JPH09223848A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH09223848A
JPH09223848A JP2972596A JP2972596A JPH09223848A JP H09223848 A JPH09223848 A JP H09223848A JP 2972596 A JP2972596 A JP 2972596A JP 2972596 A JP2972596 A JP 2972596A JP H09223848 A JPH09223848 A JP H09223848A
Authority
JP
Japan
Prior art keywords
semiconductor
integrated circuit
layer
substrate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2972596A
Other languages
Japanese (ja)
Other versions
JP3236774B2 (en
Inventor
Shinji Matsuo
慎治 松尾
Tatsushi Nakahara
達志 中原
Takashi Kurokawa
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2972596A priority Critical patent/JP3236774B2/en
Publication of JPH09223848A publication Critical patent/JPH09223848A/en
Application granted granted Critical
Publication of JP3236774B2 publication Critical patent/JP3236774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0208Semi-insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a three-dimensional semiconductor integrated circuit, having high-speed operability and high functionality, by electrically connecting a semiconductor element, integrated on a semiconductor board, and one or more semiconductor elements, placed on an insulating layer, through windows formed in the insulating layer. SOLUTION: Windows are formed in an insulating layer 300, and a lightreceiving element 100A and a plane luminous element 100B are connected with metal traces 200A on an integrated circuit board 200 through the windows using traces 400. At this time, using the insulating layer 300 as an adhesive layer facilitates the threedimensional arrangement of semiconductor elements. Since the adhesive layer is non-conductive, it is possible to easily form traces on the adhesive layer, and thus to provide the elements placed in the integrated circuit with required traces. This obtains an optical array switch with a high extinction ratio and a simple optical system, having high-speed responsivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体集積回路に関
し、特に半導体素子が3次元的に集積された半導体集積
回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit, and more particularly to a semiconductor integrated circuit in which semiconductor elements are three-dimensionally integrated.

【0002】[0002]

【従来の技術】半導体素子の3次元集積化は半導体集積
回路の集積度を上げるために重要であるとともに、光ス
イッチアレイの構築にも極めて重要な基本技術である。
光スイッチアレイは光信号処理や光情報処理のキーデバ
イスとしてその開発が非常に望まれている。従来この種
の素子としては、例えば文献「IEEE PHOTONICS TECHNOL
OGY LETTERS 7 巻、360 頁(1995)」に見られるよう
に、シリコン集積回路基板上に多重量子井戸型pinダ
イオードを半田バンプにより実装し、多重量子井戸型p
inダイオードを受光素子あるいは光変調器として用い
て光の入出力を行い、論理機能をシリコン集積回路に行
わせる「ハイブリッド・シード(H-SHEED )」と呼ばれ
る素子が提案されている。この素子では、入力用多重量
子井戸型pinダイオードに入射した入力光信号を電気
信号に変換して、シリコン集積回路基板に伝達し電気的
に処理した後に、出力用多重量子井戸型pinダイオー
ドにかかる電圧を制御する。このとき、出力用多重量子
井戸型pinダイオードでは電圧変化に応じた量子閉じ
込めシュタルク効果により、一定強度でバイアスされた
光の反射強度を制御することができる。その構成を図1
2に、特性を図13に示す。
2. Description of the Related Art Three-dimensional integration of semiconductor devices is important not only for increasing the degree of integration of semiconductor integrated circuits, but also for forming an optical switch array.
The development of an optical switch array as a key device for optical signal processing and optical information processing is highly desired. Conventionally, as an element of this type, for example, the document “IEEE PHOTONICS TECHNOL
OGY LETTERS, Vol. 7, p. 360 (1995) ”, a multiple quantum well pin diode is mounted on a silicon integrated circuit substrate by a solder bump, and the multiple quantum well p
An element called "Hybrid Seed (H-SHEED)" has been proposed in which an in diode is used as a light receiving element or an optical modulator to input and output light and to perform a logical function on a silicon integrated circuit. In this device, an input optical signal incident on an input multiple quantum well pin diode is converted into an electric signal, transmitted to a silicon integrated circuit substrate, electrically processed, and then applied to the output multiple quantum well pin diode. Control the voltage. At this time, in the output multiple quantum well pin diode, the reflection intensity of the light biased at a constant intensity can be controlled by the quantum confined Stark effect according to the voltage change. The structure is shown in Figure 1.
2 and the characteristics are shown in FIG.

【0003】図12(a)に示すように、エピタキシャ
ル基板10には、p−GaAs基板11上に、p−Al
GaAs層12、i−MQW層13および(n- −Ga
As層およびn+ −GaAs層)14を順次積層し、B
eイオン注入層15および反射層としてのTi/Au膜
16を形成した光変調部が構成される。p側およびn側
の電極は同一平面上にあり、Beイオン注入層15およ
びTi/Au膜16上に半田17が形成されている。一
方、表面にCMOSが形成されているシリコン集積回路
基板20の表面には濡れ性を改善するためのAl:Ti
/Pt/Au膜21が形成され、その上に半田17が設
けられている。この二つの基板を図12(b)に示すよ
うに、半田バンプにより接合して光変調器はシリコン集
積回路基板に実装される。接合後、接合部の周囲はエポ
キシ樹脂18によって充填され、次いで、GaAs基板
が除去される。エポキシ樹脂はその後除去することがで
きる。最後に、図12(c)に示すように、反射防止コ
ーティング19を施して、シリコンCMOSと集積化さ
れた光変調器が得られる。この従来例は、2入力2出力
スイッチ機能を持っている。
As shown in FIG. 12A, the epitaxial substrate 10 includes a p-GaAs substrate 11 and a p-Al substrate.
GaAs layer 12, i-MQW layer 13 and (n -- Ga)
As layer and n + -GaAs layer) 14 are sequentially laminated, and B
An optical modulation section is formed by forming the e-ion implantation layer 15 and the Ti / Au film 16 as a reflection layer. The p-side and n-side electrodes are on the same plane, and the solder 17 is formed on the Be ion implantation layer 15 and the Ti / Au film 16. On the other hand, Al: Ti for improving the wettability is formed on the surface of the silicon integrated circuit substrate 20 on which the CMOS is formed.
A / Pt / Au film 21 is formed, and the solder 17 is provided thereon. As shown in FIG. 12B, the optical modulator is mounted on the silicon integrated circuit substrate by joining the two substrates with solder bumps. After the bonding, the periphery of the bonded portion is filled with the epoxy resin 18, and then the GaAs substrate is removed. The epoxy resin can then be removed. Finally, as shown in FIG. 12C, an antireflection coating 19 is applied to obtain an optical modulator integrated with silicon CMOS. This conventional example has a 2-input 2-output switch function.

【0004】図13はこのようにして作成されたハイブ
リッド・シード素子におけるゲート−ソース間電圧と反
射率の関係を示す。CMOSのゲート−ソース間電圧の
制御によってスイッチング動作が可能である。
FIG. 13 shows the relationship between the gate-source voltage and the reflectance in the hybrid seed element thus manufactured. Switching operation is possible by controlling the gate-source voltage of CMOS.

【0005】[0005]

【発明が解決しようとする課題】ところが、前述した光
スイッチアレイには、以下のような問題点があった。
However, the above-mentioned optical switch array has the following problems.

【0006】第1に、光変調部として多重量子井戸型p
inダイオードを用いているために消光比が低く、かつ
損失が大きい。
First, a multiple quantum well type p is used as an optical modulator.
Since the in diode is used, the extinction ratio is low and the loss is large.

【0007】第2に、光変調部にはバイアス光を入射す
る必要があるので、光学系が複雑になる。
Secondly, since it is necessary to enter bias light into the light modulator, the optical system becomes complicated.

【0008】第3に、光変調部の動作電圧が10V程度
と大きなために、応答速度が遅い。
Thirdly, since the operating voltage of the light modulator is as large as about 10V, the response speed is slow.

【0009】第4に、量子閉じ込めシュタルク効果を用
いた変調器は動作波長が数nmに制限され、さらにシリ
コン集積回路からの発熱により変調器の動作波長が変動
するため、バイアス光の光源への波長の制限が厳しく、
さらに、素子を一定温度に制御する必要がある。
Fourth, the operating wavelength of the modulator using the quantum confined Stark effect is limited to several nm, and the operating wavelength of the modulator fluctuates due to heat generated from the silicon integrated circuit. The wavelength is severely limited,
Furthermore, it is necessary to control the element to a constant temperature.

【0010】一方、前述した従来素子のような半田バン
プによる電子素子と光素子の3次元構造の構成方法には
以下のような問題がある。
On the other hand, the method of forming the three-dimensional structure of the electronic element and the optical element by the solder bump like the above-mentioned conventional element has the following problems.

【0011】すなわち、例えば受光器と面発光レーザの
ような異なる層構造を有する光素子を同時にシリコン集
積回路上に配置しようとすると、それぞれの光素子が異
なる構造を有するため、それらを同一基板上に形成する
ことは困難になり、従って、それぞれの素子を別個に半
田バンプによってシリコン集積回路に配置する必要があ
る。この様な個別搭載には次のような困難が伴う。
That is, if an optical element having a different layer structure such as a light receiver and a surface emitting laser is to be simultaneously arranged on a silicon integrated circuit, since each optical element has a different structure, they are formed on the same substrate. However, it is necessary to separately place each element on the silicon integrated circuit by solder bumps. Such individual mounting involves the following difficulties.

【0012】第1に半田バンプを複数回行わなければな
らないので工程が複雑化する。
First, the solder bumps must be formed a plurality of times, which complicates the process.

【0013】第2に、光スイッチアレイでは各光素子の
相対位置は、予め決められている入出射光の位置関係に
一致しなければならないが、半田バンプを個々の光素子
毎に行うことにより個々の光素子間の相対位置を正確に
定めることは困難である。従って、各光素子の位置関係
を入出射光の位置関係に一致させることは困難である。
Secondly, in the optical switch array, the relative position of each optical element must match the predetermined positional relationship of the incoming and outgoing light. However, solder bumping is performed for each individual optical element. It is difficult to accurately determine the relative position between the optical elements. Therefore, it is difficult to match the positional relationship of each optical element with the positional relationship of the incoming and outgoing light.

【0014】本発明の目的は、従来の光スイッチアレイ
にあった上記問題点を解決すること、および半田バンプ
による3次元構造の問題点を解決した3次元半導体集積
回路を実現すること、消光比が大きく、光学系が簡単
で、高速な応答速度を有し、動作マージンの大きい光ス
イッチアレイを実現することにある。
An object of the present invention is to solve the above problems in the conventional optical switch array, to realize a three-dimensional semiconductor integrated circuit in which the problems of the three-dimensional structure due to solder bumps are solved, and an extinction ratio. It is to realize an optical switch array having a large size, a simple optical system, a high response speed, and a large operation margin.

【0015】[0015]

【課題を解決するための手段】本発明による半導体集積
回路は、半導体素子が一方の主面上に集積化された半導
体基板と、該基板上に配置された絶縁層と、該絶縁層上
に配置された一つ以上の半導体素子と、前記絶縁層に形
成された窓を通り、前記半導体基板上に集積化された半
導体素子と前記絶縁層上に配置された一つ以上の半導体
素子とを電気的に接続する配線を有することを特徴とす
る。
A semiconductor integrated circuit according to the present invention is a semiconductor substrate in which semiconductor elements are integrated on one main surface, an insulating layer arranged on the substrate, and an insulating layer on the insulating layer. One or more semiconductor elements arranged, a semiconductor element integrated on the semiconductor substrate through one or more windows formed in the insulating layer, and one or more semiconductor elements arranged on the insulating layer. It is characterized in that it has wiring to be electrically connected.

【0016】ここで、前記絶縁層が、加熱処理により硬
化した有機材料であることが好ましく、前記絶縁層中
に、前記半導体基板に接し前記絶縁層に等しい厚さを持
つ金属層を有することが好ましい。
Here, it is preferable that the insulating layer is an organic material cured by heat treatment, and the insulating layer has a metal layer that is in contact with the semiconductor substrate and has a thickness equal to that of the insulating layer. preferable.

【0017】ここで、前記半導体基板上に集積化された
半導体素子が電気素子であり、前記一つ以上の半導体素
子が、受光素子と垂直共振器型面発光レーザとからな
り、前記受光素子で発生した信号電流を前記電気素子で
処理して発生した電流を前記垂直共振器型面発光レーザ
に供給できるよう前記配線が配置されていることが好ま
しい。
Here, the semiconductor element integrated on the semiconductor substrate is an electric element, and the one or more semiconductor elements include a light receiving element and a vertical cavity surface emitting laser. It is preferable that the wiring is arranged so that a current generated by processing the generated signal current by the electric element can be supplied to the vertical cavity surface emitting laser.

【0018】さらに、前記半導体基板上に集積化された
半導体素子が電気素子であり、前記一つ以上の半導体素
子が、受光素子、垂直共振器型面発光レーザおよび他の
電気素子からなり、前記受光素子で発生した信号電流を
前記他の電気素子および前記電気素子で処理して発生し
た電流を前記垂直共振器型面発光レーザに供給できるよ
う前記配線が配置されている前記絶縁層中に、前記半導
体基板に接し前記絶縁層に等しい厚さを持つ金属層を有
すると良い。ここで、 前記電気素子が電界効果トラン
ジスタであることが好ましい。
Further, the semiconductor element integrated on the semiconductor substrate is an electric element, and the one or more semiconductor elements include a light receiving element, a vertical cavity surface emitting laser, and other electric elements. In the insulating layer in which the wiring is arranged so that the signal current generated in the light receiving element is supplied to the vertical cavity surface emitting laser by processing the current generated in the other electric element and the electric element, It is preferable to have a metal layer that is in contact with the semiconductor substrate and has a thickness equal to that of the insulating layer. Here, it is preferable that the electric element is a field effect transistor.

【0019】前記受光素子と前記垂直共振器型面発光レ
ーザおよび前記電気素子からなる光スイッチが前記一方
の主面上に、周期的に複数個配置されていることが好ま
しく、または、前記受光素子、前記垂直共振器型面発光
レーザ、前記他の電気素子および前記電気素子からなる
光スイッチが前記一方の主面上に、周期的に複数個配置
されていることが好ましい。
It is preferable that a plurality of optical switches composed of the light receiving element, the vertical cavity surface emitting laser and the electric element are periodically arranged on the one main surface, or the light receiving element. It is preferable that a plurality of the vertical cavity surface emitting lasers, the other electric element, and an optical switch including the electric element are periodically arranged on the one main surface.

【0020】[0020]

【発明の実施の形態】図1に、本発明による素子の一実
施形態を示す。MOSFET、トランジスタ、ダイオー
ド等の半導体素子が一主面上に集積化された集積回路基
板200上に、絶縁層300を介して光入出力基板10
0が一体化されている。この光入出力基板100には複
数の受光素子100Aと垂直共振器型面発光レーザ(以
下、面発光レーザと記す)100Bが配置されている。
絶縁層300には窓が設けられ、受光素子100Aおよ
び面発光素子100Bはこの窓を通して配線400によ
り集積回路基板200の金属配線200Aと接続されて
いる。100Cおよび100Dはそれぞれ受光素子10
0Aおよび面発光素子100Bの配線である。この素子
は、受光素子100Aが入力した光を電気信号に変換
し、その電気信号を集積回路基板200に集積されてい
る半導体素子で増幅、スイッチング等の処理を行い、処
理結果を電流出力として面発光レーザ100Bに伝達
し、その動作を制御するすることができる。
FIG. 1 shows an embodiment of the device according to the present invention. The optical input / output board 10 is provided on the integrated circuit board 200 in which semiconductor elements such as MOSFETs, transistors, and diodes are integrated on one main surface, with the insulating layer 300 interposed therebetween.
0 is integrated. A plurality of light receiving elements 100A and a vertical cavity surface emitting laser (hereinafter referred to as a surface emitting laser) 100B are arranged on the light input / output substrate 100.
A window is provided in the insulating layer 300, and the light receiving element 100A and the surface emitting element 100B are connected to the metal wiring 200A of the integrated circuit board 200 through the window by the wiring 400. 100C and 100D are the light receiving elements 10 respectively.
0A and the surface light emitting element 100B. This element converts the light input from the light receiving element 100A into an electric signal, and the electric signal is subjected to processing such as amplification and switching by a semiconductor element integrated on the integrated circuit board 200, and the processing result is output as a current output. It can be transmitted to the light emitting laser 100B and its operation can be controlled.

【0021】図2にこの素子の動作特性を示す。図2の
例では、入力信号を同期、増幅および波形整形した結果
を示している。本発明の素子の場合、集積回路基板の処
理機能により様々な処理が可能となり、この例のほかに
2×2のスイッチングや種々の演算処理、画像処理など
が挙げられる。
FIG. 2 shows the operating characteristics of this device. The example of FIG. 2 shows the result of synchronizing, amplifying, and shaping the waveform of the input signal. In the case of the device of the present invention, various processing can be performed by the processing function of the integrated circuit board, and in addition to this example, 2 × 2 switching, various arithmetic processing, image processing and the like can be mentioned.

【0022】本発明による光スイッチアレイでは、光変
調部として垂直共振器型面発光レーザを用いているた
め、バイアス光が必要なく、高コントラストが得られる
ため、光学系が簡単になる。また、動作電圧も3V程度
で充分なので、高速動作が実現できる。加えて、本発明
の素子を多段に構成し、前段からの出力光を入力光とす
るような光接続を行って光インターコネクション等の処
理を行う場合、面発光レーザは、発振波長が膜厚の揺ら
ぎに対して非常に敏感であり、制御が難しいが、受光部
としてpinダイオード、MSMフォトダイオード等を
用いれば、100nm以上の広範囲な波長でほぼ均一な
光感度を得られるため、前段の面発光レーザの発振波長
に制限がなくなり、多段化に有利であるという特徴も持
つ。
In the optical switch array according to the present invention, since the vertical cavity surface emitting laser is used as the optical modulator, bias light is not required and high contrast can be obtained, so that the optical system is simplified. Further, since an operating voltage of about 3V is sufficient, high speed operation can be realized. In addition, when the device of the present invention is configured in multiple stages and optical connection such that the output light from the previous stage is used as the input light is performed to perform processing such as optical interconnection, the surface emitting laser has an oscillation wavelength of a film thickness. It is very sensitive to fluctuations of light and is difficult to control, but if a pin diode, MSM photodiode, etc. is used as the light receiving part, almost uniform photosensitivity can be obtained in a wide wavelength range of 100 nm or more. The emission wavelength of the light emitting laser is not limited, and it is also advantageous for multi-stages.

【0023】以上のような光スイッチアレイを製造しよ
うとすると、垂直共振器型面発光レーザと受光器の層構
造が異なるため、一枚の基板上に同時に形成することが
できないので、上述したように半田バンプ技術が使用で
きない。この問題を解決するために、本発明は、半導体
素子が一方の主面上に集積化された半導体基板上に、絶
縁層を介して垂直共振器等の半導体素子を配置し、さら
に、この絶縁層に形成された窓を通して半導体基板上に
集積化された半導体素子と絶縁層上に配置された垂直共
振器等の間に配線を施している。
In an attempt to manufacture the optical switch array as described above, since the vertical cavity surface emitting laser and the photodetector have different layer structures, they cannot be simultaneously formed on one substrate. The solder bump technology cannot be used. In order to solve this problem, the present invention arranges a semiconductor element such as a vertical resonator via an insulating layer on a semiconductor substrate in which the semiconductor element is integrated on one main surface, and further Wiring is provided between a semiconductor element integrated on a semiconductor substrate and a vertical resonator arranged on an insulating layer through a window formed in the layer.

【0024】絶縁層としてはポリイミドやSiO2 等が
あるが、いずれも適切な工程により、半導体同士を貼り
合わせる能力を有する。従って、これらの絶縁層を接着
層として用いることにより、半導体素子の立体配置が容
易となる。さらに、絶縁性であるためにこの接着層の上
には容易に配線が可能になり、従って、集積回路上に配
置された素子に必要な配線を施すことができる。例え
ば、一枚の基板上にレーザのための層構造と受光器のた
めの層構造を積層し、これを絶縁性の接着層により半導
体集積回路に貼り合わせると、図1のようにエッチング
により各層構造を必要に応じて露出させた後、必要な配
線が容易にできる。
As the insulating layer, there are polyimide, SiO 2 and the like, and any of them has the ability to bond the semiconductors to each other by an appropriate process. Therefore, by using these insulating layers as the adhesive layer, the three-dimensional arrangement of the semiconductor elements becomes easy. Furthermore, since it is insulating, wiring can be easily provided on this adhesive layer, so that necessary wiring can be provided to the device arranged on the integrated circuit. For example, when a layer structure for a laser and a layer structure for a light receiver are stacked on a single substrate and attached to a semiconductor integrated circuit with an insulating adhesive layer, each layer is etched by etching as shown in FIG. After exposing the structure as needed, the required wiring can be facilitated.

【0025】[0025]

【実施例】実施例1 光入出力基板の成長面を集積回路基板側に向
けて接着した場合 本発明を光スイッチアレイに適用した第1の具体例を図
3および図4に示す。
Example 1 The growth surface of the optical input / output substrate is directed to the integrated circuit substrate side.
Only a first specific example of applying the present invention when adhered to the optical switch array shown in FIGS. 3 and 4.

【0026】図3は活性層にGaAs/AlGaAs多
重量子井戸を用いた場合の光入出力基板の断面図であ
る。半絶縁性GaAs基板101上に、選択エッチング
用AlAs層102、n+ −GaAsコンタクト層10
3、n−DBR(Distributed Bragg Reflector) 層10
4、活性層105、p−DBR層106およびi−Ga
As光吸収層107を、順次分子線エピタキシャル成長
法により形成した。p型およびn型ドーパントにはそれ
ぞれBeおよびSiを用いた。ここで、n−DBR層は
n−AlAs(71.5nm)/n−Al0.15Ga0.85
As(62.9nm)を交互に25周期積層した構造か
らなり、p−DBR層はp−AlAs(71.5nm)
/p−Al0.15Ga0.85As(62.9nm)を交互に
30周期積層した構造からなる。
FIG. 3 is a sectional view of an optical input / output substrate when GaAs / AlGaAs multiple quantum wells are used for the active layer. On a semi-insulating GaAs substrate 101, an AlAs layer 102 for selective etching and an n + -GaAs contact layer 10
3, n-DBR (Distributed Bragg Reflector) layer 10
4, active layer 105, p-DBR layer 106 and i-Ga
The As light absorption layer 107 was sequentially formed by the molecular beam epitaxial growth method. Be and Si were used for the p-type and n-type dopants, respectively. Here, the n-DBR layer is n-AlAs (71.5 nm) / n-Al 0.15 Ga 0.85.
The p-DBR layer has a structure in which As (62.9 nm) is alternately laminated for 25 periods, and the p-DBR layer is p-AlAs (71.5 nm).
/ P-Al 0.15 Ga 0.85 As (62.9 nm) is alternately laminated for 30 cycles.

【0027】図4に光スイッチの作製法を示す。まず、
図4(a)のように、光入出力基板100の成長層10
0Eをシリコン集積回路基板200の半導体素子が集積
されている主面側に向けて接着剤300で接着する。こ
の場合、両方の基板の接着面にそれぞれスピンコートに
より接着剤としてポリイミドを塗布し気泡が入らないよ
うにする。その後、両基板を貼り合わせ、荷重をかけな
がら高温で熱処理して硬化させる。貼り合わせの手順
は、まず150℃程度の温度で仮接着を行い、ここでG
aAs基板101を1チップ程度の大きさに分割する。
その後350℃で最終硬化させる。これは2インチ以上
の大きな基板になった場合、シリコンとGaAsの熱膨
張係数の違いにより基板が反り割れるのを防ぐためであ
る。この際、集積回路基板200上に電気接続および冷
却用の厚い金属膜200Aを作製した場合、金属膜20
0A部分は、光入出力基板100との間に入ったポリイ
ミド300が接着時に荷重をかけることによって押し出
され、その結果、図4(b)に示すように、光入出力基
板100と直接接触するようになる。
FIG. 4 shows a method of manufacturing the optical switch. First,
As shown in FIG. 4A, the growth layer 10 of the light input / output substrate 100.
OE is adhered with an adhesive 300 toward the main surface side of the silicon integrated circuit substrate 200 on which the semiconductor elements are integrated. In this case, polyimide is applied as an adhesive to the adhesive surfaces of both substrates by spin coating to prevent air bubbles from entering. After that, the two substrates are bonded together and heat-treated at a high temperature while applying a load to cure them. As for the procedure of bonding, first perform temporary adhesion at a temperature of about 150 ° C.
The aAs substrate 101 is divided into a size of about one chip.
Then, final curing is performed at 350 ° C. This is to prevent the substrate from warping due to the difference in thermal expansion coefficient between silicon and GaAs when a large substrate of 2 inches or more is formed. At this time, when the thick metal film 200A for electrical connection and cooling is formed on the integrated circuit substrate 200, the metal film 20
The 0A portion is extruded by applying a load to the polyimide 300 that has entered between the optical input / output board 100 and the adhesive, and as a result, as shown in FIG. Like

【0028】その後、GaAs基板101を厚さ50μ
m程度まで研磨し、PA30溶液(H22 :NH3
H=30:1)によりGaAs基板101のみを選択的
にエッチングし、AlAs層102でエッチングを止め
る。次に、塩酸によりAlAs層102のみを選択的に
エッチングし、図4(c)のようにn+ −GaAsコン
タクト層103が表面に露出した状態にする。図4
(c′)はこの状態での成長層を示す拡大図である。
After that, the GaAs substrate 101 is formed to a thickness of 50 μm.
Polished to about m, PA30 solution (H 2 O 2 : NH 3 O
H = 30: 1) selectively etches only the GaAs substrate 101 and stops the etching at the AlAs layer 102. Next, only the AlAs layer 102 is selectively etched with hydrochloric acid so that the n + -GaAs contact layer 103 is exposed on the surface as shown in FIG. 4C. FIG.
(C ') is an enlarged view showing the growth layer in this state.

【0029】次に、図4(d)に示すように光入出力基
板を加工し、面発光レーザ100BとSMSフォトディ
テクタ100Aを形成する。図4(d′)は面発光レー
ザ部の拡大図である。面発光レーザのp型電極110と
してはAuZnNiを、n型電極111としてはAuG
eNiを用い、フォトディテクタのショットキ電極11
2としてはTi/Pt/Auを用いたその後、図4
(e)に示すように、光入出力基板100の両基板間の
電気配線を行う部分にエッチングにより金属膜200A
が露出するまでスルーホールを開ける。SMSフォトデ
ィテクタ部分も区画する。
Next, as shown in FIG. 4D, the light input / output substrate is processed to form the surface emitting laser 100B and the SMS photodetector 100A. FIG. 4D 'is an enlarged view of the surface emitting laser section. AuZnNi is used as the p-type electrode 110 and AuG is used as the n-type electrode 111 of the surface emitting laser.
Schottky electrode 11 of photodetector using eNi
Ti / Pt / Au was used as 2, and then FIG.
As shown in (e), a portion of the optical input / output substrate 100 where the electrical wiring between the two substrates is to be formed is etched by the metal film 200A.
Open the through hole until is exposed. The SMS photo detector portion is also partitioned.

【0030】そして、素子間配線用金属400を鍍金に
よって形成し、また配線113を施して図4(f)に示
す構造を得る。
Then, the inter-element wiring metal 400 is formed by plating, and the wiring 113 is applied to obtain the structure shown in FIG. 4 (f).

【0031】従来例のように、半田バンプを用いる場合
は、電極は必ずレーザおよび受光器を積層した基板の表
面に形成しなければならないので、どちらか一方の素子
への電極の形成が困難になる。例えば、図3のような積
層構造を用いると、p−DBR層106と活性層105
とn−DBR層104よりなるレーザ構造への電極形成
が困難である。しかし、本願発明の構造ではこのような
問題は生じない。集積回路基板200上の厚い金属膜2
00Aは両基板間の電気接続の際の段差を減らす効果
と、受光素子、発光素子から集積回路基板への光の入射
を防ぐ効果および光入出力基板で発生した熱を金属膜を
通して取り除く効果がある。
When a solder bump is used as in the conventional example, the electrode must be formed on the surface of the substrate on which the laser and the light receiver are laminated, so that it is difficult to form the electrode on either one of the elements. Become. For example, when the laminated structure shown in FIG. 3 is used, the p-DBR layer 106 and the active layer 105 are formed.
It is difficult to form an electrode on the laser structure including the n-DBR layer 104 and the n-DBR layer 104. However, the structure of the present invention does not cause such a problem. Thick metal film 2 on integrated circuit board 200
00A has the effect of reducing the level difference in the electrical connection between both substrates, the effect of preventing the incidence of light from the light receiving element and the light emitting element onto the integrated circuit substrate, and the effect of removing the heat generated in the light input / output substrate through the metal film. is there.

【0032】実際に1ピクセル内にMSM−PD、ME
SFET3個、および面発光レーザを有する8×8=6
4ピクセルの2次元アレイを作製し、850nm波長帯
で、0.1mW、200MHzの入力光をMSD−PD
に入力し1mWの出力光が面発光レーザから出射する動
作が全ピクセルで並列になされることが確認された。
Actually, MSM-PD, ME within one pixel
8x8 = 6 with 3 SFETs and surface emitting laser
A two-dimensional array of 4 pixels is prepared, and input light of 0.1 mW, 200 MHz is input to MSD-PD in the wavelength band of 850 nm.
It was confirmed that the operation of inputting 1 mW of output light from the surface emitting laser to all the pixels was performed in parallel.

【0033】また、集積回路内の一つの処理単位(セ
ル)ごとに面発光レーザ、受光素子は一つに限られたも
のではなく、複数の入出力素子があってもよい。
Further, the number of surface emitting lasers and light receiving elements is not limited to one for each processing unit (cell) in the integrated circuit, and there may be a plurality of input / output elements.

【0034】本実施例では、素子間配線用金属の形成に
鍍金を用いたが、これに限るものでなく、例えばタング
ステン等を用いて選択成長により段差を埋めてもよい。
また、両基板の貼り合わせにはポリイミドを用いている
が、これに限られるものではなく、エポキシ系などの各
種接着剤を用いてもよく、SiO2 などの誘電体同士の
接着なども可能である。
In this embodiment, the plating is used to form the inter-element wiring metal, but the present invention is not limited to this. For example, tungsten or the like may be used to fill the step by selective growth.
Further, although polyimide is used for bonding the both substrates, the present invention is not limited to this, and various adhesives such as epoxy type may be used, and it is also possible to bond dielectrics such as SiO 2 to each other. is there.

【0035】なお、光入出力基板を、半絶縁性GaAs
基板101上に、選択エッチング用AlAs層、p+
GaAsコンタクト層、p−DBR層、i−GaAs/
AlGaAs活性層,n−DBR層およびi−GaAs
光吸収層の順に積層し、面発光レーザのDBR層のp、
nの極性を入れ換えてもよい。この場合は、p−DBR
層は25周期積層し、n−DBR層は30周期積層した
構造とする。これは、集積回路基板側のDBRミラーの
反射率を出射側のDBRミラーの反射率よりも高く設定
することによって、高い効率で出射側に出力光が得られ
るようにするためである。このことは以下の実施例でも
同様である。
The optical input / output substrate is made of semi-insulating GaAs.
On the substrate 101, an AlAs layer for selective etching, p +
GaAs contact layer, p-DBR layer, i-GaAs /
AlGaAs active layer, n-DBR layer and i-GaAs
Light-absorbing layers are laminated in this order, and p of the DBR layer of the surface-emitting laser,
The polarities of n may be exchanged. In this case, p-DBR
The layers are stacked for 25 cycles, and the n-DBR layer is stacked for 30 cycles. This is for setting the reflectance of the DBR mirror on the integrated circuit substrate side higher than the reflectance of the DBR mirror on the emission side so that output light can be obtained on the emission side with high efficiency. This is the same in the following embodiments.

【0036】実施例2 光入出力基板の成長面を集積回
路基板側と反対にして接着した場合 (その1) 基板接着後に光入出力基板をプロセスする
場合 本発明を光スイッチアレイに適用した第2の具体例を図
5から図7に示す。
Example 2 The growth surface of the optical input / output substrate is integrated.
When bonded opposite to the side of the road substrate (1) Process the optical input / output substrate after the substrate is bonded
Case A second specific example in which the present invention is applied to an optical switch array is shown in FIGS.

【0037】図5は活性層にGaAs/AlGaAs多
重量子井戸を用いた場合の光入出力基板の断面図であ
る。半絶縁性GaAs基板101上に、選択エッチング
用AlAs層102、、i−GaAs光吸収層107、
p−DBR層106、i−GaAs/AlGaAs活性
層105、n−DBR層104、およびn+ −GaAs
コンタクト層103を、順次分子線エピタキシャル成長
法により形成した。先の実施例1とは受光素子構成層と
発光素子構成層の積層順序が逆になっている。ここで、
実施例1と同様に、n−DBR層は30周期積層した構
造からなり、p−DBR層は25周期積層した構造から
なる。
FIG. 5 is a sectional view of an optical input / output substrate when GaAs / AlGaAs multiple quantum wells are used for the active layer. On the semi-insulating GaAs substrate 101, AlAs layer 102 for selective etching, i-GaAs light absorption layer 107,
p-DBR layer 106, i-GaAs / AlGaAs active layer 105, n-DBR layer 104, and n + -GaAs
The contact layer 103 was sequentially formed by the molecular beam epitaxial growth method. The stacking order of the light receiving element constituent layer and the light emitting element constituent layer is opposite to that of the first embodiment. here,
Similar to Example 1, the n-DBR layer has a structure in which 30 periods are stacked, and the p-DBR layer has a structure in which 25 periods are stacked.

【0038】図6に光スイッチの作成法を示す。まず、
図6(a)の様に光入出力基板100を平坦な石英板4
00に、成長層100Eを上にしてワックス500によ
り貼り付ける。
FIG. 6 shows a method of making an optical switch. First,
As shown in FIG. 6A, the optical input / output substrate 100 is provided with a flat quartz plate 4.
00 with the growth layer 100E facing upward and pasted with wax 500.

【0039】次いで、図6(b)に示すように、GaA
s基板101を厚さ50μm程度まで研磨した後、クエ
ン酸溶液によりGaAs基板のみをエッチングし、Al
As層102でエッチングを止める。次に、塩酸により
AlAs層102のみを選択的にエッチングする。
Then, as shown in FIG. 6B, GaA
After polishing the s substrate 101 to a thickness of about 50 μm, only the GaAs substrate is etched with a citric acid solution to remove Al.
Etching is stopped at the As layer 102. Next, only the AlAs layer 102 is selectively etched with hydrochloric acid.

【0040】次に、図6(c)の様に、ポリイミド30
0により集積回路基板200との貼り合わせを行う。ま
ず、100℃程度でベーキングを行ってポリイミドを硬
化させる。
Next, as shown in FIG. 6C, polyimide 30
0 is attached to the integrated circuit board 200. First, baking is performed at about 100 ° C. to cure the polyimide.

【0041】このとき、石英板400と光入出力基板1
00の間にあったワックスは熱によって溶けるので、図
6(d)に示すように、集積回路基板200と光入出力
基板の成長層100Eを一緒に石英板から取り外す。そ
の後、300℃程度の高温でポリイミドを最終硬化させ
る。この状態は実施例1の図4(c)と同じ状態であ
り、以後は実施例1と同様にして素子が作製できる。
At this time, the quartz plate 400 and the light input / output substrate 1
Since the wax existing between 00 is melted by heat, the integrated circuit substrate 200 and the growth layer 100E of the optical input / output substrate are removed together from the quartz plate as shown in FIG. 6 (d). Then, the polyimide is finally cured at a high temperature of about 300 ° C. This state is the same as that of FIG. 4C of Example 1, and thereafter, the element can be manufactured in the same manner as in Example 1.

【0042】この場合、選択エッチングでi−GaAs
光吸収層を露出する必要はなく、半絶縁性GaAs基板
101が残ったままで集積回路基板200に貼り付けて
もよい。この例を図7に示す。
In this case, i-GaAs is selectively etched.
It is not necessary to expose the light absorption layer, and the semi-insulating GaAs substrate 101 may be attached to the integrated circuit substrate 200 while remaining. This example is shown in FIG.

【0043】(その2) 光入出力基板をプロセス後に
接着する場合 本発明を適用した光スイッチアレイの第3の具体例を図
8に示す。光入出力基板は図5に示した第2の具体例と
同様である。
(Part 2) After the optical input / output substrate is processed
When Bonding FIG. 8 shows a third specific example of the optical switch array to which the present invention is applied. The optical input / output board is the same as that of the second specific example shown in FIG.

【0044】図8に光スイッチの作製法を示す。まず、
面発光レーザ100B、MSMフォトダイオード100
Aを半絶縁性GaAs基板101を処理することなしに
プロセスした後、図8(a)に示すように、平坦な石英
板400とプロセスした面を向い合わせてワックス50
0により貼り合わせる。図8(a′)は光入出力基板の
拡大図である。
FIG. 8 shows a method of manufacturing the optical switch. First,
Surface emitting laser 100B, MSM photodiode 100
After A is processed without treating the semi-insulating GaAs substrate 101, a flat quartz plate 400 is faced with the processed surface as shown in FIG.
Stick with 0. FIG. 8A 'is an enlarged view of the light input / output board.

【0045】次に、図8(b)に示すように、GaAs
基板を厚さ50μm程度まで研磨し、次いでPA30溶
液によりGaAs基板のみをエッチングし、AlAs層
でエッチングを止め、さらに、塩酸によりAlAs層の
みを選択的にエッチングする。
Next, as shown in FIG.
The substrate is polished to a thickness of about 50 μm, then only the GaAs substrate is etched with PA30 solution, the etching is stopped at the AlAs layer, and only the AlAs layer is selectively etched with hydrochloric acid.

【0046】次に、図8(c)に示すように、両方の基
板にポリイミド300を塗布した後、赤外線カメラ(C
CDカメラ)を用いて集積回路基板200と光入出力基
板100の回路パターンをモニタしながら、微動台60
0を用いて両基板の位置合わせを行い、貼り合わせる。
Next, as shown in FIG. 8C, after applying the polyimide 300 to both substrates, the infrared camera (C
While monitoring the circuit patterns of the integrated circuit board 200 and the optical input / output board 100 using a CD camera),
Both substrates are aligned and bonded using 0.

【0047】次に、(その1)の場合と同様に、100
℃程度でポリイミドを硬化させ、同時に石英板から両基
板を取り外した後、300℃まで昇温することによりポ
リイミド300を最終的に硬化させ、図8(d)に示し
た構造を得る。この状態は、図4(c)と同様の状態で
あり、以後は先の具体例と同じプロセスを行う。
Next, as in the case of (No. 1), 100
The polyimide is cured at about 0 ° C., at the same time, both substrates are removed from the quartz plate, and then the temperature is raised to 300 ° C. to finally cure the polyimide 300 to obtain the structure shown in FIG. 8D. This state is the same as that shown in FIG. 4C, and thereafter, the same process as the previous specific example is performed.

【0048】この場合、第2の具体例と同様に、選択エ
ッチングでi−GaAs光吸収層を露出する必要はな
く、半絶縁性GaAs基板101が残ったままで集積回
路基板200に貼り付けてもよい。
In this case, similarly to the second specific example, it is not necessary to expose the i-GaAs light absorption layer by selective etching, and the semi-insulating GaAs substrate 101 can be attached to the integrated circuit substrate 200 while remaining. Good.

【0049】実施例3 光入出力基板にも電気回路を形
成した場合 これまでの実施例では光入出力基板100には面発光レ
ーザとフォトディテクタが構成されていたが、光入出力
基板100にFETなどの電気回路を構成することも可
能である。ここでは、第1の具体例と同様の方法で光ス
イッチを構成する例を述べる。FETは下記の説明のよ
うにエピタキシャル成長によって構成することも、また
イオン注入によって構成することも可能である。
Example 3 An electric circuit is also formed on the optical input / output board.
In such a case , the surface emitting laser and the photodetector were formed on the light input / output substrate 100 in the above-described embodiments, but it is also possible to form an electric circuit such as an FET on the light input / output substrate 100. Here, an example in which an optical switch is configured by the same method as the first specific example will be described. The FET can be configured by epitaxial growth as described below or by ion implantation.

【0050】図9は活性層にGaAs/AlGaAs多
重量子井戸を用いた場合の光入出力基板の断面図であ
る。
FIG. 9 is a sectional view of an optical input / output substrate when GaAs / AlGaAs multiple quantum wells are used for the active layer.

【0051】半絶縁性GaAs基板101上に、選択エ
ッチング用AlAs層102、p−GaAsコンタク
ト層120、p−DBR層106、i−GaAs/Al
GaAs活性層105、n−DBR層104、選択エッ
チング層としてn−InGaP層121(10nm)、
FET用コンタクト層としてn −GaAs層122
(0.4μm)、FETチャネル層としてn- −GaA
sチャネル層123(0.2μm)およびi−GaAs
光吸収層107(2μm)を、順次分子線エピタキシャ
ル成長法により形成した。p型およびn型ドーパントに
はそれぞれBeおよびSiを用いた。ここで、p−DB
R層はp−AlAs(71.5nm)/p−Al0.15
0.85As(62.9nm)を交互に25周期積層した
構造からなり、n−DBR層はn−AlAs(71.5
nm)/n−Al0.15Ga0.85As(62.9nm)を
交互に30周期積層した構造からなる。
On the semi-insulating GaAs substrate 101, the AlAs layer 102 for selective etching, the p + -GaAs contact layer 120, the p-DBR layer 106, and the i-GaAs / Al layer are formed.
GaAs active layer 105, n-DBR layer 104, n-InGaP layer 121 (10 nm) as a selective etching layer,
N + -GaAs layer 122 as a contact layer for FET
(0.4 μm), n −GaA as FET channel layer
s channel layer 123 (0.2 μm) and i-GaAs
The light absorption layer 107 (2 μm) was sequentially formed by the molecular beam epitaxial growth method. Be and Si were used for the p-type and n-type dopants, respectively. Where p-DB
R layer is p-AlAs (71.5 nm) / p-Al 0.15 G
a 0.85 As (62.9 nm) is alternately laminated for 25 periods, and the n-DBR layer has n-AlAs (71.5 nm).
nm) / n-Al 0.15 Ga 0.85 As (62.9 nm) is alternately laminated for 30 cycles.

【0052】これを図10に示すように加工して光スイ
ッチを作製する。
This is processed as shown in FIG. 10 to produce an optical switch.

【0053】まず、図10(a)に示すように、第1の
実施例と同様にして、集積回路基板200上にポリイミ
ド300を用いて光入出力基板100を接着し、その
後、研磨とエッチングによりエピタキシャル成長層10
0Eだけを残す。図10(a′)は成長層の拡大断面図
である。
First, as shown in FIG. 10A, the optical input / output substrate 100 is adhered onto the integrated circuit substrate 200 using the polyimide 300 in the same manner as in the first embodiment, and thereafter, polishing and etching are performed. Epitaxial growth layer 10
Leave only 0E. FIG. 10A 'is an enlarged sectional view of the growth layer.

【0054】次に、図10(b)に示すように、面発光
レーザ部100Bのメサエッチングを行う。図10
(b′)は面発光レーザ部の拡大断面図である。このと
き、選択エッチングによってメサ深さはInGaP層1
21までに達する。
Next, as shown in FIG. 10B, mesa etching of the surface emitting laser section 100B is performed. FIG.
(B ') is an enlarged cross-sectional view of a surface emitting laser section. At this time, the mesa depth is changed to InGaP layer 1 by selective etching.
Reach by 21.

【0055】FETのプロセスは、図10(c)に示す
ように、InGaP層121をエッチングした後、FE
T100Fのメサエッチングをi−GaAs光吸収層1
07まで行う。次に、n+ −GaAsコンタクト層12
2にソース、ドレイン電極124を作成する。リセスエ
ッチングはn- −GaAsチャネル層123まで行い、
その後、ゲート電極125を作成する。このとき、同時
にMSMフォトディテクタ100Aの電極も形成する。
As for the process of FET, as shown in FIG. 10C, after etching the InGaP layer 121, FE is used.
Mesa etching of T100F is performed on the i-GaAs light absorption layer 1
Perform until 07. Next, the n + -GaAs contact layer 12
A source / drain electrode 124 is formed in 2. The recess etching is performed up to the n -- GaAs channel layer 123,
After that, the gate electrode 125 is formed. At this time, the electrodes of the MSM photodetector 100A are also formed at the same time.

【0056】最後に図10(d)に示すように、集積回
路基板200との電気配線400を施す。
Finally, as shown in FIG. 10D, electrical wiring 400 with the integrated circuit board 200 is provided.

【0057】このように、光入出力基板にも電気回路を
構成した場合は、Siに比べて大きなゲインを持つFE
Tが作成でき、集積回路の方では小さな電圧振幅のみで
面発光レーザを駆動できることになり、集積回路基板の
負担を軽減でき、より高速な応答が可能となる。
As described above, when the electric circuit is also formed on the optical input / output substrate, the FE having a larger gain than that of Si is used.
Since T can be created and the integrated circuit can drive the surface emitting laser with only a small voltage amplitude, the load on the integrated circuit substrate can be reduced and a faster response can be achieved.

【0058】これまでの具体例では受光素子としてMS
Mフォトダイオードを用いた例を説明したが、これ以外
にも受光部としてはpinフォトダイオード、フォトコ
ンダクタ等を用いても半発明の素子を構成できる。
In the above specific examples, the MS is used as the light receiving element.
Although the example using the M photodiode has been described, the element of the semi-invention can be configured by using a pin photodiode, a photoconductor, or the like as the light receiving portion.

【0059】実施例4 pinフォトダイオードを用いて作成した例を図11に
示す。pinフォトダイオード100Gは、図示される
ように、n−GaAs層131、i−GaAs光吸収層
107、p−GaAs層130から構成され、絶縁膜1
32を介してポリイミド300によって集積回路基板2
00に接着され、かつ配線400によって電気的に接続
される。面発光レーザ100Bの構成はすでに説明した
とおりである。この場合、MSMフォトダイオードの場
合と異なり、導電層を受光部にも含むため、各受光部を
分離する必要があることと、集積回路基板200と光入
出力基板100とを接着する際に光入出力基板100の
接着する面に絶縁膜132を蒸着していることが、これ
までの具体例と異なっている。
Example 4 FIG. 11 shows an example prepared using a pin photodiode. As illustrated, the pin photodiode 100G includes an n-GaAs layer 131, an i-GaAs light absorption layer 107, and a p-GaAs layer 130, and the insulating film 1
Integrated circuit board 2 by polyimide 300 through 32
00 and electrically connected by wiring 400. The structure of the surface emitting laser 100B is as described above. In this case, unlike the case of the MSM photodiode, since the conductive layer is also included in the light receiving portion, it is necessary to separate the light receiving portions from each other, and the light is not required when the integrated circuit substrate 200 and the light input / output substrate 100 are bonded. The insulating film 132 is vapor-deposited on the bonding surface of the input / output substrate 100, which is different from the above-described specific examples.

【0060】これまで説明した具体例では、GaAs/
AlGaAsで光スイッチを構成したが、これに限るも
のではなく、InGaAs/InP、InAlAs/I
nGaAs、GaAs/InGaAs等の他の材料系も
用いることができる。集積回路基板もシリコンのほか
に、GaAs, InP等使用できることは言うまでもな
い。
In the specific examples described so far, GaAs /
Although the optical switch is composed of AlGaAs, it is not limited to this, and InGaAs / InP, InAlAs / I
Other material systems such as nGaAs and GaAs / InGaAs can also be used. It goes without saying that GaAs, InP and the like can be used for the integrated circuit substrate in addition to silicon.

【0061】また、以上の実施例では、光スイッチアレ
イについてのみ記載したが、光スイッチアレイ以外の他
の3次元集積回路の構成にも本発明が有効であることは
明らかである。なお、本発明は、ポリイミド等の絶縁膜
上に集積化される素子がそれぞれ異なる層構造を有しな
い場合にも、各素子を分離できるので、素子間の電気的
分離(アイソレーション)が容易になるという利点があ
る。
Further, in the above embodiments, only the optical switch array has been described, but it is clear that the present invention is effective for the configuration of other three-dimensional integrated circuits other than the optical switch array. In addition, according to the present invention, even when the elements integrated on the insulating film such as polyimide do not have different layer structures, the respective elements can be separated, so that electrical isolation (isolation) between the elements is facilitated. Has the advantage that

【0062】[0062]

【発明の効果】以上説明したように、本発明による光ス
イッチアレイは、集積回路基板の持つ高速、高機能性
と、光入出力基板の持つ高並列、高速性を合わせ持つと
いう特長を持っている。これらの素子を多段に光により
接続することにより、将来の光情報処理素子、LSIの
光インターコネクション用素子として非常に有望にな
る。
As described above, the optical switch array according to the present invention has the features of combining the high speed and high functionality of the integrated circuit board with the high parallelism and high speed of the optical input / output board. There is. By connecting these elements in multiple stages by light, it becomes very promising as a future optical information processing element or an element for optical interconnection of LSI.

【0063】また、本発明によると、異なる層構造を有
する半導体素子からなる3次元半導体集積回路の形成が
可能になる。さらに、素子間のアイソレーションに優れ
た3次元半導体集積回路の提供も可能になる。
Further, according to the present invention, it becomes possible to form a three-dimensional semiconductor integrated circuit composed of semiconductor elements having different layer structures. Further, it becomes possible to provide a three-dimensional semiconductor integrated circuit having excellent isolation between elements.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による素子の断面構造を示す図である。FIG. 1 is a diagram showing a cross-sectional structure of a device according to the present invention.

【図2】本発明の素子の特性を示す図である。FIG. 2 is a diagram showing characteristics of the device of the present invention.

【図3】光入出力基板の一例の断面図である。FIG. 3 is a cross-sectional view of an example of a light input / output board.

【図4】第1の実施例の光スイッチの作製法を示す図で
ある。
FIG. 4 is a diagram showing a method of manufacturing the optical switch according to the first embodiment.

【図5】光入出力基板の他の例の断面図である。FIG. 5 is a cross-sectional view of another example of the light input / output board.

【図6】第2の実施例の光スイッチの作製法を示す図で
ある。
FIG. 6 is a diagram showing a method of manufacturing the optical switch according to the second embodiment.

【図7】選択エッチングを用いない場合の実施例の断面
図である。
FIG. 7 is a cross-sectional view of an example in which selective etching is not used.

【図8】本発明素子の他の具体例の作製法を示す図であ
る。
FIG. 8 is a diagram showing a method of manufacturing another specific example of the device of the present invention.

【図9】電気回路を形成する光入出力基板の断面図であ
る。
FIG. 9 is a cross-sectional view of a light input / output substrate forming an electric circuit.

【図10】光入出力基板にも電気回路を形成した実施例
の作製法を示す図である。
FIG. 10 is a diagram showing a manufacturing method of an example in which an electric circuit is formed on a light input / output substrate.

【図11】受光素子としてpinフォトダイオードを用
いた具体例の断面図である。
FIG. 11 is a cross-sectional view of a specific example using a pin photodiode as a light receiving element.

【図12】従来例の断面図である。FIG. 12 is a sectional view of a conventional example.

【図13】従来例の特性図である。FIG. 13 is a characteristic diagram of a conventional example.

【符号の説明】[Explanation of symbols]

101 半絶縁性GaAs基板 102 選択エッチング用AlAs層 103 n+ −GaAsコンタクト層 104 n−DBR層 105 活性層 106 p−DBR層 107 i−GaAs光吸収層 110 p型電極 111 n型電極 112 ショットキ電極 113 配線用金属 120 p+ −GaAsコンタクト層 121 選択エッチングInGaP層 122 n+ −GaAsコンタクト層 123 n- −GaAsチャネル層 130 p−GaAs層 131 n−GaAs層 132 絶縁膜101 semi-insulating GaAs substrate 102 AlAs layer for selective etching 103 n + -GaAs contact layer 104 n-DBR layer 105 active layer 106 p-DBR layer 107 i-GaAs light absorption layer 110 p-type electrode 111 n-type electrode 112 Schottky electrode 113 wiring metal 120 p + -GaAs contact layer 121 selective etching InGaP layer 122 n + -GaAs contact layer 123 n -- GaAs channel layer 130 p-GaAs layer 131 n-GaAs layer 132 insulating film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子が一方の主面上に集積化され
た半導体基板と、該基板上に配置された絶縁層と、該絶
縁層上に配置された一つ以上の半導体素子と、前記絶縁
層に形成された窓を通り、前記半導体基板上に集積化さ
れた半導体素子と前記絶縁層上に配置された一つ以上の
半導体素子とを電気的に接続する配線を有することを特
徴とする半導体集積回路。
1. A semiconductor substrate having semiconductor elements integrated on one main surface, an insulating layer disposed on the substrate, one or more semiconductor elements disposed on the insulating layer, and A wiring for electrically connecting a semiconductor element integrated on the semiconductor substrate and one or more semiconductor elements arranged on the insulating layer through a window formed in the insulating layer, Integrated semiconductor circuit.
【請求項2】 前記絶縁層が、加熱処理により硬化した
有機材料であることを特徴とする請求項1に記載の半導
体集積回路。
2. The semiconductor integrated circuit according to claim 1, wherein the insulating layer is an organic material cured by heat treatment.
【請求項3】 前記絶縁層中に、前記半導体基板に接し
前記絶縁層に等しい厚さを持つ金属層を有することを特
徴とする請求項1または2に記載の半導体集積回路。
3. The semiconductor integrated circuit according to claim 1, further comprising a metal layer in contact with the semiconductor substrate and having a thickness equal to that of the insulating layer, in the insulating layer.
【請求項4】 前記半導体基板上に集積化された半導体
素子が電気素子であり、前記一つ以上の半導体素子が、
受光素子と垂直共振器型面発光レーザとからなり、前記
受光素子で発生した信号電流を前記電気素子で処理して
発生した電流を前記垂直共振器型面発光レーザに供給で
きるよう前記配線が配置されていることを特徴とする請
求項1から3のいずれかに記載の半導体集積回路。
4. The semiconductor device integrated on the semiconductor substrate is an electric device, and the one or more semiconductor devices are:
It is composed of a light receiving element and a vertical cavity surface emitting laser, and the wiring is arranged so that a current generated by processing a signal current generated by the light receiving element by the electric element can be supplied to the vertical cavity surface emitting laser. The semiconductor integrated circuit according to claim 1, wherein the semiconductor integrated circuit is provided.
【請求項5】 前記半導体基板上に集積化された半導体
素子が電気素子であり、前記一つ以上の半導体素子が、
受光素子、垂直共振器型面発光レーザおよび他の電気素
子からなり、前記受光素子で発生した信号電流を前記他
の電気素子および前記電気素子で処理して発生した電流
を前記垂直共振器型面発光レーザに供給できるよう前記
配線が配置されていることを特徴とする請求項1から3
のいずれかに記載の半導体集積回路。
5. The semiconductor device integrated on the semiconductor substrate is an electric device, and the one or more semiconductor devices are:
The vertical resonator type surface is composed of a light receiving element, a vertical cavity surface emitting laser and other electric elements, and a signal current generated by the light receiving element is processed by the other electric element and the electric element to generate a current. 4. The wiring is arranged so that it can be supplied to a light emitting laser.
The semiconductor integrated circuit according to any one of 1.
【請求項6】 前記他の電気素子が電界効果トランジス
タであることを特徴とする請求項5に記載の半導体集積
回路。
6. The semiconductor integrated circuit according to claim 5, wherein the other electric element is a field effect transistor.
【請求項7】 前記受光素子と前記垂直共振器型面発光
レーザおよび前記電気素子からなる光スイッチが前記一
方の主面上に、周期的に複数個配置されていることを特
徴とする請求項4に記載の半導体集積回路。
7. An optical switch comprising the light receiving element, the vertical cavity surface emitting laser, and the electric element is periodically arranged in plural on the one main surface. 4. The semiconductor integrated circuit according to 4.
【請求項8】 前記受光素子、前記垂直共振器型面発光
レーザ、前記他の電気素子および前記電気素子からなる
光スイッチが前記一方の主面上に、周期的に複数個配置
されていることを特徴とする請求項5または6に記載の
半導体集積回路。
8. A plurality of optical switches comprising the light receiving element, the vertical cavity surface emitting laser, the other electric element, and the electric element are periodically arranged on the one main surface. 7. The semiconductor integrated circuit according to claim 5, wherein:
JP2972596A 1996-02-16 1996-02-16 Semiconductor integrated circuit Expired - Fee Related JP3236774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2972596A JP3236774B2 (en) 1996-02-16 1996-02-16 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2972596A JP3236774B2 (en) 1996-02-16 1996-02-16 Semiconductor integrated circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001178040A Division JP3681992B2 (en) 2001-06-13 2001-06-13 Manufacturing method of semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH09223848A true JPH09223848A (en) 1997-08-26
JP3236774B2 JP3236774B2 (en) 2001-12-10

Family

ID=12284093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2972596A Expired - Fee Related JP3236774B2 (en) 1996-02-16 1996-02-16 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP3236774B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905838A1 (en) * 1997-09-30 1999-03-31 Canon Kabushiki Kaisha Surface-type optical device, fabrication method therefor and display device
EP0935322A1 (en) * 1998-02-09 1999-08-11 Hewlett-Packard Company N-drive or p-drive vcsel array
US6261859B1 (en) 1997-08-05 2001-07-17 Canon Kabushiki Kaisha Method for fabricating surface-emitting semiconductor device, surface-emitting semiconductor device fabricated by the method, and display device using the device
JP2002033505A (en) * 2000-07-19 2002-01-31 Canon Inc Planar photodetector, method of manufacturing it, and device using it
WO2001080285A3 (en) * 2000-04-12 2002-02-07 Honeywell Int Inc Top illuminated opto-electronic devices integrated with micro-optics and electronic integrated circuits
WO2003058777A1 (en) * 2001-12-28 2003-07-17 Finisar Corporation Submount for vertical cavity surface emitting lasers and detectors
JP2003243646A (en) * 2002-02-13 2003-08-29 Asahi Kasei Electronics Co Ltd Composite semiconductor element and its manufacturing method
JP2003283052A (en) * 2002-03-22 2003-10-03 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
US6709607B2 (en) 1996-12-31 2004-03-23 Honeywell International Inc. Flexible optic connector assembly
US6836579B2 (en) 1999-08-27 2004-12-28 Canon Kabushiki Kaisha Surface optical device apparatus, method of fabricating the same, and apparatus using the same
US6872983B2 (en) 2002-11-11 2005-03-29 Finisar Corporation High speed optical transceiver package using heterogeneous integration
US7275937B2 (en) 2004-04-30 2007-10-02 Finisar Corporation Optoelectronic module with components mounted on a flexible circuit
US7311240B2 (en) 2004-04-30 2007-12-25 Finisar Corporation Electrical circuits with button plated contacts and assembly methods
US7368754B2 (en) 2002-06-10 2008-05-06 Seiko Epson Corporation Semiconductor integrated circuit, signal transmitting device, electro-optical device, and electronic apparatus
WO2008053907A1 (en) * 2006-10-27 2008-05-08 Canon Kabushiki Kaisha Led array manufacturing method, led array and led printer
US7425135B2 (en) 2004-04-30 2008-09-16 Finisar Corporation Flex circuit assembly
US7560738B2 (en) 2003-07-04 2009-07-14 Epistar Corporation Light-emitting diode array having an adhesive layer
JP2019530234A (en) * 2016-09-19 2019-10-17 アップル インコーポレイテッドApple Inc. Vertical emitter integrated on silicon control backplane
KR20190139745A (en) * 2018-06-08 2019-12-18 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Semiconductor device and method
US11309453B2 (en) 2017-01-16 2022-04-19 Apple Inc. Combining light-emitting elements of differing divergence on the same substrate
US11322910B2 (en) 2019-02-21 2022-05-03 Apple Inc. Indium-phosphide VCSEL with dielectric DBR
US11374381B1 (en) 2019-06-10 2022-06-28 Apple Inc. Integrated laser module
US11381060B2 (en) 2017-04-04 2022-07-05 Apple Inc. VCSELs with improved optical and electrical confinement
US11418010B2 (en) 2019-04-01 2022-08-16 Apple Inc. VCSEL array with tight pitch and high efficiency
JP2023518330A (en) * 2020-04-09 2023-04-28 ▲れい▼▲うぃ▼光電科技(蘇州)有限公司 Light emitting diode structure and manufacturing method thereof
US11646220B2 (en) 2017-01-26 2023-05-09 Taiwan Semiconductor Manufacturing Company Raised via for terminal connections on different planes
US11855246B2 (en) 2018-06-08 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US11961800B2 (en) 2018-02-14 2024-04-16 Taiwan Semiconductor Manufacturing Company, Ltd. Via for semiconductor device connection and methods of forming the same

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709607B2 (en) 1996-12-31 2004-03-23 Honeywell International Inc. Flexible optic connector assembly
US6261859B1 (en) 1997-08-05 2001-07-17 Canon Kabushiki Kaisha Method for fabricating surface-emitting semiconductor device, surface-emitting semiconductor device fabricated by the method, and display device using the device
US6222868B1 (en) 1997-09-30 2001-04-24 Canon Kabushiki Kaisha Surface-type optical device, fabrication method therefor and display device
EP0905838A1 (en) * 1997-09-30 1999-03-31 Canon Kabushiki Kaisha Surface-type optical device, fabrication method therefor and display device
EP0935322A1 (en) * 1998-02-09 1999-08-11 Hewlett-Packard Company N-drive or p-drive vcsel array
US6970612B2 (en) 1999-08-27 2005-11-29 Canon Kabushiki Kaisha Surface optical device apparatus, method of fabricating the same, and apparatus using the same
US6836579B2 (en) 1999-08-27 2004-12-28 Canon Kabushiki Kaisha Surface optical device apparatus, method of fabricating the same, and apparatus using the same
US6586776B1 (en) 2000-04-12 2003-07-01 Honeywell International Inc. Top-emitting and top-illuminated optoelectronic integrated circuit device
WO2001080285A3 (en) * 2000-04-12 2002-02-07 Honeywell Int Inc Top illuminated opto-electronic devices integrated with micro-optics and electronic integrated circuits
US6780661B1 (en) 2000-04-12 2004-08-24 Finisar Corporation Integration of top-emitting and top-illuminated optoelectronic devices with micro-optic and electronic integrated circuits
JP2002033505A (en) * 2000-07-19 2002-01-31 Canon Inc Planar photodetector, method of manufacturing it, and device using it
WO2003058777A1 (en) * 2001-12-28 2003-07-17 Finisar Corporation Submount for vertical cavity surface emitting lasers and detectors
US6853007B2 (en) 2001-12-28 2005-02-08 Finisar Corporation Submount for vertical cavity surface emitting lasers and detectors
JP4480318B2 (en) * 2002-02-13 2010-06-16 旭化成エレクトロニクス株式会社 Composite semiconductor device and manufacturing method thereof
JP2003243646A (en) * 2002-02-13 2003-08-29 Asahi Kasei Electronics Co Ltd Composite semiconductor element and its manufacturing method
JP2003283052A (en) * 2002-03-22 2003-10-03 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
US7368754B2 (en) 2002-06-10 2008-05-06 Seiko Epson Corporation Semiconductor integrated circuit, signal transmitting device, electro-optical device, and electronic apparatus
US7306959B2 (en) 2002-11-11 2007-12-11 Finisar Corporation Methods of fabricating integrated optoelectronic devices
US6872983B2 (en) 2002-11-11 2005-03-29 Finisar Corporation High speed optical transceiver package using heterogeneous integration
US7560738B2 (en) 2003-07-04 2009-07-14 Epistar Corporation Light-emitting diode array having an adhesive layer
US7311240B2 (en) 2004-04-30 2007-12-25 Finisar Corporation Electrical circuits with button plated contacts and assembly methods
US7275937B2 (en) 2004-04-30 2007-10-02 Finisar Corporation Optoelectronic module with components mounted on a flexible circuit
US7425135B2 (en) 2004-04-30 2008-09-16 Finisar Corporation Flex circuit assembly
WO2008053907A1 (en) * 2006-10-27 2008-05-08 Canon Kabushiki Kaisha Led array manufacturing method, led array and led printer
JP2019530234A (en) * 2016-09-19 2019-10-17 アップル インコーポレイテッドApple Inc. Vertical emitter integrated on silicon control backplane
KR20200113008A (en) * 2016-09-19 2020-10-05 애플 인크. Vertical emitters integrated on silicon control backplane
JP2021013027A (en) * 2016-09-19 2021-02-04 アップル インコーポレイテッドApple Inc. Manufacturing method and optoelectronic device
US11309453B2 (en) 2017-01-16 2022-04-19 Apple Inc. Combining light-emitting elements of differing divergence on the same substrate
US11646220B2 (en) 2017-01-26 2023-05-09 Taiwan Semiconductor Manufacturing Company Raised via for terminal connections on different planes
US11381060B2 (en) 2017-04-04 2022-07-05 Apple Inc. VCSELs with improved optical and electrical confinement
US11961800B2 (en) 2018-02-14 2024-04-16 Taiwan Semiconductor Manufacturing Company, Ltd. Via for semiconductor device connection and methods of forming the same
KR20190139745A (en) * 2018-06-08 2019-12-18 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Semiconductor device and method
US11855246B2 (en) 2018-06-08 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US11158775B2 (en) 2018-06-08 2021-10-26 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US11322910B2 (en) 2019-02-21 2022-05-03 Apple Inc. Indium-phosphide VCSEL with dielectric DBR
US11418010B2 (en) 2019-04-01 2022-08-16 Apple Inc. VCSEL array with tight pitch and high efficiency
US11374381B1 (en) 2019-06-10 2022-06-28 Apple Inc. Integrated laser module
JP2023518330A (en) * 2020-04-09 2023-04-28 ▲れい▼▲うぃ▼光電科技(蘇州)有限公司 Light emitting diode structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP3236774B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
JP3236774B2 (en) Semiconductor integrated circuit
US7116854B2 (en) Optical element array, optical module, and optical transmission device
EP0896405B1 (en) Method for fabricating surface-emitting semiconductor device
JP3990846B2 (en) Planar optical element, method for manufacturing the same, and apparatus using the same
US5748653A (en) Vertical cavity surface emitting lasers with optical gain control (V-logic)
WO2021124968A1 (en) Vertical cavity surface emitting laser element, vertical cavity surface emitting laser element array, vertical cavity surface emitting laser module, and method for manufacturing vertical cavity surface emitting laser element
JP2002083953A (en) Fine structure for mounting and optical transmitter
JPH11168262A (en) Planar optical device, manufacture thereof, and display device
JPH05218386A (en) Optical integrated circuit
JPH11168263A (en) Optical device and manufacture thereof
US5386137A (en) Electro-optic device
JP3093547B2 (en) Optical integrated circuit and method of manufacturing the same
Nakahara et al. Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs pin photodiode/CMOS receiver
Choquette et al. Short wavelength bottom-emitting vertical cavity lasers fabricated using wafer bonding
JP2000040840A (en) Surface type light emitting device, driving method thereof, light transmitter/receiver employing it, optical interconnection unit and optical recorder
JP3681992B2 (en) Manufacturing method of semiconductor integrated circuit
Pu et al. Comparison of techniques for bonding VCSELs directly to ICs
JP2002353561A (en) Surface-emitting laser and manufacturing method therefor
JPH07335976A (en) Surface emission laser device with light receiving element
JPH0563301A (en) Semiconductor optical element and optical communication system
JP2002100829A (en) Semiconductor light-emitting and light-receiving device and manufacturing method thereof
JP2002100799A (en) Semiconductor light-receiving element, semiconductor light-emitting and receiving device, and manufacturing method of them
JP3228384B2 (en) Optical switch array
US6159760A (en) Method of fabricating oxide-aperture vertical cavity surface emitting lasers
Ryu et al. Optical interconnects for high-speed data links

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees