JPH09223618A - Bonded soft magnetic substance for speaker magnetic circuit - Google Patents

Bonded soft magnetic substance for speaker magnetic circuit

Info

Publication number
JPH09223618A
JPH09223618A JP2929596A JP2929596A JPH09223618A JP H09223618 A JPH09223618 A JP H09223618A JP 2929596 A JP2929596 A JP 2929596A JP 2929596 A JP2929596 A JP 2929596A JP H09223618 A JPH09223618 A JP H09223618A
Authority
JP
Japan
Prior art keywords
iron
soft magnetic
powder
epoxy resin
speaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2929596A
Other languages
Japanese (ja)
Inventor
Kazunori Tawara
一憲 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAITAMA TECHNOS KK
Proterial Ltd
Original Assignee
SAITAMA TECHNOS KK
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAITAMA TECHNOS KK, Hitachi Metals Ltd filed Critical SAITAMA TECHNOS KK
Priority to JP2929596A priority Critical patent/JPH09223618A/en
Publication of JPH09223618A publication Critical patent/JPH09223618A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a bonded soft magnetic substance suited to reduce the distortion with a magnetic circuit of a speaker and improve the quality of sound. SOLUTION: Production of bonded soft magnetic substance uses at least one of Fe or Fe base alloy powders produced by the atomizing, electrolytic or reduction method and the surface treatment is applied to the powder, using an aminosilane coupling agent. An epoxy resin combined with a hardening agent is used and its content is 5-30vol.%. A metal soap is added as needed. The resultant mixture is compression molded and heat treated to obtain a bonded soft magnetic substance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、改良されたスピー
カ用磁気回路、更に詳しくはスピーカ音声の高周波歪を
低減する改良されたスピーカ用磁気回路に用いられるボ
ンド軟磁性体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved speaker magnetic circuit, and more particularly to a bond soft magnetic material used in an improved speaker magnetic circuit for reducing high frequency distortion of speaker sound.

【0002】[0002]

【従来の技術】磁気回路は、スピーカユニットの駆動源
を構成する重要な構成要素である。比較的大形スピーカ
では、永久磁石に電気抵抗の高いフェライト磁石が用い
られるが、小形スピーカでは電気抵抗の低い焼結希土類
磁石が用いられ、ヨークは金属部品である鉄が用いられ
ている。この様に金属部品が多いため、ボイスコイル作
動時に、この金属部品に渦電流を誘発させ、この渦電流
が音声の歪の原因となり、またボイスコイルの高速応答
性の阻害要因となり音質低下の原因となっている。この
改善方法として、(1)磁気回路を構成する鉄ヨークの
磁気ギャップ形成部に銅リングを被着する方法、(2)
磁気回路の構成部品を非金属として、渦電流発生を抑え
る方法がある。(1)の場合、部品点数増によるコスト
増と磁気回路での磁気ギャップ幅が大となりギャップ磁
束密度が低下することにより、ボイスコイル駆動力の低
下を来している。また(2)の場合、非金属ヨークの代
表例は、MnZnフェライト、NiZnフェライト等の
ソフトフェライトであるが、これらのソフトフェライト
は、ヨーク材の重要な特性の一つである飽和磁束密度B
sが5000G程度で鉄材の約1/4と低いため、磁気
回路のギャップ磁束密度を大きくできず、充分なボイス
コイル駆動力が得られず、低出力スピーカに限られる欠
点がある。
2. Description of the Related Art A magnetic circuit is an important constituent element of a driving source of a speaker unit. In a relatively large speaker, a ferrite magnet having a high electric resistance is used as a permanent magnet, but in a small speaker, a sintered rare earth magnet having a low electric resistance is used, and an iron, which is a metal component, is used for a yoke. Since there are many metal parts like this, eddy currents are induced in these metal parts when the voice coil is activated, and this eddy current causes distortion of the voice and also a factor that hinders the high-speed response of the voice coil and causes deterioration of sound quality. Has become. As a method for improving this, (1) a method of depositing a copper ring on a magnetic gap forming portion of an iron yoke forming a magnetic circuit, (2)
There is a method of suppressing the generation of eddy current by using non-metal components of the magnetic circuit. In the case of (1), the voice coil driving force is reduced due to an increase in cost due to an increase in the number of parts, a large magnetic gap width in the magnetic circuit, and a decrease in gap magnetic flux density. In the case of (2), typical examples of the non-metal yoke are soft ferrites such as MnZn ferrite and NiZn ferrite. These soft ferrites have a saturation magnetic flux density B which is one of the important characteristics of the yoke material.
Since s is about 5000 G, which is as low as about 1/4 of that of iron material, the gap magnetic flux density of the magnetic circuit cannot be increased, sufficient voice coil driving force cannot be obtained, and there are drawbacks limited to low-output speakers.

【0003】[0003]

【発明が解決しようとする課題】本発明は、飽和磁束密
度が高く、高電気抵抗を有するボンド軟磁性体を作製す
ることにより、ボイスコイルに流れる音声電流から発生
する磁場に起因するヨーク内の渦電流発生を防止するこ
とによって、歪の原因による音質劣化を阻止すると共
に、併せて、高出力スピーカにも適用可能な高いギャッ
プ磁束密度を有するヨーク材及び磁気回路の構造によっ
ては、永久磁石と共に用いられるポール材を提供するも
のである。
DISCLOSURE OF THE INVENTION According to the present invention, by producing a bond soft magnetic material having a high saturation magnetic flux density and a high electric resistance, the inside of the yoke due to the magnetic field generated from the voice current flowing in the voice coil is produced. By preventing the generation of eddy currents, deterioration of sound quality due to distortion is prevented, and at the same time, depending on the structure of the yoke material and the magnetic circuit having a high gap magnetic flux density that can be applied to a high output speaker, a permanent magnet is also used. The pole material used is provided.

【0004】[0004]

【課題を解決するための手段】鉄は、純粋(例えば不純
物が0.05%以下)なものであれば、最大透磁率は極
めて大きく、2×105にも及ぶが、金属の通性に従
い、電気抵抗は、例えば10μΩcmと小さく、ヨー
ク、ポールを含めた磁心に好適な材料とは言い難い。
従来、透磁率が大きい金属、例えば鉄又はパーマロイ系
(Fe−Ni−Mo)、センダスト(Fe−Si−A
l)その他の鉄基合金粉末を、電気抵抗の大きい物質、
例えばベークライト、水ガラス等の有機又は無機結合材
で結着し、圧粉体とした磁性体は、例えば特許第887
79号、特許第112235号、特許第122714号
明細書に記載されている様に古くから知られている。上
記従来の圧粉磁性体は、例えばカーボニル鉄粉を有機絶
縁物で比較的低温において加圧結着せしめて圧粉磁心と
するか、又はその他の鉄基合金粉末を絶縁物と混合して
加圧成形したものである。渦電流の発生は、上記の如く
電気抵抗値が低い程多くなるため、鉄又は鉄基合金粉末
の粒子の一つ一つが樹脂等によって絶縁されていること
が必要であり、例えば特公昭47−22515号に記載
のように、ポリフェニルオキサイドをトルエンに溶解
し、鉄粉と混合することによって、電気抵抗値を高くす
る方法が提示されている。また、古くには特公昭33−
9941号に記載のように、鉄粉表面を不飽和硫化アン
モニウムで処理することによって、粒子表面に硫化物被
膜を生成し、これを電気絶縁性物質と共に加圧成形する
ことが提示されている。近年には、各種のアミノシラン
カップリング剤やチタン系カップリング材が開発されて
来ており、希土類系のボンド磁石及びフェライト系ボン
ド磁石の磁粉の表面処理剤として用いられていることは
公知である。一方、ボンド軟磁性体の磁束密度は、鉄又
は鉄基合金の真密度に影響される。すなわち、真密度が
高いと飽和磁束密度は高くなり、真密度が低いと飽和磁
束密度は低くなる。真密度は粉末の圧粉性と成形圧力と
に関係する。圧粉性はできるだけ良い方が望ましい。成
形圧力も高い方が望ましいが、粉体同志の後述する圧着
による弊害、又は極端な歪を生じて鉄又は鉄基合金粉末
の保磁力を高め鉄損を増加せしめる程の高圧力である必
要はない。成形圧力が高過ぎる場合には、鉄又は鉄基合
金粉末粒子は互いに圧着し結合されるため電気抵抗が低
くなり、渦電流が多く発生する。従って、本発明では後
述する実施例に示すように、鉄又は鉄基合金粉末にエポ
キシ樹脂を硬化剤と共に添加して粒子相互間を充分に絶
縁したのち、加圧成形してボンド軟磁性体を得る。更に
電気抵抗を高くすると共に、粒子と樹脂間の結着を強固
にするため、アミノシランカップリング剤によって鉄又
は鉄基合金粉末粒子の表面を予め被覆して絶縁性被膜を
形成する。しかしながら、鉄又は鉄基合金粉末粒子を一
つ一つ充分に絶縁するために多量のエポキシ樹脂を添加
するとボンド軟磁性体の電気抵抗は上昇しても、鉄又は
鉄基合金のボンド軟磁性体としての真密度、所謂占積率
が低下するため飽和磁束密度の低下をきたす。一方、エ
ポキシ樹脂の添加量が過小になると鉄又は鉄基合金粉末
粒子の一つ一つを充分含んで相互に絶縁することが不可
能になり電気抵抗が低下し、渦電流の発生が大となる。
また、エポキシ樹脂を添加しない一般の粉末成形体で
は、これを高温にさらすことにより、粒子相互間に拡散
を起こさせ一体化させるが、上記のようにエポキシ樹脂
を添加するときは、鉄又は鉄基合金粉末相互の拡散は望
めず、一体化した後の強度はエポキシ樹脂の固着力で保
たなければならない。この点からも樹脂量が過小になれ
ば、実用に耐え得る強度のボンド軟磁性体を得ることが
出来ない。 上記のアミノシランカップリング剤による
粒子表面の被覆の理由は、電気抵抗を高くする他に機械
的強度を向上するためである。即ち、アミノシランカッ
プリング剤は、親水性と親油性とを有している。親水性
を示すアルコキシシランの部分は、同様に親水性を示す
鉄又は鉄基合金粉末と強固に吸着する。一方、親油性を
示すアルキル基の部分は、同様に親油性を示すエポキシ
樹脂を強固に結合するために、アミノシランカップリン
グ剤を介して、鉄又は鉄基合金粉末とエポキシ樹脂との
間で強固な固着が発生することによって、高い電気抵抗
値と併せて強い機械強度を有するボンド軟磁性体を得る
ことができる。エポキシ樹脂を絶縁物として使用する理
由は、その性質が金属との接着力に優れ、しかも樹脂自
体の強度が高く、耐高温性に優れ、かつ耐候性が良いか
らである。金属との接着性の良い樹脂としては、エポキ
シ樹脂の他にフェノール樹脂、シリコーン樹脂などが知
られている。これらの機械的性質を比較すると次の様に
なる。
When iron is pure (for example, impurities are 0.05% or less), the maximum magnetic permeability is extremely large, reaching 2 × 10 5 , but according to the conductivity of the metal. The electric resistance is as small as 10 μΩcm, for example, and it cannot be said that the material is suitable for the magnetic core including the yoke and the pole.
Conventionally, metals with high magnetic permeability, such as iron or permalloy (Fe-Ni-Mo), sendust (Fe-Si-A)
l) Other iron-based alloy powders are added to substances with high electrical resistance,
For example, a magnetic body made into a green compact by binding with an organic or inorganic binder such as Bakelite or water glass is disclosed in, for example, Japanese Patent No. 887.
It has long been known as described in Japanese Patent No. 79, Japanese Patent No. 112235, and Japanese Patent No. 122714. The above-mentioned conventional powder magnetic material is, for example, carbonyl iron powder is pressure-bonded with an organic insulator at a relatively low temperature to form a powder magnetic core, or other iron-based alloy powder is mixed with an insulating material and added. It is formed by pressure molding. Since the generation of eddy current increases as the electric resistance value decreases as described above, it is necessary that each of the particles of iron or iron-based alloy powder be insulated by a resin or the like. As described in No. 22515, there is proposed a method of increasing the electric resistance value by dissolving polyphenyl oxide in toluene and mixing it with iron powder. Also, in the old days
As described in Japanese Patent No. 9941, it is proposed that a surface of iron powder is treated with unsaturated ammonium sulfide to form a sulfide film on the surface of the particle, and this is pressed together with an electrically insulating substance. In recent years, various aminosilane coupling agents and titanium-based coupling materials have been developed and are known to be used as surface treatment agents for magnetic particles of rare earth-based bonded magnets and ferrite-based bonded magnets. . On the other hand, the magnetic flux density of the bond soft magnetic material is affected by the true density of iron or an iron-based alloy. That is, when the true density is high, the saturation magnetic flux density is high, and when the true density is low, the saturation magnetic flux density is low. The true density is related to the compactability of the powder and the molding pressure. It is desirable that the powder is as good as possible. It is desirable that the molding pressure is also high, but it is not necessary that the pressure is high enough to increase the coercive force of the iron or iron-based alloy powder by increasing the coercive force of the iron or iron-based alloy powder due to the adverse effects caused by the later-described crimping of the powder or the extreme distortion. Absent. If the molding pressure is too high, the iron or iron-based alloy powder particles are pressed against each other and bonded to each other, so that the electric resistance is lowered and a large amount of eddy current is generated. Therefore, in the present invention, as shown in Examples to be described later, after the epoxy resin is added to the iron or iron-based alloy powder together with the curing agent to sufficiently insulate the particles from each other, pressure bonding is performed to form the bond soft magnetic material. obtain. In order to further increase the electric resistance and strengthen the bond between the particles and the resin, the surface of the iron or iron-based alloy powder particles is previously coated with an aminosilane coupling agent to form an insulating coating. However, if a large amount of epoxy resin is added to sufficiently insulate the iron or iron-based alloy powder particles one by one, the bond soft magnetic material of the iron or iron-based alloy will increase even if the electric resistance of the bond soft magnetic material increases. As a result, the true density as a factor, so-called space factor, decreases, resulting in a decrease in saturation magnetic flux density. On the other hand, if the amount of epoxy resin added is too small, it becomes impossible to insulate each other sufficiently by containing iron or iron-based alloy powder particles one by one, and the electrical resistance will decrease, resulting in a large eddy current generation. Become.
In addition, in a general powder compact not added with an epoxy resin, by exposing it to a high temperature, diffusion is caused between particles to be integrated, but when an epoxy resin is added as described above, iron or iron The mutual diffusion of the base alloy powder cannot be expected, and the strength after the integration must be maintained by the adhesive force of the epoxy resin. From this point as well, if the amount of resin is too small, it is not possible to obtain a bond soft magnetic material having a strength that can withstand practical use. The reason for coating the particle surface with the aminosilane coupling agent is to improve the mechanical strength in addition to increasing the electric resistance. That is, the aminosilane coupling agent has hydrophilicity and lipophilicity. The hydrophilic alkoxysilane portion is strongly adsorbed to the hydrophilic iron or iron-based alloy powder. On the other hand, the part of the alkyl group exhibiting lipophilicity is strongly bonded between the iron or iron-based alloy powder and the epoxy resin via the aminosilane coupling agent in order to firmly bond the lipophilic epoxy resin. Due to such strong adhesion, it is possible to obtain a bond soft magnetic material having a high electrical resistance value and strong mechanical strength. The reason why an epoxy resin is used as an insulator is that its properties are excellent in adhesive strength with a metal, the resin itself has high strength, high temperature resistance, and good weather resistance. As a resin having good adhesiveness to a metal, a phenol resin, a silicone resin, etc. are known in addition to an epoxy resin. The comparison of these mechanical properties is as follows.

【0005】[0005]

【表1】 [Table 1]

【0006】一方、スピーカの連続使用時に要求される
機械的強度と温度の関係は、自動車への取付けも考慮す
ると最高130℃程度迄の連続使用で機械的強度の大な
るものでなければならない。そこでフェノール樹脂は1
30℃以上の連続使用に耐えないことと、シリコーン樹
脂は130℃以上の使用には耐えるが機械的強度がエポ
キシ樹脂と比べて著しく劣る。また、耐候性においても
エポキシ樹脂は好適である。また、混合ないしは混練を
均一に行うためと硬化剤の種類によって、エポキシ樹脂
は液状又は微粉末で用いられるが、液状の場合には粘度
は100ポイズ以下で使用することが望ましい。この粘
度調節が容易であること、微粉末状で所望の硬化剤の所
定量を均一に混合できることも長所である。エポキシ系
樹脂を添加量として体積比で5〜30%と限定した理由
は、図1に示すように、5%以下となると抗折力が10
Kg/mm以下となり、また30%以上では、それ以上
添加しても強度に寄与しない。また、実効電気抵抗値は
添加量に依存し、図2に示すように、4%以下の添加量
では実効電気抵抗値が極端に低下するため、これ以上の
添加が必要となる。一方、磁束密度B1000は、添加量が
減少すると当然増加するが、図3に示すように、体積比
で30%を越えると磁束密度B1000は7000G程度以
下となり、必要な磁束量を得るためには、体積が増加す
る。勿論、B1000 7000Gの値は、MnZnフェラ
イト、NiZnフェライトに代表される酸化物軟磁性材
料のB1000 5000Gよりも高い値を示すが、B1000
≧10,000Gを実用とするスピーカ用磁気回路では
体積増加は極力抑えることが望ましいことから30%に
限定することにした。
On the other hand, the relationship between the mechanical strength and the temperature required for continuous use of the speaker must be such that the continuous use up to a maximum of about 130 ° C. gives a large mechanical strength in consideration of mounting on a vehicle. So 1 phenol resin
Silicone resin cannot withstand continuous use at 30 ° C. or higher, and silicone resin can withstand use at 130 ° C. or higher, but its mechanical strength is significantly inferior to that of epoxy resin. Epoxy resin is also suitable in terms of weather resistance. Further, the epoxy resin is used as a liquid or a fine powder depending on the kind of the curing agent in order to carry out uniform mixing or kneading, and the viscosity is preferably 100 poise or less in the case of a liquid. It is also an advantage that the viscosity can be easily adjusted and that a predetermined amount of a desired curing agent can be uniformly mixed in the form of fine powder. The reason why the epoxy resin content is limited to 5 to 30% by volume as shown in FIG. 1 is that the bending strength is 10 at 5% or less.
Kg / mm or less, and if it is 30% or more, addition of more than that does not contribute to strength. Further, the effective electric resistance value depends on the added amount, and as shown in FIG. 2, the effective electric resistance value extremely decreases at an added amount of 4% or less, so that the addition amount more than this is required. On the other hand, the magnetic flux density B 1000 naturally increases as the added amount decreases, but as shown in FIG. 3, when the volume ratio exceeds 30%, the magnetic flux density B 1000 becomes about 7,000 G or less, and in order to obtain the required magnetic flux amount. Will increase in volume. Of course, the value of B 1000 7000G is, MnZn ferrite, exhibit higher than B 1000 5000 G of soft magnetic oxide materials represented by NiZn ferrite, B 1000
Since it is desirable to suppress the volume increase as much as possible in the speaker magnetic circuit for practical use of ≧ 10,000 G, it is limited to 30%.

【0006】ボンド軟磁性体に用いる鉄又は鉄基合金粉
末は、製造法によって、その磁気特性が大きく影響され
る。図4は、後述する実施例1によって作製したボンド
軟磁性体の第1象眼における印加磁場に対する磁化の立
上りを磁束密度Bで示したものである。前述のように、
純粋な鉄の最大透磁率は2×105にも及ぶが、結晶中
に含まれる不純物、格子欠陥、転移、歪等の蓄積によっ
て透磁率は著しく低下し、保磁力Hcも増加して、軟磁
性体としての適用が困難となる。図4の1はアトマイズ
法で作製した100メッシュ以下の鉄粉、2は機械粉砕
によって作製した100メッシュ以下の鉄粉である。両
者について磁場1000Oeを印加したときのBの値
1000を比較すると、1ではB1000=15KGであるの
に対して2ではB1000=9.1KOeと鉄粉/樹脂の体
積比率が同じであるにもかかわらず低い値を示す。また
1は1.5KOeの磁場中では、略飽和に達している
が、2では5KOeの磁場を印加しても飽和に達してい
ない。このB低下の原因は不純物によるのでは無く、機
械的粉砕の過程において、転移、歪が結晶内に蓄積する
ためである。因みに、2の鉄粉をN2気流中650〜7
00℃で数時間、所謂歪取り焼成を施すことによって、
Bは1程度相当に回復する。しかしながら、熱処理設備
及び熱処理費用が加算されるため、原価高になることは
否めない。従って、転移、歪の発生を極力防止した鉄粉
又は鉄基合金粉末の製造が実用面から肝要であり、好適
な該粉末は、アトマイズ法、水素還元法及び電解法によ
って製造されたものである。
The iron or iron-based alloy powder used for the bond soft magnetic material is greatly affected by its manufacturing method. FIG. 4 shows the rising of the magnetization with respect to the applied magnetic field in the first quadrant of the bond soft magnetic body produced in Example 1 described later by the magnetic flux density B. As aforementioned,
Although the maximum magnetic permeability of pure iron reaches 2 × 10 5 , the magnetic permeability is remarkably lowered by the accumulation of impurities, lattice defects, dislocations, strains, etc. contained in the crystal, and the coercive force Hc is also increased, resulting in a soft magnetic field. Application as a magnetic material becomes difficult. In FIG. 4, 1 is an iron powder of 100 mesh or less produced by the atomizing method, and 2 is an iron powder of 100 mesh or less produced by mechanical grinding. Value of B when a magnetic field of 1000 Oe is applied to both
Comparing B 1000 , 1 shows B 1000 = 15 KG, while 2 shows B 1000 = 9.1 KOe, which is a low value despite the same iron powder / resin volume ratio. Further, 1 is almost saturated in a magnetic field of 1.5 KOe, but 2 is not saturated even when a magnetic field of 5 KOe is applied. The cause of the decrease in B is not due to impurities but to the accumulation of dislocations and strains in the crystal during the mechanical crushing process. By the way, the iron powder of 2 is 650 to 7 in N 2 gas flow.
By performing so-called strain relief firing at 00 ° C. for several hours,
B recovers to the extent of 1. However, since heat treatment equipment and heat treatment costs are added, it cannot be denied that the cost will increase. Therefore, the production of iron powder or iron-based alloy powder in which the occurrence of transformation and strain is prevented as much as possible is essential from a practical viewpoint, and the preferred powder is one produced by an atomizing method, a hydrogen reduction method and an electrolysis method. .

【0007】[0007]

【発明の実施の形態】スピーカ用のボイスコイルに音声
電流が流れたときに発生する渦電流は、磁気回路のボイ
スコイル周辺の鉄ヨーク表面層(渦電流の表面効果)に
発生する。従って、少なく共ヨークの磁気ギャップに面
する部分を鉄の替りに、電気抵抗の大なるボンド軟磁性
体で形成することで、音声歪の原因となる渦電流の発生
を小さく抑制することができる。そのために要求される
ボンド軟磁性体は、鉄粉又は鉄基合金粉末表面が、絶縁
性を高め、かつ樹脂との結合力を強化するため、シラン
カップリング材で表面処理され、同時に該粒子の一つ一
つが樹脂によって十分に絶縁されていなければならな
い。また、機械強度、耐熱性、耐候性に優れるため樹脂
はエポキシ系樹脂が望ましい。このように形成されたボ
ンド軟磁性体を用いることによって、渦電流の発生を抑
制し、音声に優れたスピーカ用磁気回路を構成すること
が出来る。
BEST MODE FOR CARRYING OUT THE INVENTION Eddy current generated when a voice current flows through a voice coil for a speaker is generated in a surface layer (surface effect of eddy current) of an iron yoke around a voice coil of a magnetic circuit. Therefore, by forming at least a portion of the yoke facing the magnetic gap with a bond soft magnetic material having a large electric resistance instead of iron, it is possible to suppress the generation of an eddy current that causes audio distortion. . The bond soft magnetic material required for that purpose is a surface of iron powder or iron-based alloy powder that is treated with a silane coupling material in order to enhance the insulating property and strengthen the binding force with the resin, and at the same time Each one must be well insulated by the resin. Epoxy resin is desirable as the resin because it has excellent mechanical strength, heat resistance and weather resistance. By using the bond soft magnetic material formed in this manner, it is possible to suppress the generation of eddy currents and to configure a magnetic circuit for a speaker excellent in sound.

【0008】[0008]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。 (実施例1)粒度100メッシュ以下の振動ミルにより
機械粉砕された鉄粉(1)、及びアトマイズ法で作製し
た同粒度の鉄粉(2)を4kg準備した。これら(1)及
び(2)の鉄粉それぞれに対して、γ−グリシドオキシ
プロピルトリメトキシシラン4gをn−ヘキサン800
ml中に分散した混合液を添加し、ヘンセルミキサで混
合後、恒温槽中100℃×1hで表面処理を行った。次
いで、表面処理後の鉄粉(1)及び(2)各4Kgに対
して、液体状エポキシ樹脂(エピコート807)100
部について、予め硬化剤として4、4´−ジアミノジフ
ェニルメタン10部を溶解した樹脂液100gを添加
後、100℃でニーダーによる混練を行い、120℃で
エポキシ樹脂の重合処理を行った。得られた鉄粉エポキ
シ固形物を60メッシュ以下に解砕した後、該解砕粉末
4Kgに対して、325メッシュ以下のジメチルジフェ
ニルスルホン20gを添加、ヘンセルミキサにより十分
に混合した。この混合物に金属石鹸であるステアリン酸
カルシウムを0.1wt%混合、成形圧力3.5t/c
2で常温加圧成形したのち、加圧成形体を150℃で
2時間加熱硬化処理を施してボンド軟磁性体を得た。鉄
粉(1)及び(2)から得た磁束密度は図4に示すとお
りであり、前述のように、歪、欠陥等の発生がほとんど
伴わない鉄粉(2)が優れた特性を示す。本実施例にお
ける、樹脂分の体積率は、いずれも略15vol%であ
り、電気抵抗は、いずれも10-1Ω・cmであり、図2
の予備検討結果と良く一致する。従来の鉄ヨークの電気
抵抗値は、10-5Ω・cm程度であるので、本実施例の
ボンド軟磁性体では104倍も電気抵抗が大となるもの
である。比較例として、γ−グリシドオキシプロピルト
リメトキシシランによる表面処理を行わない鉄粉
(1)、(2)を用いた場合、磁束密度は図4相当の値
を得るが、電気抵抗値は10-3Ω・cmであり、鉄ヨー
クに対して100倍の高い値を有するものの表面処理を
施したものに比べて100倍低下する。この事実から、
アミノシランカップリング剤による表面処理が電気抵抗
を高くする上で著しい効果を有することがわかる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. (Example 1) 4 kg of iron powder (1) mechanically pulverized by a vibration mill having a grain size of 100 mesh or less and iron powder (2) of the same grain size produced by an atomizing method were prepared. For each of these iron powders (1) and (2), 4 g of γ-glycidoxypropyltrimethoxysilane was added to n-hexane 800 g.
The mixed solution dispersed in ml was added, mixed with a Henschel mixer, and then surface-treated in a thermostat at 100 ° C. for 1 h. Then, liquid epoxy resin (Epicoat 807) 100 is added to each of 4 kg of iron powder (1) and (2) after the surface treatment.
After adding 100 g of a resin solution in which 10 parts of 4,4′-diaminodiphenylmethane was previously dissolved as a curing agent, kneading was performed by a kneader at 100 ° C., and the epoxy resin was polymerized at 120 ° C. After the obtained iron powder epoxy solid was crushed to 60 mesh or less, 20 g of dimethyldiphenyl sulfone having 325 mesh or less was added to 4 Kg of the crushed powder, and they were sufficiently mixed by a Henschel mixer. 0.1 wt% of calcium stearate, which is a metallic soap, is mixed with this mixture, and the molding pressure is 3.5 t / c.
After pressure-molding at room temperature under m 2 , the pressure-molded body was heat-cured at 150 ° C. for 2 hours to obtain a bond soft magnetic body. The magnetic flux densities obtained from the iron powders (1) and (2) are as shown in FIG. 4, and as described above, the iron powder (2) having almost no occurrence of strain, defects, etc. exhibits excellent characteristics. In this example, the volume fraction of the resin component was approximately 15 vol% and the electrical resistance was 10 −1 Ω · cm.
It agrees well with the preliminary examination result of. Since the electric resistance value of the conventional iron yoke is about 10 −5 Ω · cm, the electric resistance of the bond soft magnetic material of this embodiment is 10 4 times as large. As a comparative example, when the iron powders (1) and (2) not subjected to the surface treatment with γ-glycidoxypropyltrimethoxysilane were used, the magnetic flux density had a value equivalent to that of FIG. 4, but the electric resistance value was 10 It is −3 Ω · cm, which is 100 times lower than that of the iron yoke, which has a value 100 times higher than that of the iron yoke. From this fact,
It can be seen that the surface treatment with the aminosilane coupling agent has a remarkable effect in increasing the electric resistance.

【0009】(実施例2)実施例1では、エポキシ樹脂
は液状の樹脂を用いている。液状エポキシ樹脂は、分子
量又はアセトン等の有機溶媒によって粘度調節が可能で
あり、均質な混合物を得ることができる。しかしなが
ら、量産を行う場合、加圧成形時に鉄粉と樹脂等から成
る混合物であるコンパウンドの流動性が重要な問題とな
る。即ち、硬化剤を含む液状エポキシ樹脂と鉄粉とから
成るコンパウンドを加圧成形する場合、流動性が悪く、
金型キャビティ内への連続供給が不可能である。そのた
め、実施例1では、4、4´−ジアミノジフェニルメタ
ンを硬化剤として、鉄粉との混練後に、第1次の硬化を
行い、エポキシ樹脂を固化することによって、流動性を
確保した後、加圧成形後の二次の硬化剤として、ジメチ
ルジフェニルスルホンを用いる二段階の硬化法により、
ソフト軟磁性体の連続成形を可能にした。しかしなが
ら、この方法はコンパウンドの製造に加熱によるエネル
ギーと時間とが多くかかる。そこで、本実施例では、エ
ポキシ樹脂の微粉末を用いることにした。即ち、硬化剤
としてジシアンジアミド及びその誘導体を含有させた3
25メッシュ以下のエポキシ樹脂微粉末(エピフォーム
EPX−6136)を用いた。鉄粉は、それぞれ100
メッシュ以下のアトマイズ粉、電解鉄粉及び酸化物から
の還元鉄粉を用いた。各鉄粉4Kgを実施例1と同様に
γ−グリシドオキシプロピルトリメトキシシランによっ
て表面処理を行った。表面処理後の各鉄粉4kgに対
し、エピフォームEPX−6136樹脂混合物を120
g添加、ヘンセルミキサで混合した。混合物にステアリ
ン酸カルシウムを0.2wt%混合し、実施例1と同様
に加圧成形並びに加熱硬化処理を行った。なお、鉄粉と
前記樹脂との混合時間は、ミキサーの形状、回転数、処
理量の大きさによって異なるが、略10分以下、望まし
くは5分以下が適当と考えられる。その理由は、混合時
に鉄粉と樹脂部との衝突によって、鉄粉表面に樹脂が固
着するが、その時の衝撃熱によって樹脂部の局所的な温
度上昇に伴う重合化を極力抑制するためである。得られ
たボンド軟磁性体の電気抵抗値はいずれも10-1Ω・c
mと実施例1と同様に高く、磁束密度は図5に示すよう
にアトマイズ粉(1)、電解鉄粉(2)及び還元鉄粉
(3)共にボンド軟磁性体に好適な高い値を示してお
り、これらの鉄粉はいずれも歪等の少ない粉末であるこ
とがわかる。以上から、硬化剤を含有ないしは混合した
微粉末のエポキシ樹脂を用いることによって、コンパウ
ンドを作製する時間が短くエネルギーも節約できる。
(Example 2) In Example 1, a liquid resin is used as the epoxy resin. The viscosity of the liquid epoxy resin can be adjusted by the molecular weight or an organic solvent such as acetone, and a homogeneous mixture can be obtained. However, in mass production, the fluidity of the compound, which is a mixture of iron powder and resin, is an important issue during pressure molding. That is, when pressure-molding a compound composed of a liquid epoxy resin containing a curing agent and iron powder, the fluidity is poor,
Continuous supply into the mold cavity is impossible. Therefore, in Example 1, 4,4′-diaminodiphenylmethane was used as a curing agent, after kneading with iron powder, the primary curing was performed to solidify the epoxy resin to ensure fluidity, and By a two-step curing method using dimethyldiphenyl sulfone as a secondary curing agent after pressure molding,
Enables continuous molding of soft magnetic materials. However, this method requires a lot of energy and time due to heating for producing the compound. Therefore, in this embodiment, a fine powder of epoxy resin is used. That is, 3 containing dicyandiamide and its derivative as a curing agent
An epoxy resin fine powder having a size of 25 mesh or less (Epiform EPX-6136) was used. Iron powder is 100 each
Atomized powder below the mesh, electrolytic iron powder, and reduced iron powder from oxides were used. 4 kg of each iron powder was surface-treated with γ-glycidoxypropyltrimethoxysilane in the same manner as in Example 1. 120 kg of Epiform EPX-6136 resin mixture was added to 4 kg of each iron powder after surface treatment.
g, and mixed with a Henscel mixer. 0.2 wt% of calcium stearate was mixed with the mixture, and pressure molding and heat curing treatment were performed in the same manner as in Example 1. The mixing time of the iron powder and the resin varies depending on the shape of the mixer, the number of revolutions, and the amount of treatment, but it is considered appropriate to be about 10 minutes or less, preferably 5 minutes or less. The reason is that the resin adheres to the iron powder surface due to the collision between the iron powder and the resin portion during mixing, but the impact heat at that time suppresses the polymerization accompanied by the local temperature rise of the resin portion as much as possible. . The electric resistance value of each of the obtained bond soft magnetic materials was 10 -1 Ω · c.
As shown in FIG. 5, the atomization powder (1), the electrolytic iron powder (2), and the reduced iron powder (3) both showed high values suitable for the bond soft magnetic material. Therefore, it can be seen that all of these iron powders are powders with little distortion. From the above, by using a finely powdered epoxy resin containing or mixed with a curing agent, the time for producing the compound can be shortened and energy can be saved.

【0010】[0010]

【発明の効果】本発明によって作製したボンド軟磁性材
料を用いることによって、渦電流の発生を著しく減少さ
せることができるため、スピーカの磁気回路にこれを適
用することにより、歪の発生が抑止され音質の改善され
たスピーカを安価に提供することができる。また、磁束
密度と電気抵抗値が共に高いことを利用して、非対称な
電圧が印加して動作する有極チョークコイル等の磁気回
路用部材としても、小型軽量化、高効率化、スイッチン
グ周波数の高周波化が低損失で図ることができるため、
この分野においても有望な部材となる。
By using the bond soft magnetic material produced by the present invention, the generation of eddy current can be significantly reduced. Therefore, by applying it to the magnetic circuit of the speaker, the generation of distortion can be suppressed. A speaker with improved sound quality can be provided at low cost. In addition, by utilizing both high magnetic flux density and high electric resistance value, it can be used as a magnetic circuit member such as a polar choke coil that operates by applying an asymmetric voltage, and it can be made smaller, lighter, more efficient, and have a higher switching frequency. Since high frequency can be achieved with low loss,
It is also a promising member in this field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で得られたボンド軟磁性体のエポキシ樹
脂分の添加量に対する抗折力の変化を示す。
FIG. 1 shows a change in transverse rupture strength with respect to an amount of an epoxy resin component added to a bond soft magnetic material obtained in the present invention.

【図2】本発明で得られたボンド軟磁性体のエポキシ樹
脂分の添加量に対する実効電気抵抗値の変化を示す。
FIG. 2 shows a change in effective electric resistance value with respect to an added amount of an epoxy resin component of a bond soft magnetic material obtained in the present invention.

【図3】本発明で得られたボンド軟磁性体のエポキシ樹
脂分の添加量に対する磁束密度B1000の変化を示す。
FIG. 3 shows a change in magnetic flux density B 1000 with respect to the amount of the epoxy resin component added to the bond soft magnetic material obtained in the present invention.

【図4】機械粉砕鉄粉末及びアトマイズ鉄粉末を出発原
料としたときのボンド軟磁性体の磁束密度の磁場変化を
示す。
FIG. 4 shows changes in magnetic field of magnetic flux density of bond soft magnetic material when mechanically pulverized iron powder and atomized iron powder are used as starting materials.

【図5】アトマイズ粉末、電解鉄粉末及び還元鉄粉末を
出発原料としたときのボンド軟磁性体の磁束密度の磁場
変化を示す。
FIG. 5 shows changes in magnetic field of magnetic flux density of bond soft magnetic material when atomized powder, electrolytic iron powder and reduced iron powder are used as starting materials.

【符号の説明】[Explanation of symbols]

なし None

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 鉄又は鉄基合金粉末に体積比で5〜30
%の樹脂を加え、混合ないしは混練した後加圧成形を行
い、鉄の歪取り温度に曝すことなく樹脂のみを硬化させ
るに十分な温度で処理して、略10ないし数百KHZの
周波数領域において高磁束密度でしかも鉄損失の少ない
特性を有するスピーカ磁気回路用ボンド軟磁性体。
1. A volume ratio of iron to iron-based alloy powder of 5 to 30.
% Resin is added, mixed or kneaded, then pressure-molded, and treated at a temperature sufficient to cure only the resin without exposing it to the strain-removing temperature of iron, in the frequency range of about 10 to several hundred KHZ. Bond soft magnetic material for speaker magnetic circuit with high magnetic flux density and low iron loss.
【請求項2】 樹脂がエポキシ樹脂及び硬化剤の組合せ
から成り、必要に応じて滑剤を含有せしめた請求項1に
記載のスピーカ磁気回路用ボンド軟磁性体。
2. The bond soft magnetic material for a speaker magnetic circuit according to claim 1, wherein the resin is a combination of an epoxy resin and a curing agent, and a lubricant is contained if necessary.
【請求項3】 鉄又は鉄基合金粉末は電解法、アトマイ
ズ法及び/又は水素還元法により製作したものを用いる
ことを特徴とする請求項1に記載のスピーカ磁気回路用
ボンド軟磁性体。
3. The bond soft magnetic material for a speaker magnetic circuit according to claim 1, wherein the iron or iron-based alloy powder is produced by an electrolysis method, an atomization method and / or a hydrogen reduction method.
【請求項4】 鉄又は鉄基合金粉末の表面をアミノシラ
ンカップリング剤によって表面処理を施し、加熱によっ
て該粉末表面に被膜を生成せしめた事を特徴とする請求
項1に記載のスピーカ磁気回路用ボンド軟磁性体。
4. The speaker magnetic circuit according to claim 1, wherein the surface of the iron or iron-based alloy powder is surface-treated with an aminosilane coupling agent, and a coating is formed on the surface of the powder by heating. Bond soft magnetic material.
【請求項5】 エポキシ樹脂及び硬化剤の組合せが粉末
状のエポキシ樹脂と粉末又は液状の硬化剤とから構成さ
れていることを特徴とする請求項2記載のスピーカ磁気
回路用ボンド軟磁性体。
5. The bond soft magnetic material for a speaker magnetic circuit according to claim 2, wherein the combination of the epoxy resin and the curing agent is composed of an epoxy resin in powder form and a curing agent in powder or liquid form.
【請求項6】 エポキシ樹脂及び硬化剤の組合せが液状
のエポキシ樹脂と粉末又は液状の硬化剤とから構成され
ていることを特徴とする請求項2に記載のスピーカ磁気
回路用ボンド軟磁性体。
6. The bond soft magnetic material for a speaker magnetic circuit according to claim 2, wherein the combination of the epoxy resin and the curing agent is composed of a liquid epoxy resin and a powder or a liquid curing agent.
【請求項7】 エポキシ樹脂の添加量が体積比で5〜3
0%であることを特徴とする請求項2に記載のスピーカ
磁気回路用ボンド軟磁性体。
7. The volume of epoxy resin added is 5 to 3
It is 0%, The bond soft magnetic material for speaker magnetic circuits of Claim 2 characterized by the above-mentioned.
【請求項8】 滑剤が揆水性の金属石鹸であることを特
徴とする請求項2に記載のスピーカ磁気回路用ボンド軟
磁性体。
8. The bond soft magnetic material for a speaker magnetic circuit according to claim 2, wherein the lubricant is a water-repellent metal soap.
JP2929596A 1996-02-16 1996-02-16 Bonded soft magnetic substance for speaker magnetic circuit Pending JPH09223618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2929596A JPH09223618A (en) 1996-02-16 1996-02-16 Bonded soft magnetic substance for speaker magnetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2929596A JPH09223618A (en) 1996-02-16 1996-02-16 Bonded soft magnetic substance for speaker magnetic circuit

Publications (1)

Publication Number Publication Date
JPH09223618A true JPH09223618A (en) 1997-08-26

Family

ID=12272261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2929596A Pending JPH09223618A (en) 1996-02-16 1996-02-16 Bonded soft magnetic substance for speaker magnetic circuit

Country Status (1)

Country Link
JP (1) JPH09223618A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044156A (en) * 2010-07-23 2012-03-01 Toyota Central R&D Labs Inc Manufacturing method of dust core and manufacturing method of powder for core
WO2014054624A1 (en) * 2012-10-03 2014-04-10 エミック株式会社 Vibration generator
JP2017130683A (en) * 2017-03-23 2017-07-27 Ntn株式会社 Magnetic core
JP2019016806A (en) * 2018-10-02 2019-01-31 Ntn株式会社 Magnetic core and manufacturing method of the same
US10395813B2 (en) 2012-10-01 2019-08-27 Ntn Corporation Magnetic core and process for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044156A (en) * 2010-07-23 2012-03-01 Toyota Central R&D Labs Inc Manufacturing method of dust core and manufacturing method of powder for core
US9159489B2 (en) 2010-07-23 2015-10-13 Toyota Jidosha Kabushiki Kaisha Method of producing powder magnetic core and method of producing magnetic core powder
US10395813B2 (en) 2012-10-01 2019-08-27 Ntn Corporation Magnetic core and process for producing same
WO2014054624A1 (en) * 2012-10-03 2014-04-10 エミック株式会社 Vibration generator
JP2014074612A (en) * 2012-10-03 2014-04-24 Emitsuku Kk Vibration generator
JP2017130683A (en) * 2017-03-23 2017-07-27 Ntn株式会社 Magnetic core
JP2019016806A (en) * 2018-10-02 2019-01-31 Ntn株式会社 Magnetic core and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP5110628B2 (en) Wire ring parts
US20040074564A1 (en) Inductive component and method for producing same
KR20020042516A (en) Magnetic core including magnet for magnetic bias and inductor component using the same
JP2006261331A (en) Inductance component and its manufacturing method
JP2006237153A (en) Composite dust core and manufacturing method thereof
WO2003085683A1 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet and method for preparation thereof
JP2003133122A (en) Dust core
JP2002313632A (en) Magnetic element and its manufacturing method
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
JP2007123376A (en) Compound magnetic substance and magnetic device using same, and method of manufacturing same
JP2007049073A (en) Inductor and its manufacturing method
JPH11260618A (en) Composite magnetic material, its manufacture, and fe-al-si soft magnetic alloy powder used therefor
JPH09223618A (en) Bonded soft magnetic substance for speaker magnetic circuit
KR101963265B1 (en) Inductor component
WO2011121947A1 (en) Complex magnetic material, coil-embedded type magnetic element using the same, and manufacturing method thereof
JP3860456B2 (en) Magnetic core and inductance component using the same
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JPH05326240A (en) Dust core and manufacture thereof
JP4527225B2 (en) Manufacturing method of dust core
JP2004014613A (en) PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JP2004014614A (en) METHOD FOR PRODUCING Fe-Si BASED SOFT MAGNETISM SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JP3151604B2 (en) Method for producing radial anisotropic bonded magnet and bonded magnet
JPH08170105A (en) Molding of resin bonded magnet
JPH08167513A (en) Bonded permanent magnet