JPH09222495A - Hydrogen injection system - Google Patents

Hydrogen injection system

Info

Publication number
JPH09222495A
JPH09222495A JP8028957A JP2895796A JPH09222495A JP H09222495 A JPH09222495 A JP H09222495A JP 8028957 A JP8028957 A JP 8028957A JP 2895796 A JP2895796 A JP 2895796A JP H09222495 A JPH09222495 A JP H09222495A
Authority
JP
Japan
Prior art keywords
corrosion potential
hydrogen
reactor
water supply
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8028957A
Other languages
Japanese (ja)
Inventor
Masahito Nakamura
雅人 中村
Kazuhiko Akamine
和彦 赤嶺
Yamato Asakura
大和 朝倉
Katsumi Osumi
克己 大角
Hidefumi Ibe
英史 伊部
Noriyuki Onaka
紀之 大中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8028957A priority Critical patent/JPH09222495A/en
Publication of JPH09222495A publication Critical patent/JPH09222495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the velocity of crack propagation in reactor bottom material by controlling the hydrogen concentration in a water supply system so that corrosion potential and dose rate in the main steam line are kept within specific ranges. SOLUTION: The measurement of corrosion potential at a reactor bottom is done with a corrosion potential electrode 11a and monitoring is done with a data acquisition device 11b. When the corrosion potential is less than -0.1V, the opening of a valve 30 is reduced to reduce the injection rate of hydrogen from a hydrogen injection system 54 into water supply systems. On the contrary, when the corrosion potential is -0.1V or higher and 0.1 V or lower, the opening of the valve 30 is maintained. When the corrosion potential is larger than 0.1V, the opening of the valve 30 is increased to increase the hydrogen injection rate from the system 54 to the water supply system 54. By the above operation, the hydrogen injection rate is properly controlled so that the corrosion potential at the reactor bottom material is to be between -0.1V and 0.1V.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は沸騰水型原子力発電
プラントに係り、特に、水素注入により原子炉内の材料
の腐食環境の緩和に好適なシステムを備えた沸騰水型原
子力発電プラントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling water nuclear power plant, and more particularly to a boiling water nuclear power plant equipped with a system suitable for mitigating a corrosive environment of materials in a nuclear reactor by hydrogen injection.

【0002】[0002]

【従来の技術】沸騰水型原子力発電プラントの運転中に
原子炉内では水の放射線分解により過酸化水素,水素分
子及び酸素分子が生成し、酸素濃度に過酸化水素濃度の
1/2を加算した値で定義される実効酸素濃度が上昇す
る。この実効酸素濃度が上昇すると、金属材料の腐食環
境の度合いを示す指標である腐食電位が上昇し、これが
材料のSCC(応力腐食割れ)に影響し、その感受性を
高めることが知られている。一方、この実効酸素濃度は
原子炉内の位置によって異なることが実測あるいは解析
などにより分っている。特に、原子炉底部領域には、C
RD(制御棒駆動機構)ハウジングあるいはICM(炉
内計装管)ハウジングのような構造物が存在するので、
この領域における材料の腐食環境を緩和することが重要
である。
2. Description of the Related Art Hydrogen peroxide, hydrogen molecules, and oxygen molecules are generated by radiolysis of water in a nuclear reactor during operation of a boiling water nuclear power plant, and 1/2 of the hydrogen peroxide concentration is added to the oxygen concentration. The effective oxygen concentration defined by the above value increases. It is known that when the effective oxygen concentration rises, the corrosion potential, which is an index showing the degree of the corrosive environment of the metal material, rises, which affects SCC (stress corrosion cracking) of the material and increases its sensitivity. On the other hand, it has been found by actual measurement or analysis that this effective oxygen concentration varies depending on the position inside the reactor. Especially, in the bottom area of the reactor, C
Since there is a structure such as an RD (control rod drive mechanism) housing or an ICM (reactor instrumentation tube) housing,
It is important to mitigate the corrosive environment of materials in this area.

【0003】従来例として、炉水の腐食電位,溶存酸素
濃度及び溶存水素を測定し、これらの測定値に基づいて
原子炉給水系への水素注入量を制御することにより、原
子炉内での水の放射線分解を抑制し原子炉内の溶存酸素
濃度を低減する運転方法が、特公昭63−19838 号公報に
記載されている。同公報では、原子炉一次冷却水中に水
素を注入して溶存酸素濃度,腐食電位等を規制し、ステ
ンレス鋼材料のSCCを防止する場合に、一次冷却水中
のステンレス鋼の腐食電位,一次冷却水の溶存酸素濃度
及び溶存水素濃度を測定し、腐食電位が−0.25V〜
−0.6V、溶存酸素濃度が10ppb〜50ppb、溶存水
素濃度が150ppb 以下になるように水素注入量を制御
している。
As a conventional example, the corrosion potential, the dissolved oxygen concentration, and the dissolved hydrogen of reactor water are measured, and the amount of hydrogen injection into the reactor water supply system is controlled based on these measured values, thereby Japanese Patent Publication No. 63-19838 describes an operation method for suppressing the radiolysis of water and reducing the concentration of dissolved oxygen in the nuclear reactor. In this publication, when hydrogen is injected into the reactor primary cooling water to regulate the dissolved oxygen concentration, corrosion potential, etc., and SCC of the stainless steel material is prevented, the corrosion potential of the stainless steel in the primary cooling water, the primary cooling water The dissolved oxygen concentration and dissolved hydrogen concentration were measured, and the corrosion potential was -0.25V
The hydrogen injection amount is controlled so that the dissolved oxygen concentration is −0.6 V, the dissolved oxygen concentration is 10 ppb to 50 ppb, and the dissolved hydrogen concentration is 150 ppb or less.

【0004】本例では水素注入により効果を期待する対
象範囲が明確でない。またSCCの発生を完全防止する
ことを念頭に記載されている。さらに水素注入のデメリ
ットの一つである主蒸気系の線量率上昇については考慮
がされていない等適用上の考慮が記載されていない。
In this example, the target range for which the effect of hydrogen injection is expected is not clear. Further, it is described with the idea of completely preventing the occurrence of SCC. Furthermore, no consideration is given for application such as the fact that the dose rate rise of the main steam system, which is one of the disadvantages of hydrogen injection, is not considered.

【0005】一方、同じく特開平6−174891 号公報では
主蒸気系の放射能濃度の測定,腐食電位及び溶存酸素濃
度を炉心部や再循環系で測定して必要最小限の水素注入
量とすることが記載されているが、水素注入により効果
を期待する対象範囲が明確でない。また、SCCの発生
を完全防止すること(腐食電位を−0.23V 以下に低
下させること)を念頭に記載され、亀裂進展速度の一定
限度の低減については記載されていない。従来の知見で
は炉心部の腐食電位を−0.23V 以下に低下させる為
には、1ppm 以上の多量の水素注入量を必要とすること
が知られている。したがってこの場合、水素注入量は比
較的多くなり主蒸気系の線量率は上昇する可能性は高
い。
On the other hand, similarly, in Japanese Patent Laid-Open No. 6-174891, the measurement of the radioactivity concentration of the main steam system, the corrosion potential and the dissolved oxygen concentration are measured in the core part and the recirculation system to obtain the minimum required hydrogen injection amount. However, the target range in which the effect of hydrogen injection is expected is not clear. In addition, it is described in consideration of completely preventing the generation of SCC (reducing the corrosion potential to −0.23 V or less), and does not describe reduction of a certain limit of the crack growth rate. It is known from the conventional knowledge that a large amount of hydrogen injection of 1 ppm or more is required to reduce the corrosion potential of the core to −0.23 V or less. Therefore, in this case, the hydrogen injection amount is relatively large and the dose rate of the main steam system is likely to increase.

【0006】[0006]

【発明が解決しようとする課題】上記したように、水素
を注入することにより一次冷却水中のステンレス鋼の腐
食電位を−0.25V 以下に低減するためには図7に示
すように給水系の水素濃度を0.4ppm以上にする必要が
ある。一方、図8に示すように、主蒸気系の線量率は給
水系の水素濃度が約0.4ppmを超えると急激に上昇する
ことが知られている。
As described above, in order to reduce the corrosion potential of the stainless steel in the primary cooling water to -0.25 V or less by injecting hydrogen, as shown in FIG. It is necessary to set the hydrogen concentration to 0.4 ppm or more. On the other hand, as shown in FIG. 8, it is known that the dose rate of the main steam system sharply rises when the hydrogen concentration of the water supply system exceeds about 0.4 ppm.

【0007】従って、特公昭63−19838号と特開平6−17
4891号公報に示すような従来技術では、主蒸気系の線量
率が上昇するような多量の水素を注入しなければ炉内の
腐食環境を緩和することができない。また、従来技術で
は、原子炉一次冷却系で腐食電位,溶存酸素濃度及び溶
存水素濃度を測定しているので、原子炉底部の水質環境
を正確にモニタしていない。
Therefore, Japanese Patent Publication No. 63-19838 and Japanese Patent Laid-Open No. 6-17
In the conventional technology as disclosed in Japanese Patent No. 4891, the corrosive environment in the reactor cannot be mitigated unless a large amount of hydrogen that increases the dose rate of the main steam system is injected. Further, in the prior art, since the corrosion potential, the dissolved oxygen concentration and the dissolved hydrogen concentration are measured in the primary reactor cooling system, the water quality environment at the bottom of the reactor is not accurately monitored.

【0008】又、従来技術の腐食電位の測定は図12に
示すようなオートクレーブに電極を取り付け、オートク
レーブ内の水を用いて測定している。
Further, the corrosion potential of the prior art is measured by attaching electrodes to an autoclave as shown in FIG. 12 and using water in the autoclave.

【0009】材料の腐食電位は、参照電極30と試料電
極31との電位差を電位差計33で読みとり、腐食電位
測定盤34によって変換し算出される。オートクレーブ
内を流れる水の流速は一般に0.1cm/secオーダーと非
常に遅く、このような低流速領域での腐食電位は実際の
炉内の流速よりも非常に低い。また、オートクレーブに
到達するまでの時間を要するため過酸化水素のような腐
食電位に寄与する成分が高温分解して消滅するため測定
精度面で劣る。従って、材料の腐食電位の評価に当た
り、測定値の信頼性に問題が生じる。
The corrosion potential of the material is calculated by reading the potential difference between the reference electrode 30 and the sample electrode 31 with a potentiometer 33 and converting it with a corrosion potential measuring plate 34. The flow velocity of water flowing in the autoclave is generally very low, on the order of 0.1 cm / sec, and the corrosion potential in such a low flow velocity region is much lower than the actual flow velocity in the furnace. In addition, since it takes time to reach the autoclave, components such as hydrogen peroxide that contribute to the corrosion potential decompose at high temperatures and disappear, resulting in poor measurement accuracy. Therefore, when evaluating the corrosion potential of a material, there arises a problem in the reliability of the measured value.

【0010】以上の観点から、水素注入により原子炉底
部の腐食環境の緩和を行う場合、原子炉底部における材
料の腐食電位あるいは炉水の実効酸素濃度等の腐食環境
デ−タを、従来とは異なる方法で正確に測定して最適な
水素注入量を制御する必要がある。
From the above viewpoint, when mitigating the corrosive environment at the bottom of the reactor by hydrogen injection, the corrosive environment data such as the corrosion potential of the material at the bottom of the reactor or the effective oxygen concentration of reactor water is It is necessary to measure accurately by different methods to control the optimum hydrogen injection amount.

【0011】本発明の目的は、主蒸気系の線量率を上昇
させることなく原子炉底部材料のき裂進展(材料の表面
が腐食あるいは劣化することによって起きる現象)の速
度を低減することのできる沸騰水型原子力発電プラント
の水素注入システムとその制御方法を提供することにあ
る。
An object of the present invention is to reduce the rate of crack growth (a phenomenon caused by corrosion or deterioration of the material surface) of the reactor bottom material without increasing the dose rate of the main steam system. A hydrogen injection system for a boiling water nuclear power plant and its control method.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
の第1の手段は、原子炉底部材料の腐食電位を測定し、
この腐食電位の測定値から原子炉底部材料のき裂進展速
度を求めること、主蒸気系の線量率を測定して前記腐食
電位及び主蒸気系の線量率が所定の範囲内になるように
給水系の水素濃度を制御することである。
The first means for achieving the above object is to measure the corrosion potential of the reactor bottom material,
Obtain the crack growth rate of the reactor bottom material from the measured corrosion potential, measure the dose rate of the main steam system, and supply water so that the corrosion potential and the dose rate of the main steam system are within the specified range. Controlling the hydrogen concentration of the system.

【0013】また、第2の手段は給水系の水素濃度か
ら、原子炉内の酸化剤(酸素,過酸化水素等)の濃度を
求め、この値から原子炉底部材料の腐食電位を求めるこ
と、主蒸気系の線量率を測定して前記腐食電位及び前記
線量率が所定の範囲になるように給水系の水素濃度を制
御することである。
The second means is to obtain the concentration of the oxidizer (oxygen, hydrogen peroxide, etc.) in the reactor from the hydrogen concentration of the feed water system, and to obtain the corrosion potential of the reactor bottom material from this value. It is to measure the dose rate of the main steam system and control the hydrogen concentration of the water supply system so that the corrosion potential and the dose rate fall within a predetermined range.

【0014】第1の手段では、原子炉底部材料のき裂進
展速度と腐食電位の相関を予め求めておき、この相関に
基づいて原子炉底部材料の腐食電位測定値から主蒸気系
の線量率が上昇しない範囲内で原子炉底部材料の腐食電
位が所定の値になるように給水系の水素濃度を制御す
る。
In the first means, the correlation between the crack growth rate of the reactor bottom material and the corrosion potential is obtained in advance, and the dose rate of the main steam system is determined from the measured corrosion potential of the reactor bottom material based on this correlation. The hydrogen concentration of the feed water system is controlled so that the corrosion potential of the material at the bottom of the reactor reaches a predetermined value within the range where does not rise.

【0015】第2の手段では、給水系の水素濃度と原子
炉底部の腐食電位の相関を予め求めておき、この相関に
基づいて給水系の水素濃度から主蒸気系の線量率が上昇
しない範囲内で原子炉底部材料の腐食電位が所定の値に
なるように給水系の水素濃度を制御する。
In the second means, the correlation between the hydrogen concentration in the feed water system and the corrosion potential at the bottom of the reactor is obtained in advance, and the range in which the dose rate in the main steam system does not rise from the hydrogen concentration in the feed water system based on this correlation. The hydrogen concentration of the feed water system is controlled so that the corrosion potential of the reactor bottom material becomes a predetermined value.

【0016】以上のように予め求めた相関に基づいて給
水系への水素の注入量を設定することにより、直接原子
炉底部の腐食環境を予め求めた範囲内に改善することに
なるので、原子炉底部の機器に対して適切な水質管理を
することが可能となり、主蒸気系の線量率を上昇させる
ことなく、原子炉底部材料のき裂進展速度を低下させる
ことができ、ひいては沸騰水型原子力発電プラントの長
寿命化を図ることができる。
By setting the amount of hydrogen injection into the water supply system based on the previously determined correlation as described above, the corrosive environment at the bottom of the nuclear reactor can be directly improved within the previously determined range. It is possible to properly control the water quality for the equipment at the bottom of the reactor, reduce the crack growth rate of the material at the bottom of the reactor without increasing the dose rate of the main steam system, and eventually the boiling water type. The life of the nuclear power plant can be extended.

【0017】海外の文献BWR Water Chemistry Gideline
s−1993 Revision,NP TR−103515,EPRI,Feburary 1994,
Fig.2−10に示されているように、ステンレス鋼材料の
腐食電位を0.1V 以下に低下させると、前記ステンレ
ス鋼のき裂進展速度は150mils/yr.になることが分
かる(図6)。
Overseas Literature BWR Water Chemistry Gideline
s−1993 Revision, NP TR−103515, EPRI, Feburary 1994,
As shown in Fig. 2-10, when the corrosion potential of the stainless steel material is lowered to 0.1 V or less, the crack growth rate of the stainless steel is 150 mils / yr. (Fig. 6).

【0018】これは通常のプラントでの原子炉底部での
腐食電位が文献(‘Draft Proceedingof International
Symposium on Plant Aging and Life Prediction ofCor
rodible Structure',BVI08,SAPPORO JAPAN, May 1995
)に示されるように約0.20Vであることを考慮する
と、腐食電位を0.1V以下にすることにより原子炉底
部ステンレス鋼材料のき裂進展速度を通常の場合の1/
2以下に低下させることができる。これにより設計的に
は効果があるものと判断することが可能である。
This is because the corrosion potential at the bottom of the reactor in a normal plant is based on the literature ('Draft Proceeding of International
Symposium on Plant Aging and Life Prediction of Cor
rodible Structure ', BVI08, SAPPORO JAPAN, May 1995
), The crack growth rate of the stainless steel material at the bottom of the reactor can be reduced to 1/100% of the normal case by setting the corrosion potential to 0.1 V or less.
It can be reduced to 2 or less. This makes it possible to determine that the design is effective.

【0019】また、図9に示すように腐食電位を下げす
ぎると、主蒸気系の線量率が上昇させる可能性がある。
また、溶存酸素濃度が低下しすぎると、炭素鋼材料の腐
食限肉の要因にもなる懸念が生じる。原子炉底部の腐食
電位を−0.1V以上0.1V以下になるように給水への
水素の注入量を設定することにより、主蒸気系の線量率
を上昇させることなく、原子炉底部材料のき裂進展速度
を低下させることができる。
Further, as shown in FIG. 9, if the corrosion potential is lowered too much, the dose rate of the main steam system may increase.
Further, if the dissolved oxygen concentration is too low, there is a concern that it may be a cause of the corrosion limit of the carbon steel material. By setting the amount of hydrogen injection into the feedwater so that the corrosion potential of the reactor bottom is -0.1 V or more and 0.1 V or less, without increasing the dose rate of the main steam system, The crack growth rate can be reduced.

【0020】一方、原子炉底部の腐食電位を−0.1V
から0.1Vの範囲内にするには給水系の水素濃度を0.
1ppmから約0.4ppm程度の範囲内に制御すればよいこ
とが図7より分かる。
On the other hand, the corrosion potential at the bottom of the reactor is set to -0.1V.
To 0.1V to 0.1V, the hydrogen concentration of the water supply system should be 0.1
It can be seen from FIG. 7 that the control may be performed within the range of 1 ppm to about 0.4 ppm.

【0021】従って、給水への水素濃度を0.1ppmから
約0.4ppm程度の範囲内になるように、各プラントの特
性に応じた水素濃度を設定することにより、主蒸気系の
線量率を上昇させることなく、原子炉底部材料のき裂進
展速度の低下させることができる。
Therefore, the dose rate of the main steam system is adjusted by setting the hydrogen concentration according to the characteristics of each plant so that the hydrogen concentration in the feed water is within the range of about 0.1 ppm to about 0.4 ppm. The crack growth rate of the reactor bottom material can be reduced without raising it.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施例を説明す
る。
Embodiments of the present invention will be described below.

【0023】まず、本発明の第1実施例を図1から図1
0を用いて述べる。
First, a first embodiment of the present invention will be described with reference to FIGS.
It is described using 0.

【0024】図1は本発明の第1実施例の沸騰水型原子
力発電プラントである。沸騰水型原子力発電プラントで
は、原子炉1から発生した蒸気は直接タ−ビン2に送ら
れ、タ−ビン下部の復水器2aで水に凝縮される。その
後、凝縮された水は復水浄化装置3及び給水加熱器4を
介して炉内に持ち込まれる。また、原子炉系では原子炉
再循環系(PLR)51から原子炉冷却材浄化系52が
分岐して設けられており、濾過脱塩器6により浄化され
た後に原子炉に戻される。また、炉水の水抜きを目的と
した原子炉ボトムドレンライン系53が原子炉底部に設
けられている。給水系50には水素注入設備54が備え
られている。この水素注入設備54は水素供給源12を
給水系50につなげる配管P20,P21及びバルブ3
0とで構成されるラインを有す。
FIG. 1 shows a boiling water nuclear power plant according to a first embodiment of the present invention. In the boiling water nuclear power plant, the steam generated from the nuclear reactor 1 is directly sent to the turbine 2 and is condensed into water by the condenser 2a below the turbine. After that, the condensed water is brought into the furnace through the condensate purification device 3 and the feed water heater 4. Further, in the nuclear reactor system, a nuclear reactor recirculation system (PLR) 51 is provided with a nuclear reactor coolant purification system 52, which is purified by the filter demineralizer 6 and then returned to the nuclear reactor. A reactor bottom drain line system 53 for draining the reactor water is provided at the bottom of the reactor. The water supply system 50 is equipped with hydrogen injection equipment 54. This hydrogen injection facility 54 is provided with pipes P20, P21 and valve 3 for connecting the hydrogen supply source 12 to the water supply system 50.
It has a line composed of 0 and 0.

【0025】又、図1中の腐食電位電極部11aの詳細
を図13に示す。
Details of the corrosion potential electrode portion 11a in FIG. 1 are shown in FIG.

【0026】図のように、電極部30,31は、0.1
〜3m/sec程度の高流速の原子炉ボトムドレン水に直
接浸漬しているため、炉底部近傍で、電極を直接高流速
の炉水に浸漬してかつ過酸化水素が比較的残存している
位置で測定することにより、正確に原子炉底部の腐食環
境を把握することが可能となる。
As shown in the figure, the electrode parts 30 and 31 are 0.1
Since it is directly immersed in the reactor bottom drain water with a high flow rate of about 3 m / sec, the electrode is directly immersed in the high-velocity reactor water in the vicinity of the bottom of the reactor and hydrogen peroxide remains relatively. By measuring the position, it is possible to accurately grasp the corrosive environment at the bottom of the reactor.

【0027】以上のように測定の精度面で従来オートク
レーブのような測定技術に比較し格段と向上する。
As described above, the accuracy of measurement is remarkably improved as compared with the conventional measurement technique such as an autoclave.

【0028】以下水素注入量の制御方法を述べる。A method of controlling the hydrogen injection amount will be described below.

【0029】原子炉底部の腐食電位の測定は盤11aで
行い、データ収集装置11bを用いてモニタリングを行
う。腐食電位が−0.1V 未満の場合はバルブ30の開
度を小さくし、水素注入設備54から給水系への水素の
注入量を減少させる。一方、腐食電位が−0.1V以上
0.1V以下の場合はバルブ30の開度は保持する。一
方、腐食電位が0.1mV よりも大きな値の場合はバル
ブ30の開度を大きくして、水素注入設備54から給水
系への水素の注入量を増大させる。
The corrosion potential at the bottom of the nuclear reactor is measured by the board 11a and is monitored by using the data collecting device 11b. When the corrosion potential is less than -0.1 V, the opening degree of the valve 30 is reduced to reduce the amount of hydrogen injected from the hydrogen injection equipment 54 into the water supply system. On the other hand, when the corrosion potential is −0.1 V or more and 0.1 V or less, the opening degree of the valve 30 is maintained. On the other hand, when the corrosion potential is greater than 0.1 mV, the opening degree of the valve 30 is increased to increase the amount of hydrogen injected from the hydrogen injection equipment 54 into the water supply system.

【0030】以上の操作により原子炉底部材料の腐食電
位を−0.1V以上0.1V以下になるように適正な水素
の注入量を制御する。
By the above operation, the proper amount of hydrogen injection is controlled so that the corrosion potential of the reactor bottom material is not less than -0.1V and not more than 0.1V.

【0031】次に本実施例における沸騰水型原子力発電
プラントの制御方法の考え方及び作用効果を述べる。
Next, the concept and effect of the control method of the boiling water nuclear power plant in this embodiment will be described.

【0032】原子炉内では水の放射線分解により、過酸
化水素,酸素が発生し炉水は酸化性雰囲気になり、原子
炉内構造物を取り囲む腐食性が増す。図2は水の放射線
分解に基づいた解析による原子炉内の水質分布を表した
ものである。図2から分かるように、炉内の水質は炉内
部位に依存し、実効酸素濃度は炉内の各領域により大き
く異なっている。しかし原子炉底部については比較的低
減効果が大きいのが特徴であり、本発明ではこの特徴を
利用したものである。
In the nuclear reactor, hydrogen peroxide and oxygen are generated by the radiolysis of water, the reactor water becomes an oxidizing atmosphere, and the corrosiveness surrounding the reactor internal structure increases. Fig. 2 shows the water quality distribution in the reactor by analysis based on radiolysis of water. As can be seen from FIG. 2, the water quality in the furnace depends on the parts inside the furnace, and the effective oxygen concentration greatly differs depending on each region in the furnace. However, the reactor bottom is characterized by a relatively large reduction effect, and the present invention utilizes this feature.

【0033】一方、図3に示すように、材料腐食環境の
指標となる腐食電位は実効酸素濃度と共に上昇するが、
過酸化水素と酸素に対する応答は異なり、過酸化水素雰
囲気の場合の方が酸素雰囲気の場合よりも高い腐食電位
を示すことが前述した後の文献に報告されている。
On the other hand, as shown in FIG. 3, the corrosion potential, which is an index of the material corrosion environment, increases with the effective oxygen concentration.
Responses to hydrogen peroxide and oxygen are different, and it is reported in the above-mentioned literature that the hydrogen peroxide atmosphere exhibits a higher corrosion potential than the oxygen atmosphere.

【0034】過酸化水素は高温状態では非常に不安定な
物質である。従って、図4に示すように、炉底部から測
定点までの距離が長くなる程、炉内で生成された過酸化
水素は分解され、酸素への転化率が大きくなり、その結
果、腐食電位は低くなる。
Hydrogen peroxide is a very unstable substance at high temperature. Therefore, as shown in FIG. 4, as the distance from the bottom of the furnace to the measurement point becomes longer, the hydrogen peroxide generated in the furnace is decomposed and the conversion rate to oxygen becomes larger, and as a result, the corrosion potential becomes Get lower.

【0035】図5は原子炉底部近くの腐食電位に対する
水素注入効果の違いを表したものである。原子炉底部近
傍の腐食電位の応答は、その測定位置によって大きく異
なることが分かった。
FIG. 5 shows the difference in hydrogen injection effect on the corrosion potential near the bottom of the reactor. It was found that the response of the corrosion potential near the bottom of the reactor varies greatly depending on the measurement position.

【0036】本発明は以上の知見に基づくものであり、
原子炉内腐食環境を評価する場合には、その測定点を考
慮する必要がある。原子炉底部材料の腐食電位を評価す
る場合、腐食電位の測定点をできるだけ炉底部に近づけ
ることによって、解析により原子炉底部の腐食電位を精
度よく求めることができる。従って、図1で腐食電位の
測定点である腐食電位電極11aはできるだけ原子炉ボ
トムドレン系の上流側に設置して原子炉底部に近づける
ことが望ましい。
The present invention is based on the above findings,
When evaluating the corrosive environment in a nuclear reactor, it is necessary to consider the measurement point. When evaluating the corrosion potential of the reactor bottom material, the corrosion potential of the reactor bottom can be accurately obtained by analysis by bringing the measurement point of the corrosion potential as close as possible to the reactor bottom. Therefore, it is desirable to install the corrosion potential electrode 11a, which is the measurement point of the corrosion potential in FIG. 1, as close to the reactor bottom as possible by installing it on the upstream side of the reactor bottom drain system.

【0037】また特開平6−174891 号公報では炉心部で
腐食電位を測定することが記載されているが、この位置
での計測は水質以外に照射の直接の影響を受けるため必
ずしも原子炉底部の水質を反映しない。したがって本発
明に示すような原子炉ボトムドレン系の上流側での腐食
電位の測定が必要である。
Further, JP-A-6-174891 describes that the corrosion potential is measured at the core part, but the measurement at this position is not necessarily affected by the water quality but is directly affected by irradiation, so that it is not always necessary to measure the corrosion potential at the bottom of the reactor. Does not reflect water quality. Therefore, it is necessary to measure the corrosion potential on the upstream side of the reactor bottom drain system as shown in the present invention.

【0038】一方、水素を注入することにより原子炉底
部の水質を管理し、腐食環境の緩和を図る場合、原子炉
底部のSCC抑制はさることながら主蒸気系線量率とい
った、好影響及び悪影響の両面を考慮した上で、腐食電
位の制御範囲を把握することが重要である。
On the other hand, when the water quality at the bottom of the reactor is controlled by injecting hydrogen to mitigate the corrosive environment, the SCC at the bottom of the reactor is suppressed and the positive and negative effects such as the main steam system dose rate are reduced. It is important to understand the control range of the corrosion potential after considering both sides.

【0039】図6に前の文献に報告されている実験デー
タ及び解析により得られた、ステンレス鋼の腐食電位と
き裂進展速度の関係を示す。また、通常のプラントにお
ける原子炉底部ステンレス鋼の腐食電位とき裂進展速度
の領域を併せて示す。通常のプラントで原子炉底部のス
テンレス鋼の腐食電位は0.2V 程度、き裂進展速度
は、300mils/yr.〜400mils/yr.である。従っ
て、水素を注入することにより、ステンレス鋼の腐食電
位を0.1V 以下に下げるとき裂進展速度は150mils
/yr.以下に低下し、水素を注入しない通常の場合の1
/2以下のき裂進展速度に低下させることが可能である
ことが分かる。
FIG. 6 shows the relationship between the corrosion potential and the crack growth rate of stainless steel obtained from the experimental data and analysis reported in the above literature. In addition, the regions of corrosion potential and crack growth rate of the reactor bottom stainless steel in an ordinary plant are also shown. In an ordinary plant, the corrosion potential of stainless steel at the bottom of a nuclear reactor is about 0.2 V, and the crack growth rate is 300 mils / yr.-400 mils / yr. Therefore, when the corrosion potential of stainless steel is lowered to 0.1 V or less by injecting hydrogen, the crack growth rate is 150 mils.
/ Yr. 1 in the normal case where hydrogen drops below and hydrogen is not injected
It is understood that it is possible to reduce the crack growth rate to / 2 or less.

【0040】図7には後の文献に報告されている電気出
力面で平均的な800MWe級BWRを対象として解析に
より求められた給水系の水素濃度と原子炉底部のステン
レス鋼の腐食電位の相関を、また、図8に給水系の水素
濃度と主蒸気系線量率の相関を示す。
FIG. 7 shows the correlation between the hydrogen concentration in the water supply system and the corrosion potential of the stainless steel at the bottom of the reactor, which was obtained by analysis targeting an average 800 MWe class BWR in terms of electric output reported in a later document. FIG. 8 shows the correlation between the hydrogen concentration in the water supply system and the main steam system dose rate.

【0041】また電気出力が500MWe級から110
0MWe級のBWRと異なる場合、また炉型が異なる場
合は水素注入による水質応答がことなるため腐食電位に
ついても数十%程度の差があるものと考えられるが基本
的には本発明の考え方は適用できる。
Further, the electric output is from 500 MWe class to 110
When the BWR of 0 MWe class is different, or when the reactor type is different, the water quality response due to hydrogen injection is different, so it is considered that there is a difference of about several tens of percent in the corrosion potential, but basically the idea of the present invention is Applicable.

【0042】さらに800MWe級BWRでは図7及び
図8より原子炉底部のステンレス鋼の腐食電位と主蒸気
線量率の相関は図9のように示されることが分かった。
Further, in the 800 MWe class BWR, it was found from FIGS. 7 and 8 that the correlation between the corrosion potential of the stainless steel at the bottom of the reactor and the main steam dose rate is as shown in FIG.

【0043】図9によれば代表的な800MWe級BW
Rの例では原子炉底部のステンレス鋼の腐食電位が−
0.1V 以下になると、主蒸気系の線量率は上昇し始
め、腐食電位が−0.2V 以下になると主蒸気線量率は
通常の場合の2倍以上の値になることが分かる。
According to FIG. 9, a typical 800 MWe class BW
In the case of R, the corrosion potential of stainless steel at the bottom of the reactor is −
It can be seen that the dose rate of the main steam system starts to rise at 0.1 V or lower, and the main steam dose rate becomes twice or more the value in the normal case when the corrosion potential becomes −0.2 V or lower.

【0044】以上に基づき、本実施例の運転方法の考え
方を図10は示すフローチャートにより述べる。すなわ
ち、水素を注入することにより、炉内腐食環境の緩和を
図るに際しては、水素の注入による原子炉底部のステン
レス鋼の腐食電位の低下といったプラス効果と水素の注
入による主蒸気系の線量率の上昇といったマイナス効果
の相反する両極面を考慮しながら、水素の注入量を設定
する。プラス効果は原子炉底部領域に存在する構造材料
のSCCき裂進展の遅延であり、耐SCC寿命を改善す
るために原子炉底部材料の腐食電位を0.1V 以下に低
下させる。一方、水素の注入による影響として懸念され
る主蒸気系の線量率の上昇を抑制しなければならず、そ
のためには腐食電位を−0.1V 以上に保つ必要があ
る。以上の考え方に基づいて、最適な量の水素を注入す
ることにより、主蒸気系の線量率を上昇させることなく
原子炉底部材料のき裂進展速度を低減させることができ
る。以上の本発明第1実施例により、沸騰水型原子力発
電プラントで、原子炉底部領域に存在するCRDハウジ
ング外面あるいはICMハウジング外面等の腐食電位を
正確に把握した上で制御できるので、原子炉底部の腐食
環境を緩和するのに最も適した注入量の水素により緩和
することができ、これにより、原子炉底部領域の構造物
の健全性を維持し、長寿命化を図ることができる。
Based on the above, the concept of the operating method of this embodiment will be described with reference to the flowchart shown in FIG. That is, when mitigating the in-reactor corrosive environment by injecting hydrogen, positive effects such as a decrease in the corrosion potential of the stainless steel at the bottom of the reactor due to hydrogen injection and the dose rate of the main steam system due to hydrogen injection The hydrogen injection amount is set while considering the opposite polar surfaces of negative effects such as increase. The positive effect is a delay in the SCC crack growth of the structural material present in the reactor bottom region, which lowers the corrosion potential of the reactor bottom material to below 0.1 V in order to improve the SCC resistance life. On the other hand, it is necessary to suppress the rise in the dose rate of the main steam system, which is a concern due to the influence of hydrogen injection, and in order to do so, it is necessary to keep the corrosion potential at -0.1 V or higher. Based on the above idea, by injecting an optimum amount of hydrogen, the crack growth rate of the reactor bottom material can be reduced without increasing the dose rate of the main steam system. According to the first embodiment of the present invention described above, in a boiling water nuclear power plant, the corrosion potential of the outer surface of the CRD housing or the outer surface of the ICM housing existing in the reactor bottom region can be accurately grasped and controlled. The amount of hydrogen most suitable for alleviating the corrosive environment can be mitigated by using hydrogen, and thus the soundness of the structure in the reactor bottom region can be maintained and the life can be extended.

【0045】次に本発明の第2実施例として水素の注入
量の設定を自動制御の場合について述べる。図11は本
発明の第2実施例の沸騰水型原子力発電プラントの系統
図である。
Next, as a second embodiment of the present invention, a case of automatically controlling the setting of the hydrogen injection amount will be described. FIG. 11 is a system diagram of a boiling water nuclear power plant according to the second embodiment of the present invention.

【0046】第2実施例のプラントは、第1実施例のプ
ラントに加え、原子炉底部の水質を自動制御するために
制御装置13が設けられた水素注入系55を備えてい
る。
In addition to the plant of the first embodiment, the plant of the second embodiment has a hydrogen injection system 55 provided with a controller 13 for automatically controlling the water quality at the bottom of the nuclear reactor.

【0047】以下、自動制御の操作法を述べる。バルブ
30は制御装置13から出力される電気信号に応じて開
度が制御されるものであり、制御装置13は腐食電位電
極11aにより測定された原子炉底部の腐食電位を腐食
電位計より入力される。制御装置13はバルブ30の開
度を制御するための電気信号を発生,出力し、これによ
り、原子炉底部の腐食電位を直接モニタリングしながら
制御することができる。
The automatic control operation method will be described below. The opening of the valve 30 is controlled according to the electric signal output from the control device 13, and the control device 13 inputs the corrosion potential of the reactor bottom measured by the corrosion potential electrode 11a from the corrosion potential meter. It The control device 13 generates and outputs an electric signal for controlling the opening degree of the valve 30, so that the corrosion potential of the bottom of the reactor can be directly monitored and controlled.

【0048】以上述べた自動制御によっても原子炉底部
材料の腐食電位を−0.1V 以上0.1V 以下になるよ
うに制御され第1実施例と同様の効果を得ることができ
る。
Even by the above-described automatic control, the corrosion potential of the reactor bottom material is controlled to be -0.1 V or more and 0.1 V or less, and the same effect as that of the first embodiment can be obtained.

【0049】また、予め試験または解析により求めた給
水系の水素濃度と原子炉底部材料の腐食電位の相関値を
用いて、腐食電位の測定に頼らず給水系の水素濃度を制
御することで同様の効果を達成できる。
Also, by using the correlation value between the hydrogen concentration of the water supply system and the corrosion potential of the reactor bottom material, which was previously obtained by a test or analysis, the hydrogen concentration of the water supply system can be controlled without depending on the measurement of the corrosion potential. The effect of can be achieved.

【0050】[0050]

【発明の効果】本発明によって、CRDハウジングある
いはICMハウジング等の原子炉底部領域に存在する機
器の腐食環境を主蒸気系線量率を上昇させることなく緩
和することができる。
According to the present invention, the corrosive environment of the equipment existing in the reactor bottom region such as the CRD housing or the ICM housing can be mitigated without increasing the main steam system dose rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の沸騰水型原子力発電プラ
ントの系統図。
FIG. 1 is a system diagram of a boiling water nuclear power plant according to a first embodiment of the present invention.

【図2】解析により求めた原子炉内水質分布を示す説明
図。
FIG. 2 is an explanatory diagram showing the water quality distribution in the reactor obtained by analysis.

【図3】実効酸素濃度とステンレス鋼の腐食電位の相関
を示す特性図。
FIG. 3 is a characteristic diagram showing a correlation between effective oxygen concentration and corrosion potential of stainless steel.

【図4】測定個所の違いによるステンレス鋼の腐食電位
への影響を示す特性図。
FIG. 4 is a characteristic diagram showing the influence on the corrosion potential of stainless steel due to the difference in measurement points.

【図5】測定個所の違いによるステンレス鋼の腐食電位
の水素注入効果の違いを示す特性図。
FIG. 5 is a characteristic diagram showing the difference in the hydrogen injection effect on the corrosion potential of stainless steel due to the difference in measurement points.

【図6】ステンレス鋼のき裂進展速度に対する腐食電位
の影響を表す特性図。
FIG. 6 is a characteristic diagram showing the effect of corrosion potential on the crack growth rate of stainless steel.

【図7】給水系の水素の濃度と原子炉底部ステンレス鋼
の腐食電位の相関を示す特性図。
FIG. 7 is a characteristic diagram showing the correlation between the hydrogen concentration in the water supply system and the corrosion potential of the stainless steel at the bottom of the reactor.

【図8】給水系の水素の濃度と主蒸気系線量率の相関を
示す特性図。
FIG. 8 is a characteristic diagram showing the correlation between the hydrogen concentration in the water supply system and the main steam system dose rate.

【図9】原子炉底部ステンレス鋼の腐食電位と主蒸気系
線量率の相関を示す特性図。
FIG. 9 is a characteristic diagram showing a correlation between a corrosion potential of stainless steel at the bottom of a nuclear reactor and a main steam system dose rate.

【図10】水素注入量設定の考え方を示すフローシー
ト。
FIG. 10 is a flow sheet showing the concept of setting the hydrogen injection amount.

【図11】本発明の第2実施例の沸騰水型原子力発電プ
ラントを示す系統図。
FIG. 11 is a system diagram showing a boiling water nuclear power plant according to a second embodiment of the present invention.

【図12】従来のオートクレーブ型の腐食電位測定装置
を示す説明図。
FIG. 12 is an explanatory view showing a conventional autoclave type corrosion potential measuring device.

【図13】本発明での腐食電位測定装置を示す説明図。FIG. 13 is an explanatory view showing a corrosion potential measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

1…原子炉、2…タービン、3…復水浄化装置、4…給
水加熱器、5…浄化系加熱器、6…濾過脱塩器、11a
…腐食電位電極、11b…データ収集装置、12…水素
供給源、13…制御装置、50…給水系、51…原子炉
再循環系、52…原子炉冷却材浄化系、53…原子炉ボ
トムドレン系、54…水素注入設備。
DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... Turbine, 3 ... Condensate purification device, 4 ... Feed water heater, 5 ... Purification system heater, 6 ... Filtration desalination device, 11a
... Corrosion potential electrode, 11b ... Data collection device, 12 ... Hydrogen supply source, 13 ... Control device, 50 ... Water supply system, 51 ... Reactor recirculation system, 52 ... Reactor coolant purification system, 53 ... Reactor bottom drain System, 54 ... Hydrogen injection equipment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大角 克己 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 伊部 英史 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 (72)発明者 大中 紀之 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Okano 3-1, 1-1 Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Hidefumi Ibe 7-2, Omika-cho, Hitachi-shi, Ibaraki No. 1 Incorporated company Hitachi, Ltd. Power & Electric Machinery Development Headquarters (72) Inventor Noriyuki Ohnaka 7-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】沸騰水型原子力発電プラントにおいて、原
子炉底部材料の腐食電位及び主蒸気系の線量率を測定
し、その腐食電位及び主蒸気系の線量率が所定の範囲内
になるように給水系に注入する水素濃度を制御すること
を特徴とする水素注入システム。
1. In a boiling water nuclear power plant, the corrosion potential of the reactor bottom material and the dose rate of the main steam system are measured so that the corrosion potential and the dose rate of the main steam system fall within a predetermined range. A hydrogen injection system characterized by controlling the concentration of hydrogen injected into a water supply system.
【請求項2】請求項1において、前記原子炉底部材料の
腐食電位が−0.1V 標準水素電極電位以上0.1V 以
下になるように水素濃度を抑制することを特徴とする水
素注入システム。
2. The hydrogen injection system according to claim 1, wherein the hydrogen concentration is controlled so that the corrosion potential of the reactor bottom material is not less than −0.1V standard hydrogen electrode potential and not more than 0.1V.
【請求項3】請求項1において、予め試験または解析に
より求めた給水系の水素濃度と原子炉底部材料の腐食電
位の相関値を用いて、腐食電位の測定に頼らず給水系の
水素濃度を制御する水素注入システム。
3. The hydrogen concentration of the water supply system according to claim 1, wherein the correlation value between the hydrogen concentration of the water supply system and the corrosion potential of the material at the bottom of the reactor, which is previously obtained by a test or an analysis, is used, and the hydrogen concentration of the water supply system is Controlling hydrogen injection system.
JP8028957A 1996-02-16 1996-02-16 Hydrogen injection system Pending JPH09222495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8028957A JPH09222495A (en) 1996-02-16 1996-02-16 Hydrogen injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8028957A JPH09222495A (en) 1996-02-16 1996-02-16 Hydrogen injection system

Publications (1)

Publication Number Publication Date
JPH09222495A true JPH09222495A (en) 1997-08-26

Family

ID=12262906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8028957A Pending JPH09222495A (en) 1996-02-16 1996-02-16 Hydrogen injection system

Country Status (1)

Country Link
JP (1) JPH09222495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574295B2 (en) 2001-02-23 2003-06-03 Hitachi, Ltd. Boiling water type nuclear reactor use control rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574295B2 (en) 2001-02-23 2003-06-03 Hitachi, Ltd. Boiling water type nuclear reactor use control rod

Similar Documents

Publication Publication Date Title
CA3019058C (en) Power plant chemical control system
Moan et al. Leak-before-break in the pressure tubes of CANDU reactors
US5398268A (en) Nuclear power plant having a water chemistry control system for a primary cooling system thereof and an operation method thereof
JP2009036558A (en) Method of monitoring stress corrosion crack, and management method of plant
JPH09222495A (en) Hydrogen injection system
JP4340574B2 (en) Reducing nitrogen compound injection operation method for nuclear power plant
JP3400518B2 (en) Water quality control method for boiling water nuclear power plant
JPH10111286A (en) Evaluation of water quality of reactor water of nuclear reactor
JP3270200B2 (en) Reactor pressure vessel furnace bottom water quality measurement system
JPS63290994A (en) Device for calculating performance of reactor core
JP3485994B2 (en) Reactor water sampling equipment
JPS63231298A (en) Hydrogen injection method of boiling water type reactor
JPH05256993A (en) Hydrogen injection method for boiling water reactor
RU2486613C1 (en) Method to control speed of corrosion of coolant circuit in nuclear uranium and graphite reactor
JP2006029940A (en) Hydrogen injection method for boiling water type nuclear power plant
JP2654050B2 (en) Nuclear power plant
McNeil Irradiation assisted stress corrosion cracking
JPH0385495A (en) Nuclear power plant
JPH0721554B2 (en) Control device for hydrogen injection into reactor
JP2005024264A (en) Corrosion suppression method and system for reactor structure member
JP4612590B2 (en) Method for suppressing radioactive release from the surface of a fuel cladding tube
JP5502824B2 (en) Corrosion potential measuring device and corrosion potential measuring method for nuclear power plant
JPS5927295A (en) Auxiliary machine coolant system of atomic power plant
Selig et al. Sleeve welding provides reliable steam-generator repair
Turluer et al. The French regulatory experience and views on nickel-base alloy PWSCC prevention and treatment