波処理すると共に、そして磁気
処理空間を流体排出口側に配し、上記高周波処理された
流体を次に磁気処理して排出せしめることとする。
The high-frequency treatment space is arranged on the fluid inlet side, the inflowing fluid is first subjected to high-frequency treatment, and the magnetic treatment space is arranged on the fluid discharge side, and the high-frequency treated fluid is then subjected to magnetic treatment. Then, it will be discharged.

【0012】また、磁気処理空間を流体流入口側に配し
て流入される流体を磁気処理すると共に、高周波処理空
間を流体排出口側に配して上記磁気処理された流体を高
周波処理して排出せしめることとしてもよい。
Further, the magnetically treated space is disposed on the fluid inlet side to magnetically treat the inflowing fluid, and the high frequency treatment space is disposed on the fluid outlet side to perform high frequency treatment on the magnetically treated fluid. It may be discharged.

【0013】さらに、流体流入口および流体排出口を備
えた単一ハウジング内を超音波処理空間と磁気処理空間
とに分け、超音波処理空間には超音波発振子が備えられ
て流入される流体を超音波処理し、磁気処理空間には磁
気処理装置が内装されて流入される流体を磁気処理する
こととしてもよい。
Further, a single housing having a fluid inlet and a fluid outlet is divided into an ultrasonic processing space and a magnetic processing space, and an ultrasonic oscillator is provided in the ultrasonic processing space and a fluid is introduced into the ultrasonic processing space. May be ultrasonically processed, and a magnetic processing device may be installed in the magnetic processing space to magnetically process the inflowing fluid.

【0014】そして、超音波処理空間を流体流入口側に
配し、流入される流体をまず超音波処理すると共に、磁
気処理空間を流体排出口側に配し、上記超音波処理され
た流体を次に磁気処理して排出せしめることとする。
The ultrasonic treatment space is arranged on the fluid inlet side, the inflowing fluid is first subjected to ultrasonic treatment, and the magnetic treatment space is arranged on the fluid discharge side, and the ultrasonic treated fluid is stored. Next, it will be magnetically treated and discharged.

【0015】また、磁気処理空間を流体流入口側に配し
て流入される流体を磁気処理すると共に、超音波処理空
間を流体排出口側に配して上記磁気処理された流体を超
音波処理して排出せしめることとしてもよい。
Further, the magnetically treated space is disposed on the fluid inlet side to magnetically treat the inflowing fluid, and the ultrasonic treatment space is disposed on the fluid outlet side to ultrasonically treat the magnetically treated fluid. Then, it may be discharged.

【0016】また、多数直列方向に並設させた夫々の磁
石間に,非磁性材料で構成されたスペーサを介して磁石
積層体を構成し、該磁石積層体が非磁性材料で構成され
た多孔筒状体内に内装されると共に、該多孔筒状体の外
周には磁性材料あるいは非磁性材料からなる螺旋構造体
が巻回状に設けられて磁気処理装置が構成されているこ
とである。
In addition, a magnet laminated body is formed between a plurality of magnets arranged in parallel in a series direction via a spacer made of a nonmagnetic material, and the magnet laminated body is made of a non-magnetic material. That is, the magnetic processing apparatus is configured by being installed inside the tubular body and spirally forming a spiral structure made of a magnetic material or a non-magnetic material around the outer circumference of the porous tubular body.

【0017】また、磁気処理空間とされる単一ハウジン
グの外周壁と内周壁のいずれか一方あるいは双方に磁石
を配設したことである。
Further, the magnet is disposed on either or both of the outer peripheral wall and the inner peripheral wall of the single housing which is the magnetic processing space.

【0018】[0018]

【作用】上記技術的手段により、本装置の流体流入口を
介してハウジング内に流入された流体は、まず高周波処
理空間にて高周波発振子の高周波照射によるキャビテー
ション作用により処理される。
With the above technical means, the fluid introduced into the housing through the fluid inlet of the apparatus is first treated in the high frequency treatment space by the cavitation action by the high frequency irradiation of the high frequency oscillator.

【0019】そして、上記高周波処理空間にて高周波処
理(キャビテーション処理)された流体は、同一ハウジ
ング内の下流側に配される磁気処理空間に移り、該空間
内に配されている磁気処理装置により磁気処理された後
に流体排出口よりハウジング外(配管下流側)へと排出
される。
Then, the fluid subjected to the high frequency treatment (cavitation treatment) in the high frequency treatment space is moved to the magnetic treatment space arranged on the downstream side in the same housing, and is moved by the magnetic treatment device arranged in the space. After being magnetically processed, it is discharged from the fluid discharge port to the outside of the housing (downstream side of the pipe).

【0020】また、上記高周波処理空間に代えて超音波
処理空間を配した場合には、超音波発振子の超音波照射
によるキャビテーション作用により処理される。
When an ultrasonic treatment space is provided instead of the high-frequency treatment space, the ultrasonic treatment is performed by the cavitation action of the ultrasonic oscillator.

【0021】また、流体流入口側に磁気処理空間を配
し、流体排出口側に高周波処理空間あるいは超音波処理
空間を配した場合には、上記の場合とは逆に、流体流入
口を介してハウジング内に流入される流体は、まず磁気
処理空間により磁気処理され、そしてその後に高周波処
理あるいは超音波処理されてハウジング外(配管下流
側)へと排出される。
When the magnetic treatment space is arranged on the fluid inlet side and the high-frequency treatment space or ultrasonic treatment space is arranged on the fluid outlet side, contrary to the above case, the fluid treatment is performed via the fluid inlet port. The fluid flowing into the housing is first subjected to magnetic treatment in the magnetic treatment space, and then subjected to high frequency treatment or ultrasonic treatment, and then discharged to the outside of the housing (downstream of the pipe).

【0022】そして、多数直列方向に並設させた夫々の
磁石間に、非磁性材料で構成されたスペーサを介して磁
石積層体を構成し、該磁石積層体が非磁性材料で構成さ
れた多孔筒状体内に内装されると共に、該多孔筒状体の
外周には磁性材料あるいは非磁性材料からなる螺旋構造
体が巻回状に設けられて磁気処理装置が構成されている
ものとすれば、流体がハウジングの内壁と多孔筒状体の
外壁とで区画された区域を螺旋構造体によって導かれて
流れると共に、多孔筒状体に設けられた複数の通孔を通
して多孔筒状体への出入りを繰り返し、多孔筒状体内に
設けられた磁石によって生ずる磁力線によって磁気処理
される。
A magnet laminated body is formed between a plurality of magnets arranged in parallel in the series direction through a spacer made of a nonmagnetic material, and the magnet laminated body is made of a non-magnetic material. Assuming that the magnetic processing device is configured by being provided inside the tubular body, and the spiral structure made of a magnetic material or a non-magnetic material is wound around the outer periphery of the porous tubular body, The fluid is guided by a spiral structure to flow in an area defined by the inner wall of the housing and the outer wall of the porous tubular body, and also enters and leaves the porous tubular body through a plurality of through holes provided in the porous tubular body. Repeatedly, magnetic treatment is performed by the magnetic field lines generated by the magnet provided in the porous cylindrical body.

【0023】また、磁気処理空間とされる単一ハウジン
グの外周壁と内周壁のいずれか一方あるいは双方に多数
の磁石を配設するものとすれば、該多数の磁石によって
生ずる磁力線によってさらに優れた磁気処理効果が期待
される。
Further, if a large number of magnets are provided on either or both of the outer peripheral wall and the inner peripheral wall of the single housing which is the magnetic processing space, the lines of magnetic force generated by the large number of magnets are more excellent. Magnetic processing effect is expected.

【0024】[0024]

【実施例】以下、本発明流体処理装置の一実施例を図に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the fluid treatment apparatus of the present invention will be described below with reference to the drawings.

【0025】図1に示す流体処理装置の実施例は、ハウ
ジング1と、該ハウジング1内に配される高周波処理空
間9および磁気処理空間12とから構成され、そして上
記磁気処理空間12とされるハウジング1の外周壁3に
は多数の磁石27…を配設して構成されている第一実施
例を示す。
The embodiment of the fluid processing apparatus shown in FIG. 1 comprises a housing 1, a high-frequency processing space 9 and a magnetic processing space 12 arranged in the housing 1, and is the magnetic processing space 12. A first embodiment is shown in which a large number of magnets 27 are arranged on the outer peripheral wall 3 of the housing 1.

【0026】ハウジング1は、前後開放状の略円筒状に
本体2が形成され、該本体2の前端寄りの外周壁3に流
体流入口5を設けると共に、後端側開放部8に流体排出
口6を一体的に設けてなり、そしてこの単一のハウジン
グ1の上記流体流入口5側に高周波処理空間9を、そし
て流体排出口6側に磁気処理空間12を配するように区
分けする。
The housing 1 has a main body 2 formed in a substantially cylindrical shape that is open in the front-rear direction. A fluid inlet 5 is provided in an outer peripheral wall 3 near the front end of the main body 2, and a fluid discharge port is provided in a rear end side open portion 8. 6 are integrally provided, and the high-frequency processing space 9 is arranged on the side of the fluid inlet 5 and the magnetic processing space 12 is arranged on the side of the fluid outlet 6 of the single housing 1.

【0027】なお、ハウジング本体2は上記せるように
円筒状に限らず、角筒状等任意形状の筒体でよく、また
直筒状に限られず任意に屈曲している形状であってもよ
く本発明の範囲内において適宜変更可能である。また、
流体流入口5および流体排出口6の形状は本発明の範囲
内において任意に変更可能であり、図示例に何等限定さ
れるものではなく、例えば図示例の略漏斗状流体排出口
6に代えて、後端側開放部8を流体排出口として配管を
直接接続する等変更可能なものである。
The housing body 2 is not limited to the cylindrical shape as described above, and may be a cylindrical body having an arbitrary shape such as a square tube shape, and is not limited to a straight cylindrical shape and may be an arbitrarily bent shape. It can be changed appropriately within the scope of the invention. Also,
The shapes of the fluid inlet 5 and the fluid outlet 6 can be arbitrarily changed within the scope of the present invention, and are not limited to the illustrated examples. For example, instead of the substantially funnel-shaped fluid outlet 6 of the illustrated examples. It is possible to change it by directly connecting a pipe using the rear end side open portion 8 as a fluid discharge port.

【0028】高周波処理空間9は、流体流入口5付近か
ら磁気処理装置13を内装した磁気処理空間12までの
前方側の内部空間を指し、ハウジング本体2の前端側開
放部7に振動板10を設けると共に、該振動板10に高
周波発振子11…を設けて、該高周波発振子11…によ
るキャビテーション作用で流入される流体を高周波処理
する。
The high-frequency processing space 9 refers to an internal space on the front side from the vicinity of the fluid inlet 5 to the magnetic processing space 12 in which the magnetic processing device 13 is installed, and the diaphragm 10 is provided in the front end side open portion 7 of the housing body 2. At the same time, the high-frequency oscillator 11 ... Is provided on the vibrating plate 10, and the fluid introduced by the cavitation action of the high-frequency oscillator 11 ...

【0029】振動板10には、例えば厚さ1〜2mm程
度のステンレス鋼板を用いることができ、該振動板10
に接着剤、ねじ等の固着具で高周波発振子11が取り付
けられている。
As the diaphragm 10, for example, a stainless steel plate having a thickness of about 1 to 2 mm can be used.
The high-frequency oscillator 11 is mounted on the high-frequency oscillator 11 with a fixing tool such as an adhesive or a screw.

【0030】高周波発振子11としては、例えばフェラ
イト振動子、金属磁歪振動子、水晶振動子、圧電セラミ
ック振動子等各種のものを用いることができるが、圧電
素子を用いたボルト締めランジバン振動子は堅牢で取扱
いが容易であるので、本発明に用いるのに最も好ましい
高周波発振子である。
As the high frequency oscillator 11, various types such as a ferrite oscillator, a metal magnetostrictive oscillator, a crystal oscillator, a piezoelectric ceramic oscillator can be used, but a bolted Langevin oscillator using a piezoelectric element is not used. It is the most preferred high frequency oscillator for use in the present invention because it is robust and easy to handle.

【0031】また、振動板10に高周波発振子11がね
じ等の固着具で着脱自在に取り付けられている場合、配
管中に発生している赤錆、スケール当が除去された後に
おいて、高周波発振子11を取り外して他に使用するこ
とができるので、経費削減の点から好ましい。
When the high frequency oscillator 11 is detachably attached to the diaphragm 10 with a fixing tool such as a screw, the high frequency oscillator 11 is removed after the red rust and scale marks generated in the pipe are removed. Since 11 can be removed and used for other purposes, it is preferable in terms of cost reduction.

【0032】一方磁気処理空間12は、上記ハウジング
1における高周波処理空間9より後方側の内部空間を指
し、所望な磁気処理装置13が該空間9内に内装されて
上記高周波処理空間9より流入される高周波処理済みの
流体を、さらに磁気処理して流体排出口6より配管へと
排出する。
On the other hand, the magnetic processing space 12 refers to the inner space of the housing 1 on the rear side of the high-frequency processing space 9, and a desired magnetic processing device 13 is installed in the space 9 and flows into the high-frequency processing space 9. The high-frequency processed fluid is further magnetically processed and discharged from the fluid discharge port 6 to the pipe.

【0033】磁気処理装置13は、例えば図3に示すよ
うに、多数直列方向に並設させた夫々の磁石19…間
に、非磁性材料で構成されたスペーサ20…を介して磁
石積層体18を構成し、該磁石積層体18が非磁性材料
で構成された多孔筒状体14内に内装されると共に、該
多孔筒状体14の外周には磁性材料あるいは非磁性材料
からなる螺旋構造体17が巻回状に設けられて構成され
ている。また、この磁気処理装置13は、ハウジング1
の内周壁4と螺旋構造体17の外周とが略密着するよう
に内装される。
As shown in FIG. 3, for example, the magnetic processing unit 13 includes a magnet stack 18 with a plurality of magnets 19 arranged in parallel in the series direction and spacers 20 made of a non-magnetic material interposed therebetween. And the magnet laminated body 18 is housed in the porous cylindrical body 14 made of a non-magnetic material, and the spiral structure made of a magnetic material or a non-magnetic material is provided on the outer periphery of the porous cylindrical body 14. 17 is provided in a wound shape. In addition, the magnetic processing device 13 includes the housing 1
The inner peripheral wall 4 and the outer periphery of the spiral structure 17 are installed so as to be substantially in close contact with each other.

【0034】多孔筒状体14は、前後面を開放し、かつ
外周面15に多数の微細通水孔16…を設けた円筒状に
形成され、その外周面15に螺旋構造体17を巻回状に
一体的に設けている。
The perforated cylindrical body 14 is formed in a cylindrical shape having front and rear surfaces open and a large number of fine water passage holes 16 provided on the outer peripheral surface 15, and the spiral structure 17 is wound on the outer peripheral surface 15. It is provided integrally in a shape.

【0035】上記通水孔16は種々の方法によって得ら
れ、例えば筒状体そのものを網で形成することにより得
たり、また打ち抜きで形成することにより得たりするこ
とができる。さらに、この通水孔16の孔径は上記せる
ように微細に限らず大小任意であり、また均一孔径のも
のとしても、大小ちりばめたものとしてもよい。なお、
この多孔筒状体14は上記せるように円筒状が好ましい
形状であるが、円筒状に何等限定されるものではなく角
筒状等他の筒形状に変更可能である。
The water passage hole 16 can be obtained by various methods, for example, by forming the tubular body itself with a net or by punching. Further, the diameter of the water passage hole 16 is not limited to a fine one as described above, and may be any size, and may be of a uniform size or studded. In addition,
As described above, the porous tubular body 14 has a preferred cylindrical shape, but is not limited to a cylindrical shape at all, and can be changed to another tubular shape such as a rectangular tubular shape.

【0036】螺旋構造体17は、磁性材料あるいは非磁
性材料をもって多孔筒状体14の外周に一体的に設けら
れており、多孔筒状体14とハウジング内周壁4との間
を通過する流体に旋回流を与える作用を奏する。
The spiral structure 17 is integrally provided on the outer periphery of the porous cylindrical body 14 with a magnetic material or a non-magnetic material, and is provided for the fluid passing between the porous cylindrical body 14 and the inner peripheral wall 4 of the housing. It exerts the effect of giving a swirling flow.

【0037】螺旋構造体17を構成する磁性材料として
は、例えば磁性を有するステンレス鋼、鋼材等の鉄材、
フェライト等のセラミックス、磁性体粉末をゴムあるい
は樹脂等に混入したもの、例えば磁性ゴム等各種のもの
が用いられ限定はされないものである。
The magnetic material forming the spiral structure 17 is, for example, magnetic stainless steel, iron material such as steel material,
Ceramics such as ferrite and magnetic powder mixed with rubber or resin, for example, various types such as magnetic rubber are used without any limitation.

【0038】螺旋構造体17を多孔筒状体14の外周に
一体的に設ける方法としては、例えば鋳造、射出成形等
の手段で多孔筒状体14と共に一体成形するか、あるい
は螺旋構造体17を別途成形して多孔筒状体14の外周
に溶接、接着等の手段で接合してもよい。
As a method for integrally providing the spiral structure 17 on the outer periphery of the porous cylindrical body 14, for example, the spiral structure 17 may be integrally molded with the porous cylindrical body 14 by means of casting, injection molding or the like. It may be separately molded and joined to the outer periphery of the porous tubular body 14 by means such as welding or adhesion.

【0039】磁石積層体18は、多数の磁石19…間に
非磁性材料で構成されたスペーサ20…を介して直列せ
しめると共に、長尺ボルト21を連通せしめて一体的に
構成されている。図中22,23は磁石19…とスペー
サ20…の夫々の連通孔を示す。
The magnet laminated body 18 is made up of a large number of magnets 19 in series with spacers 20 made of a non-magnetic material interposed therebetween, and long bolts 21 are made to communicate with each other to be integrally formed. In the drawing, reference numerals 22 and 23 denote respective communication holes of the magnets 19 and the spacers 20.

【0040】上記磁石積層体18を構成する磁石19と
しては、フェライト系のもの、合金系のもの等各種のも
のが用いられ、特に限定はされないが、経済的理由から
フェライト系のものが好ましい。フェライト系の磁石は
機械的強度が弱く欠けやすいものであるが、図示例の如
く多孔筒状体14内に収納されるのでその心配もない。
As the magnet 19 constituting the above-mentioned magnet laminated body 18, various types such as ferrite type and alloy type are used and are not particularly limited, but the ferrite type is preferable for economic reasons. Ferrite-based magnets have low mechanical strength and are easily chipped. However, since they are housed in the porous cylindrical body 14 as shown in the illustrated example, there is no need to worry.

【0041】磁石19は、隣り合う磁石、例えば図3に
示す19′,19″や19′,19″等のように同一の
極同士が向き合うように配設するのが好ましい。なお、
図中Sの表示は磁石のS極を、Nの表示は磁石のN極を
夫々示す。
The magnets 19 are preferably arranged so that the same poles face each other like adjacent magnets, such as 19 ', 19 "and 19', 19" shown in FIG. In addition,
In the drawing, S indicates the S pole of the magnet, and N indicates the N pole of the magnet.

【0042】図4は、多孔筒状体14の前後開放部に取
り付けられる蓋24を示し、該蓋24の内面側から上記
長尺ボルト21を挿通せしめると共に、ナット26を介
して上記磁石19…とスペーサ20…とが動かないよう
に固定される。また、上記蓋24には、多孔筒状体14
内に流体を通すことができるように、通穴25を設けて
おり、該穴25は一個あるいは複数個設けることがで
き、その穴径および穴形状も本発明の範囲内において任
意であり特に限定はされない。
FIG. 4 shows a lid 24 attached to the front and rear open portions of the perforated tubular body 14. The long bolt 21 is inserted from the inner surface side of the lid 24, and the magnet 19 is inserted through a nut 26. And the spacers 20 are fixed so as not to move. In addition, the lid 24 is provided with the porous cylindrical body 14.
A through hole 25 is provided so that a fluid can pass therethrough, and one or plural holes 25 can be provided, and the hole diameter and the hole shape are arbitrary within the scope of the present invention and are not particularly limited. It is not done.

【0043】また、上記多孔筒状体14、螺旋構造体1
7、スペーサ20を非磁性材料で構成する場合、例えば
磁性を有しないステンレス鋼、銅、真鍮等の金属材料、
あるいはセラミックス、あるいは合成樹脂等各種のもの
が用いられ任意であり限定されない。また、これら非磁
性材料は耐腐食性を有する材料であっても、腐食性を有
する材料であってもよい。
The porous cylindrical body 14 and the spiral structure 1 are also provided.
7. When the spacer 20 is made of a non-magnetic material, for example, a metal material having no magnetism, such as stainless steel, copper, or brass,
Alternatively, various materials such as ceramics or synthetic resin are used, and are arbitrary and not limited. Further, these nonmagnetic materials may be materials having corrosion resistance or materials having corrosion.

【0044】図5は、磁石積層体18の他の実施の一例
を示し、磁性を有するステンレス鋼からなる磁極片30
を挟んで左右に磁石19,19を備えた集合体31…を
多数構成し、そして夫々の集合体31,31間にスペー
サ20を介して多数配してなる。なお、このような構成
とした場合でも、夫々の集合体31…を構成する一対の
磁石19,19は上記実施例のように同一の極同士(例
えば磁石19′,19″)が向き合うように配設するの
が好ましい。
FIG. 5 shows another embodiment of the magnet laminate 18, which is a magnetic pole piece 30 made of stainless steel having magnetism.
Are provided with a large number of magnets 31 provided on the left and right sides of the body, and a large number of magnets are arranged between the respective assemblies 31 with spacers 20 interposed therebetween. Even in such a configuration, the pair of magnets 19, 19 constituting each of the assemblies 31... Are arranged such that the same poles (for example, magnets 19 ', 19 ") face each other as in the above embodiment. It is preferable to arrange them.

【0045】また、図6にも磁石積層体の他の実施の一
例を示し、例えば隣接する各磁石19…間に磁極片30
…を介して配してなるものである。なお、このような構
成とした場合でも、隣接する磁石19,19は上記実施
例のように同一の極同士(例えば磁石19′,19″)
が向き合うように配設するのが好ましい。
FIG. 6 also shows another embodiment of the magnet laminated body. For example, a pole piece 30 is provided between the adjacent magnets 19 ...
… Arranged through. Even in such a configuration, the adjacent magnets 19, 19 have the same poles (for example, magnets 19 ', 19 ") as in the above embodiment.
It is preferable to dispose them so that they face each other.

【0046】そして、本実施例では磁気処理空間12と
される単一ハウジング1の外周壁3に多数の磁石27…
を配設している。該磁石27は、接着等適宜の固着手段
によってハウジング外周壁3に配設することができる。
In this embodiment, a large number of magnets 27 are provided on the outer peripheral wall 3 of the single housing 1, which is the magnetic processing space 12.
Is arranged. The magnet 27 can be disposed on the housing outer peripheral wall 3 by an appropriate fixing means such as bonding.

【0047】なお、本実施例ではハウジング1の外周壁
3に磁石27…を配設するものとするが、内周壁4に配
設するものとしてもよく、あるいは外周壁3と内周壁4
との双方に配設するものとしてもよく任意である。
In this embodiment, the magnets 27 are arranged on the outer peripheral wall 3 of the housing 1. However, they may be arranged on the inner peripheral wall 4, or the outer peripheral wall 3 and the inner peripheral wall 4 may be arranged.
It may be arbitrarily arranged on both sides.

【0048】上記磁石27は、例えば図9〜図13に示
すような磁極の向きをもって配設することができる。図
9は、複数の磁石27…のS極が全てハウジング外周壁
3に対向するようにして取り付けられていることを示し
(したがって各磁石27…のN極が外側に向いてい
る)、図10は複数の磁石27…のN極が全てハウジン
グ外周壁3に対向するようにして取り付けられているこ
とを示し(したがって各磁石27…のS極が外側に向い
ている)、図11〜図13は複数の磁石27のN極とS
極とが交互にハウジング外周壁3に対向するようにして
取り付けられていることを示す。なお、図9〜図13は
ハウジング外周壁3に取り付けられる磁石27の磁極の
向きを説明するものであって、ハウジング外周壁3に取
り付けられた全ての磁石27…を示しているものではな
い。
The magnet 27 can be arranged with the orientation of the magnetic poles shown in FIGS. 9 to 13, for example. FIG. 9 shows that the south poles of the plurality of magnets 27 ... Are all mounted so as to face the outer peripheral wall 3 of the housing (hence the north poles of each magnet 27 ... Are facing outward), and FIG. 11 to 13 indicate that all the N poles of the plurality of magnets 27 ... Are attached so as to face the housing outer peripheral wall 3 (hence, the S poles of each magnet 27 ... Is the N pole and S of the plurality of magnets 27
It is shown that the poles and the poles are alternately attached to face the outer peripheral wall 3 of the housing. 9 to 13 illustrate the directions of the magnetic poles of the magnets 27 attached to the outer peripheral wall 3 of the housing, and do not show all the magnets 27 attached to the outer peripheral wall 3 of the housing.

【0049】また、ハウジング外周壁3に取り付けられ
る磁石27の外側(非接触面側)28には、図14に示
すように磁性材料で構成された板29を取り付けるとさ
らに磁気処理効率を高めることができる。板29は、磁
石27の外側(非接触面側)28を覆い、さらにその外
方向にまで延びたものとするのがよい。上記板29を取
り付けた場合、隣接する磁石27…に設けた板29…同
士が接触しないようにする。
Further, as shown in FIG. 14, a plate 29 made of a magnetic material is attached to the outer side (non-contact surface side) 28 of the magnet 27 attached to the housing outer peripheral wall 3 to further enhance the magnetic treatment efficiency. You can It is preferable that the plate 29 covers the outside (non-contact surface side) 28 of the magnet 27 and further extends outward. When the plate 29 is attached, the plates 29 provided on the adjacent magnets 27 are prevented from contacting each other.

【0050】上記のように構成することで、流体流入口
5を介して流入された流体は、まず高周波処理空間9内
において高周波発振子11によるキャビテーション作用
で高周波処理される。
With the above configuration, the fluid introduced through the fluid inlet 5 is first subjected to high frequency treatment in the high frequency treatment space 9 by the cavitation action of the high frequency oscillator 11.

【0051】そして、上記高周波処理空間9において高
周波処理(キャビテーション処理)された流体は、次に
同一ハウジング1内の下流側に配される磁気処理空間1
2に移り、該空間12内に配されている磁気処理装置1
3により、流体がハウジング1の内周壁4と多孔筒状体
14の外壁とで区画された区域を螺旋構造体17によっ
て導かれて流れると共に、多孔筒状体14に設けられた
複数の通水孔16を通して多孔筒状体12への出入りを
繰り返し、多孔筒状体12内に設けられた磁石19…お
よび磁気処理空間12とされる単一ハウジング1の外周
壁3に備えた多数の磁石27…によって生ずる磁力線に
よって磁気処理された後に流体排出口6よりハウジング
外(配管下流側)へと排出される。
Then, the fluid subjected to the high frequency treatment (cavitation treatment) in the high frequency treatment space 9 is next placed in the same housing 1 on the downstream side of the magnetic treatment space 1.
Moving to 2, the magnetic processing apparatus 1 arranged in the space 12
3, the fluid flows while being guided by the spiral structure 17 through the area defined by the inner peripheral wall 4 of the housing 1 and the outer wall of the porous tubular body 14, and a plurality of water passages provided in the porous tubular body 14 The magnets 19 provided in the porous cylindrical body 12 are repeatedly moved in and out through the holes 16 and a large number of magnets 27 provided on the outer peripheral wall 3 of the single housing 1 to be the magnetic processing space 12. After being magnetically processed by the lines of magnetic force generated by ..., It is discharged from the fluid discharge port 6 to the outside of the housing (downstream of the pipe).

【0052】なお、図示例では、磁気処理空間12とさ
れる単一ハウジング1の外周壁3に多数の磁石27…を
配設した実施例を示すが、磁石27を配設しないもので
あっても十分流体処理効率の高い装置が提供できること
はいうまでもない。
In the illustrated example, a large number of magnets 27 are arranged on the outer peripheral wall 3 of the single housing 1 which is the magnetic processing space 12, but the magnets 27 are not arranged. Needless to say, it is possible to provide a device having sufficiently high fluid processing efficiency.

【0053】また、図示例では磁気処理装置13をハウ
ジング1の磁気処理空間12内に単体で用いているが、
何等これに限定されるものではなく、該磁気処理装置1
3を磁気処理空間12内に複数個並列あるいは直列せし
めて配設するものとしてもよく任意である。
In the illustrated example, the magnetic processing device 13 is used alone in the magnetic processing space 12 of the housing 1.
The magnetic processing apparatus 1 is not limited to this.
3 may be disposed in the magnetic processing space 12 in parallel or in series.

【0054】図7は、磁気処理空間12を流体流入口5
側に配し、高周波処理空間9を流体排出口6側に配した
本発明流体処理装置の第二実施例を示す。本実施例によ
れば、流体流入口5を介して流入される流体をまず磁気
処理し、そしてその後に上記磁気処理された流体を高周
波処理して排出せしめるもので、上記実施例と同様の流
体処理効率が期待できる。なお、他の構成および作用に
ついては上記説明した図1記載の実施例と同様であり同
一箇所に同一符号を付してその説明は省略する。
In FIG. 7, the magnetic processing space 12 is connected to the fluid inlet port 5.
2 shows a second embodiment of the fluid treatment apparatus of the present invention in which the high-frequency treatment space 9 is disposed on the side of the fluid discharge port 6 side. According to the present embodiment, the fluid introduced through the fluid inlet 5 is first subjected to magnetic treatment, and then the magnetically treated fluid is subjected to high frequency treatment and discharged. Processing efficiency can be expected. The rest of the configuration and operation are the same as those of the embodiment described above with reference to FIG.

【0055】また、図8はハウジング1の流体流入口5
側および流体流出口6側に夫々高周波処理空間9,9を
配すると共に、該夫々の高周波処理空間9,9間に所望
範囲で区分けされている磁気処理空間12を配して構成
されている本発明流体処理装置の第三実施例を示す。
FIG. 8 shows the fluid inlet 5 of the housing 1.
Side and the fluid outlet 6 side, high-frequency processing spaces 9 and 9 are respectively arranged, and a magnetic processing space 12 divided in a desired range is arranged between the high-frequency processing spaces 9 and 9. The 3rd Example of the fluid treatment apparatus of this invention is shown.

【0056】すなわち、本実施例によれば、流体流入口
5を介して流入される流体をまず高周波処理する。
That is, according to this embodiment, the fluid introduced through the fluid inlet 5 is first subjected to high frequency treatment.

【0057】そして、その後に上記高周波処理された流
体を磁気処理し、さらにその磁気処理された流体を後方
の高周波処理空間9内で再度高周波処理せしめてから排
出せしめるもので、さらに優れた流体処理効率が期待で
きる。なお、他の構成および作用については上記説明し
た図1記載の実施例と同様であり同一箇所に同一符号を
付してその説明は省略する。
Then, the fluid subjected to the high frequency treatment is magnetically treated thereafter, and the fluid subjected to the high frequency treatment is subjected to the high frequency treatment again in the rear high frequency treatment space 9 and then discharged. You can expect efficiency. The rest of the configuration and operation are the same as those of the embodiment described above with reference to FIG.

【0058】次に、上記高周波処理空間9に代えて、超
音波処理空間を配する構成とした本発明流体処理装置の
第四実施例について説明する。
Next, a fourth embodiment of the fluid treatment apparatus of the present invention will be described in which an ultrasonic treatment space is arranged instead of the high frequency treatment space 9.

【0059】この場合にあっては、高周波発振子11に
代えて超音波発振子を設けるものとし、この超音波処理
空間に流入される流体にキャビテーション作用で処理す
る。なお、磁気処理空間12等の他の構成については上
記説明した図1記載の実施例と同様である。
In this case, an ultrasonic oscillator is provided instead of the high frequency oscillator 11, and the fluid flowing into this ultrasonic processing space is treated by the cavitation action. The other structures such as the magnetic processing space 12 are the same as those in the embodiment described in FIG. 1 described above.

【0060】超音波発振子としては、上記高周波発振子
11と同様、例えばフェライト振動子、金属磁歪振動
子、水晶振動子、圧電セラミック振動子等各種のものを
用いることができるが、圧電素子を用いたボルト締めラ
ンジバン振動子は堅牢で取扱いが容易であるので、本発
明に用いるのに最も好ましい超音波発振子である。
As the ultrasonic oscillator, various kinds of oscillators such as a ferrite oscillator, a metal magnetostrictive oscillator, a crystal oscillator, a piezoelectric ceramic oscillator can be used as in the high frequency oscillator 11 described above. The bolted Langivan oscillator used is the most preferable ultrasonic oscillator for use in the present invention because it is robust and easy to handle.

【0061】また、振動板10に超音波発振子がねじ等
の固着具で着脱自在に取り付けられている場合、配管中
に発生している赤錆、スケール等が除去された後におい
て、超音波発振子を取り外して他に使用することができ
るので、経費削減の点から好ましい。
When an ultrasonic oscillator is detachably attached to the vibration plate 10 with a fixing tool such as a screw, the ultrasonic oscillation is performed after red rust, scale, and the like generated in the piping are removed. Since the child can be removed and used for another purpose, it is preferable in terms of cost reduction.

【0062】また、本実施例においても、超音波処理
空間を流体流入口5側に配して流入される流体を超音波
処理し、そして磁気処理空間12を流体排出口6側に配
して上記超音波処理された流体を磁気処理して排出せし
めるものとするか、あるいは磁気処理空間12を流体
流入口5側に配して流入される流体を磁気処理し、そし
て超音波処理空間を流体排出口6側に配して上記磁気処
理された流体を超音波処理して排出せしめるものとする
か、あるいは流体流入口5側および流体流出口6側に
夫々超音波処理空間を配すると共に、該夫々の超音波処
理空間の間に所望範囲で区分けされている磁気処理空間
12を配して構成し、超音波処理および磁気処理をした
流体をさらに超音波処理せしめてから排出せしめるもの
としてもよく、本発明の範囲内においていずれを採用す
るも同様に流体処理効率の高い装置が提供できるため任
意である。
Also in this embodiment, the ultrasonic treatment space is arranged on the fluid inlet port 5 side for ultrasonic treatment of the inflowing fluid, and the magnetic treatment space 12 is arranged on the fluid discharge port 6 side. The ultrasonically treated fluid is to be magnetically treated and discharged, or the magnetically treated space 12 is disposed on the fluid inlet 5 side to magnetically treat the inflowing fluid, and the ultrasonically treated space is treated as a fluid. The magnetically treated fluid should be disposed on the discharge port 6 side for ultrasonic treatment and discharged, or the ultrasonic treatment spaces should be arranged on the fluid inlet 5 side and the fluid outlet 6 side, respectively. A magnetic processing space 12 divided in a desired range may be disposed between the respective ultrasonic processing spaces, and the ultrasonically processed and magnetically processed fluid may be further ultrasonically processed and then discharged. Well, of the present invention Is any order may provide the same fluid processing efficient apparatus employing the one in 囲内.

【0063】本発明の流体処理装置は、例えば給水管の
途中に接続して用いたり、あるいは燃料供給管の途中に
接続して用いたり等される。なお、本装置は、給水管や
燃料供給管等の垂直方向に延びる管中途に接続してもよ
く、あるいは水平方向に延びる管中途に接続してもよ
く、また複数個直列あるいは並列せしめることで組み合
わせて配設してもよく本発明の範囲内において適宜可能
である。
The fluid treatment apparatus of the present invention is used, for example, by connecting it in the middle of a water supply pipe or by connecting it in the middle of a fuel supply pipe. The device may be connected in the middle of a vertically extending pipe such as a water supply pipe or a fuel supply pipe, or may be connected in the middle of a horizontally extending pipe, or by connecting a plurality of them in series or in parallel. They may be arranged in combination, and are appropriately possible within the scope of the present invention.

【0064】次に、上記各実施例の流体処理装置につい
ての試験結果を示す。 「第一実施例」新しく配管した給水管の中途部に図1に
示す本発明流体処理装置を取り付け、1993年〜19
95年の2年間にわたり水道水を通水させつづけて、給
水管内壁および水質の変化を確認するため試験を行った (条件) 設置場所:揚水ポンプの二次側と高架ポンプの二次側に
夫々一台ずつ。 磁石積層体:図3、図5、図6を使用。 水道水:常温。 給水管材質:亜鉛メッキ鋼管。 給水管管径:100A〜20A。 また、新しく配管した給水管で何等流体処理装置を取り
付けないものにおいても、同時に同一条件下において給
水管内壁および水質の変化を確認するため試験を行っ
た。 (条件) 水道水:常温。 給水管材質:亜鉛メッキ鋼管。 給水管管径:100A〜20A。 その結果、2年間経過時点で、流体処理装置を取り付け
ていない給水管には、その内壁に赤錆が発生し、赤水の
発生が確認された。これに対し、本発明処理装置を取り
付けた給水管にはその内壁に赤錆の発生は全く見受けら
れず、赤水の発生は確認されなかった。
Next, the test results of the fluid treatment apparatus of each of the above embodiments will be shown. [First Embodiment] The fluid treatment apparatus of the present invention shown in FIG.
Tests were conducted to confirm changes in the inner wall of the water supply pipe and water quality by continuing to pass tap water for two years in 1995 (conditions) Installation location: on the secondary side of the pumping pump and on the secondary side of the elevated pump One each. Magnet stack: use FIGS. 3, 5, and 6. Tap water: normal temperature. Water pipe material: Galvanized steel pipe. Water supply pipe Pipe diameter: 100 A to 20 A. In addition, a test was conducted to confirm changes in the inner wall of the water supply pipe and the water quality under the same conditions at the same time even with a newly installed water supply pipe to which no fluid treatment device was attached. (Conditions) Tap water: normal temperature. Water pipe material: Galvanized steel pipe. Water supply pipe Pipe diameter: 100 A to 20 A. As a result, after two years, red rust was generated on the inner wall of the water supply pipe to which the fluid treatment device was not attached, and generation of red water was confirmed. In contrast, no red rust was found on the inner wall of the water supply pipe equipped with the treatment device of the present invention, and no generation of red water was confirmed.

【0065】「第二実施例、第三実施例」また、図7及
び図8に示した実施例についても上記条件と同一条件下
において同一試験を行った結果、同様に給水管の内壁に
は赤錆の発生は全く見受けられず、赤水の発生は確認さ
れなかった。
[Second Embodiment, Third Embodiment] Also, as to the embodiment shown in FIGS. 7 and 8, the same test was conducted under the same conditions as above, and as a result, the inner wall of the water supply pipe was No red rust was found, and no red water was found.

【0066】「第四実施例」さらに、超音波処理空間を
備えた実施例についても同様に行ったが良好な結果が得
られた。
[Fourth Embodiment] Further, the same operation was carried out for an embodiment having an ultrasonic treatment space, and good results were obtained.

【0067】「第五実施例」そして、さらに本発明者
は、内壁に赤錆の発生が見受けられる給水管に本発明流
体装置を取り付けて上記試験時期と同一時期に同様に試
験を行った。その結果、本発明流体処理装置を取り付け
た時点から赤錆の進行が押さえられていることが確認さ
れた。
[Fifth Embodiment] Further, the present inventor conducted the same test at the same time as the above test time by attaching the fluid device of the present invention to the water supply pipe in which the generation of red rust was observed on the inner wall. As a result, it was confirmed that the progress of red rust was suppressed from the time when the fluid treatment device of the present invention was attached.

【0068】[0068]

【発明の効果】本発明は上記せる構成とするため、水、
燃料油等の種々の流体を効率よく高周波処理あるいは超
音波処理し、そして磁気処理することができ、従来の磁
気処理装置に増してさらに赤錆等の除去、赤錆の発生や
不純物の沈着防止等あるいは燃料油処理に優れた効果が
得られる流体処理装置の提供が図れる。
EFFECTS OF THE INVENTION The present invention has the above-mentioned constitution,
Various fluids such as fuel oil can be efficiently subjected to high-frequency treatment or ultrasonic treatment, and can be magnetically treated, and further removal of red rust and the like, prevention of generation of red rust and deposition of impurities, etc. It is possible to provide a fluid treatment device that can obtain an excellent effect on fuel oil treatment.

【0069】また、本発明流体処理装置は上記せるよう
な構成とするため、高周波あるいは超音波処理と磁気処
理とを単一の装置内で同時に行って流体の処理(改質)
を図り得るコンパクトな流体処理装置の提供が図れ、取
扱いが極めて容易であると共に、コスト低廉化も図れ利
用価値も高い。
Further, since the fluid treatment apparatus of the present invention is constructed as described above, high-frequency or ultrasonic treatment and magnetic treatment are simultaneously performed in a single apparatus to treat (reform) the fluid.
It is possible to provide a compact fluid treatment device capable of achieving high efficiency, is extremely easy to handle, is low in cost, and is highly useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明流体処理装置の一実施例を示す縦断正面
図。
FIG. 1 is a vertical sectional front view showing an embodiment of a fluid treatment device of the present invention.

【図2】図1の全体正面図。FIG. 2 is an overall front view of FIG.

【図3】磁気処理装置の一実施例を示す縦断正面図。FIG. 3 is a vertical sectional front view showing an embodiment of a magnetic processing apparatus.

【図4】磁気処理装置の多孔筒状体に取り付けられる蓋
の平面図。
FIG. 4 is a plan view of a lid attached to the porous cylindrical body of the magnetic processing apparatus.

【図5】磁石積層体の第二実施例を示す縦断正面図。FIG. 5 is a vertical sectional front view showing a second embodiment of the magnet laminate.

【図6】磁石積層体の第三実施例を示す縦断正面図。FIG. 6 is a longitudinal sectional front view showing a third embodiment of the magnet laminate.

【図7】本発明流体処理装置の他の実施例を示す縦断正
面図。
FIG. 7 is a vertical sectional front view showing another embodiment of the fluid treatment apparatus of the present invention.

【図8】本発明流体処理装置の他の実施例を示す縦断正
面図。
FIG. 8 is a vertical sectional front view showing another embodiment of the fluid treatment apparatus of the present invention.

【図9】ハウジング外周壁に配される磁石の配列状態を
示す平面図。
FIG. 9 is a plan view showing an arrangement state of magnets arranged on the outer peripheral wall of the housing.

【図10】ハウジング外周壁に配される磁石の他の配設
状態を示す平面図。
FIG. 10 is a plan view showing another arrangement state of the magnets arranged on the outer peripheral wall of the housing.

【図11】ハウジング外周壁に配される磁石の他の配設
状態を示す平面図。
FIG. 11 is a plan view showing another arrangement state of the magnets arranged on the outer peripheral wall of the housing.

【図12】ハウジング外周壁に配される磁石の他の配設
状態を示す平面図。
FIG. 12 is a plan view showing another arrangement state of magnets arranged on the outer peripheral wall of the housing.

【図13】ハウジング外周壁に配される磁石の他の配設
状態を示す平面図。
FIG. 13 is a plan view showing another arrangement state of magnets arranged on the outer peripheral wall of the housing.

【図14】ハウジング外周壁に配される磁石の他の配設
状態を示す正面図。
FIG. 14 is a front view showing another arrangement state of the magnets arranged on the outer peripheral wall of the housing.

【符号の説明】[Explanation of symbols]

1:ハウジング 5:流体流入口 6:流体排出口 9:高周波(超音波)処理
空間 10:振動板 11:高周波(超音波)発
振子 12:磁気処理空間 13:磁気処理装置 14:多孔筒状体 16:通水孔 17:螺旋構造体 18:磁石積層体 19,27:磁石 20:スペーサ
1: Housing 5: Fluid Inlet 6: Fluid Outlet 9: High Frequency (Ultrasonic) Processing Space 10: Vibration Plate 11: High Frequency (Ultrasonic) Oscillator 12: Magnetic Processing Space 13: Magnetic Processing Device 14: Perforated Cylindrical Body 16: Water passage hole 17: Spiral structure 18: Magnet laminated body 19, 27: Magnet 20: Spacer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 流体流入口および流体排出口を備えた単
一ハウジング内を高周波処理空間と磁気処理空間とに分
け、高周波処理空間には高周波発振子が備えられて流入
される流体を高周波処理し、磁気処理空間には磁気処理
装置が内装されて流入される流体を磁気処理することを
特徴とする流体処理装置。
1. A single housing having a fluid inlet and a fluid outlet is divided into a high-frequency processing space and a magnetic processing space, and a high-frequency oscillator is provided in the high-frequency processing space to perform high-frequency processing on the inflowing fluid. A magnetic processing device is installed in the magnetic processing space to magnetically process the inflowing fluid.
【請求項2】 高周波処理空間を流体流入口側に配して
流入される流体を高周波処理すると共に、磁気処理空間
を流体排出口側に配して上記高周波処理された流体を磁
気処理して排出せしめることを特徴とする請求項1記載
の流体処理装置。
2. A high-frequency treatment space is arranged on the fluid inlet side to perform high-frequency treatment on the inflowing fluid, and a magnetic treatment space is arranged on the fluid discharge side to perform magnetic treatment on the high-frequency treated fluid. The fluid treatment device according to claim 1, wherein the fluid treatment device is discharged.
【請求項3】 磁気処理空間を流体流入口側に配して流
入される流体を磁気処理すると共に、高周波処理空間を
流体排出口側に配して上記磁気処理された流体を高周波
処理して排出せしめることを特徴とする請求項1記載の
流体処理装置。
3. A magnetic treatment space is disposed on the fluid inlet side to magnetically treat the inflowing fluid, and a high frequency treatment space is disposed to the fluid discharge side to subject the magnetically treated fluid to high frequency treatment. The fluid treatment device according to claim 1, wherein the fluid treatment device is discharged.
【請求項4】 流体流入口および流体排出口を備えた単
一ハウジング内を超音波処理空間と磁気処理空間とに分
け、超音波処理空間には超音波発振子が備えられて流入
される流体を超音波処理し、磁気処理空間には磁気処理
装置が内装されて流入される流体を磁気処理することを
特徴とする流体処理装置。
4. A single housing provided with a fluid inlet and a fluid outlet is divided into an ultrasonic processing space and a magnetic processing space, and an ultrasonic oscillator is provided in the ultrasonic processing space and a fluid is introduced into the ultrasonic processing space. And a magnetic treatment space for magnetically treating the inflowing fluid.
【請求項5】 超音波処理空間を流体流入口側に配して
流入される流体を超音波処理すると共に、磁気処理空間
を流体排出口側に配して上記超音波処理された流体を磁
気処理して排出せしめることを特徴とする請求項4記載
の流体処理装置。
5. The ultrasonic treatment space is disposed on the fluid inlet side to perform ultrasonic treatment on the inflowing fluid, and the magnetic treatment space is disposed on the fluid discharge side to magnetize the ultrasonically treated fluid. The fluid treatment device according to claim 4, wherein the fluid treatment device is treated and discharged.
【請求項6】 磁気処理空間を流体流入口側に配して流
入される流体を磁気処理すると共に、超音波処理空間を
流体排出口側に配して上記磁気処理された流体を超音波
処理して排出せしめることを特徴とする請求項4記載の
流体処理装置。
6. The magnetically treated space is disposed on the fluid inlet side to magnetically treat the inflowing fluid, and the ultrasonic treatment space is disposed on the fluid outlet side to ultrasonically treat the magnetically treated fluid. The fluid treatment apparatus according to claim 4, wherein the fluid treatment apparatus is discharged after being discharged.
【請求項7】 多数直列方向に並設させた夫々の磁石間
に,非磁性材料で構成されたスペーサを介して磁石積層
体を構成し、該磁石積層体が非磁性材料で構成された多
孔筒状体内に内装されると共に、該多孔筒状体の外周に
は磁性材料あるいは非磁性材料からなる螺旋構造体が巻
回状に設けられて磁気処理装置が構成されていることを
特徴とする請求項1乃至6のいずれかに記載の流体処理
装置。
7. A magnet laminated body is formed between a plurality of magnets arranged in parallel in a series direction through a spacer made of a nonmagnetic material, and the magnet laminated body is made of a porous material made of a nonmagnetic material. The magnetic processing device is configured such that the magnetic processing device is provided inside the tubular body, and a spiral structure made of a magnetic material or a non-magnetic material is wound around the outer periphery of the porous tubular body. The fluid treatment device according to claim 1.
【請求項8】 磁気処理空間とされる単一ハウジングの
外周壁と内周壁のいずれか一方あるいは双方に磁石を配
設したことを特徴とする請求項1乃至7のいずれかに記
載の流体処理装置。
8. The fluid treatment according to claim 1, wherein a magnet is disposed on either or both of an outer peripheral wall and an inner peripheral wall of a single housing which is a magnetic processing space. apparatus.
JP6393096A 1996-02-27 1996-02-27 Fluid treating device Pending JPH09225459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6393096A JPH09225459A (en) 1996-02-27 1996-02-27 Fluid treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6393096A JPH09225459A (en) 1996-02-27 1996-02-27 Fluid treating device

Publications (1)

Publication Number Publication Date
JPH09225459A true JPH09225459A (en) 1997-09-02

Family

ID=13243570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6393096A Pending JPH09225459A (en) 1996-02-27 1996-02-27 Fluid treating device

Country Status (1)

Country Link
JP (1) JPH09225459A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362196B1 (en) * 2000-06-30 2002-11-23 주식회사 하이닉스반도체 Apparatus for waste-water treatment in cmp process and method for the same
FR2834509A1 (en) * 2002-01-09 2003-07-11 Electricite De France Method of correcting the chemical hardness of water under pressure in an installation (water heater) using ultrasound to reduce corrosion and scaling whilst also destroying harmful bacteria
KR100787155B1 (en) * 2006-07-28 2007-12-24 주식회사 화인드림 Multipurpose atomization instrument by crash and magnetic field and catalyst
CN103539220A (en) * 2013-10-10 2014-01-29 彭伟明 Water activating method and device by combination of acoustic field and double-vortex-body vortex
CN103539212A (en) * 2013-10-10 2014-01-29 彭伟明 Water activating method and device by combination of acoustic field/electromagnetic field/magnetic field and double-vortex-body vortex
WO2019059481A1 (en) * 2017-09-25 2019-03-28 이상원 Device for manufacturing bioactive hexagonal water and container for generating magnetized water, using magnetization energy which is beneficial to human body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362196B1 (en) * 2000-06-30 2002-11-23 주식회사 하이닉스반도체 Apparatus for waste-water treatment in cmp process and method for the same
FR2834509A1 (en) * 2002-01-09 2003-07-11 Electricite De France Method of correcting the chemical hardness of water under pressure in an installation (water heater) using ultrasound to reduce corrosion and scaling whilst also destroying harmful bacteria
KR100787155B1 (en) * 2006-07-28 2007-12-24 주식회사 화인드림 Multipurpose atomization instrument by crash and magnetic field and catalyst
CN103539220A (en) * 2013-10-10 2014-01-29 彭伟明 Water activating method and device by combination of acoustic field and double-vortex-body vortex
CN103539212A (en) * 2013-10-10 2014-01-29 彭伟明 Water activating method and device by combination of acoustic field/electromagnetic field/magnetic field and double-vortex-body vortex
WO2019059481A1 (en) * 2017-09-25 2019-03-28 이상원 Device for manufacturing bioactive hexagonal water and container for generating magnetized water, using magnetization energy which is beneficial to human body

Similar Documents

Publication Publication Date Title
US5716520A (en) Magnetic fluid conditioner
CA2461558A1 (en) Apparatus for fluid purification and methods of manufacture and use thereof
JPH09225459A (en) Fluid treating device
RU2403211C2 (en) Water treatment device
US20050126974A1 (en) Water purifier having magnetic field generation
EP1397202B1 (en) Apparatus for treating fluids with ultrasounds
CN204625327U (en) Strong magnetic rotation stream ultrasonic multi-functional cleaner
JP2006326464A (en) Ultrahigh magnetic field fluid treatment system
JPH1085756A (en) Water treatment apparatus
JPH0966285A (en) Water treatment apparatus
KR100735812B1 (en) Multistage magnet rod internal type magnetization cleanup apparatus
JP2008238153A (en) Fluid irradiator with magnetic field
KR20050061507A (en) Magnetic conditioning apparatus for diesel engine fuel
KR102495493B1 (en) Complex nano bubble generator and water supply pipe washing method using the same
JPH0751197Y2 (en) Magnetic fluid device
WO1997005065A1 (en) Oil and water processing device
JP3037448U (en) Water treatment equipment
JP2003094066A (en) Fluid treatment device
JP2501465Y2 (en) Magnetic processing device
JPH07241566A (en) Water treatment apparatus
JP3917083B2 (en) Liquid processing equipment
KR19980025332A (en) Fuel activator that maximizes ionization by forming vortex
JP2002307069A (en) Magnetic induction water cleaning apparatus
JP3127209U (en) Liquid fuel atomization processing equipment
JP3301538B2 (en) Equipment for atomizing and purifying substances

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A02 Decision of refusal

Effective date: 20050308

Free format text: JAPANESE INTERMEDIATE CODE: A02