JP2654050B2 - Nuclear power plant - Google Patents

Nuclear power plant

Info

Publication number
JP2654050B2
JP2654050B2 JP63021193A JP2119388A JP2654050B2 JP 2654050 B2 JP2654050 B2 JP 2654050B2 JP 63021193 A JP63021193 A JP 63021193A JP 2119388 A JP2119388 A JP 2119388A JP 2654050 B2 JP2654050 B2 JP 2654050B2
Authority
JP
Japan
Prior art keywords
reactor
water
dissolved oxygen
condensate
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63021193A
Other languages
Japanese (ja)
Other versions
JPH01197698A (en
Inventor
亮 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63021193A priority Critical patent/JP2654050B2/en
Publication of JPH01197698A publication Critical patent/JPH01197698A/en
Application granted granted Critical
Publication of JP2654050B2 publication Critical patent/JP2654050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子力プラント、特に原子炉一次系の炉水導
電率を制御して運転し、材料健全性を一層堅固に維持す
るようにした原子力プラントに係る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention operates by controlling the reactor water conductivity of a nuclear power plant, especially a primary reactor system, and maintains the soundness of materials more firmly. The present invention relates to a nuclear power plant.

(従来の技術) 原子力プラントの冷却材はその運転中高温高圧の状態
にあり、構造材料にとっては厳しい環境条件であり、構
造材料の腐食挙動が重要な問題となっている。特に沸騰
水型原子炉(以下BWRと呼ぶ)では、オーステナイト系
ステンレス鋼配管溶接部等の応力腐食割れ{以下SCC(S
tress Corossion Crackingの略)と呼ぶ}現象を生じた
例がある。
(Prior Art) The coolant of a nuclear power plant is in a state of high temperature and high pressure during operation, which is a severe environmental condition for structural materials, and the corrosion behavior of structural materials is an important problem. Particularly in a boiling water reactor (hereinafter referred to as BWR), stress corrosion cracking of austenitic stainless steel pipe welds etc. {below SCC (S
tress Corossion Cracking).

上記のSCC現象は、3つの要因すなわち材料、応力、
環境が重畳した時に発生するものとされている。材料の
因子としては、SUS304系ステンレス鋼溶接部という条件
がある。すなわち、溶接部には溶接時の熱影響によって
炭化クロムが析出するため、クロム欠乏層が生じており
これが耐力低下の原因となっている。また、応力につい
ても溶接時の熱による部材に対する残留熱応力が問題と
なっており、溶接法の改善による残留応力除去が図られ
ている。さらに、環境側の因子としては、高温水という
腐食環境下に加えて塩素イオン等の不純物や、溶存酸素
等が存在することがあげられる。
The SCC phenomenon described above has three factors: material, stress,
It is supposed to occur when the environment overlaps. As a material factor, there is a condition of a SUS304 stainless steel welded portion. That is, since chromium carbide precipitates in the welded portion due to the thermal effect during welding, a chromium-deficient layer is formed, which causes a reduction in proof stress. Also, regarding the stress, residual thermal stress on the member due to heat during welding is becoming a problem, and the removal of residual stress by improving the welding method is being attempted. Further, factors on the environmental side include the presence of impurities such as chlorine ions and dissolved oxygen in addition to the corrosive environment of high-temperature water.

原子力プラントにおいては、原子炉冷却材の水質管理
が厳重になされており、BWRプラントの一次水系は極力
中性純水に保たれるようになっている。一方、溶存酸素
については次のような問題がある。すなわち、炉心では
水の放射線分解により絶えず酸素が生成されており、20
0〜300ppb程度の溶存酸素の存在は避けられないことで
ある。
At nuclear power plants, the water quality of the reactor coolant is strictly controlled, and the primary water system of BWR plants is kept as neutral as possible. On the other hand, dissolved oxygen has the following problems. In other words, oxygen is constantly generated in the core by radiolysis of water.
The existence of dissolved oxygen of about 0 to 300 ppb is inevitable.

従って、SCCに対する環境因子としては、不純物の存
在もさることながら、溶存酸素の存在がより重要となっ
ている。因に、原子炉運転時の炉水温度(285℃)にお
いては、SCC感受性のある材料にSCCを発生させるには、
200ppb程度の溶存酸素で十分である。
Therefore, as an environmental factor for SCC, the presence of dissolved oxygen is more important than the presence of impurities. However, at the reactor water temperature during reactor operation (285 ° C), to generate SCC in SCC-sensitive materials,
About 200 ppb of dissolved oxygen is sufficient.

近年、上記のSCC対策として原子炉炉水への水素注入
技術が開発され、材料面からの対策を施し難い一部のBW
Rプラントで実用化されている。この技術は原子炉炉水
中に水素を注入して炉水を水素過剰の還元性とし、放射
線存在下で放射線化学的に酸素と水素とを再結合させる
ことにより、炉水中の溶存酸素濃度を低減させるもので
ある。
In recent years, hydrogen injection technology into reactor water has been developed as a countermeasure for the above-mentioned SCC, and some BWs where it is difficult to take countermeasures from the material side
It has been put to practical use in the R plant. This technology reduces the concentration of dissolved oxygen in the reactor water by injecting hydrogen into the reactor water to make the reactor water excessive in reducing hydrogen and by radiochemically recombining oxygen and hydrogen in the presence of radiation. It is to let.

既設のプラント(米国ドレスデ1号炉)における水素
注入の例を第3図、第4図につき説明する。第3図は前
記BWRプラントの系統図を示す。この図において、炉心
1は原子炉圧力容器2内に収容され、炉心1で発生した
蒸気はタービン3で仕事をした後、復水器4に導かれこ
こで冷却凝縮されて復水する。この復水は復水ポンプ
5、復水浄化系6、高圧復水ポンプ7、給水加熱器8、
給水ポンプ9を経て昇温、加圧され、原子炉圧力容器2
に注入される。一方、原子炉圧力容器2内の炉水はその
一部または全部が原子炉再循環ポンプ10によって再循環
されている。この再循環により炉心流量は強制的に増大
され、より多くの熱が炉心1から除去される。
An example of hydrogen injection into an existing plant (Dressde No. 1 reactor in the United States) will be described with reference to FIGS. FIG. 3 shows a system diagram of the BWR plant. In this figure, a reactor core 1 is accommodated in a reactor pressure vessel 2, and steam generated in the reactor core 1 is worked by a turbine 3, then guided to a condenser 4, where it is cooled and condensed and condensed. This condensate is condensate pump 5, condensate purification system 6, high pressure condensate pump 7, feed water heater 8,
The temperature is increased and pressurized through the water supply pump 9, and the reactor pressure vessel 2
Is injected into. On the other hand, part or all of the reactor water in the reactor pressure vessel 2 is recirculated by the reactor recirculation pump 10. This recirculation forces the core flow to be increased and more heat is removed from the core 1.

而して、前記BWRプラントにおける水素注入は復水浄
化系6と高圧復水ポンプ7との間の注入点11でなされて
いる。
Thus, hydrogen injection in the BWR plant is performed at an injection point 11 between the condensate purification system 6 and the high-pressure condensate pump 7.

第4図は前記プラントの水素注入試験における溶存酸
素低減効果を示す線図である。この図において、縦軸は
再循環系で採取した炉水中の溶存酸素濃度(ppb)、横
軸は給水溶存水素濃度(ppb)であり、この図から給水
中の水素濃度がたかまるにつれ炉水中の溶存酸素濃度が
低減される状況が分かる。なお、図中□印は原子炉出力
81%時の値を、■印は同95%時の値をそれぞれ示してい
る。
FIG. 4 is a diagram showing a dissolved oxygen reduction effect in a hydrogen injection test of the plant. In this figure, the vertical axis is the dissolved oxygen concentration (ppb) in the reactor water collected in the recirculation system, and the horizontal axis is the dissolved hydrogen concentration (ppb) in the feed water. From this figure, as the hydrogen concentration in the feed water increases, It can be seen that the dissolved oxygen concentration is reduced. The symbol in the figure indicates the reactor power.
The value at 81% is shown, and the symbol at そ れ ぞ れ indicates the value at 95%.

上記の水素注入試験においては、水素注入による溶存
酸素濃度低減効果の指標を原子炉炉水(但し再循環系よ
り採取)中溶存酸素濃度に求めており、SCCの発生を抑
制するためには前記指標値を20ppb以下とすることが必
要であるとされている。しかし、この値は前記の試験に
限ってのものであり、プラントによって異なり、一般的
に通用する基準値は定められていない。
In the above hydrogen injection test, an index of the effect of reducing the dissolved oxygen concentration by hydrogen injection is determined from the dissolved oxygen concentration in the reactor water (taken from the recirculation system). It is necessary to set the index value to 20 ppb or less. However, this value is limited to the above-described test, differs from plant to plant, and a generally accepted reference value has not been determined.

一方、一部のプラントでは溶存酸素濃度に加えて材料
(SUS304ステンレス鋼)の腐食電位の測定がなされてい
る。この測定は、環境中に暴露された試料電極の腐食電
位を測定し、これによって水素注入の効果を把握しよう
とするものである。この腐食電位がある値如何になる
と、SCCの発生が抑制されるものとされている。この腐
食電位は水素注入効果のもう一つの重要な指標であり、
前記のように溶存酸素濃度との併用ではなく、これのみ
による炉水水質管理を行うことも可能である。
On the other hand, some plants measure the corrosion potential of the material (SUS304 stainless steel) in addition to the dissolved oxygen concentration. In this measurement, the corrosion potential of a sample electrode exposed to the environment is measured, and thereby the effect of hydrogen injection is grasped. It is said that the occurrence of SCC is suppressed when the corrosion potential reaches a certain value. This corrosion potential is another important indicator of the hydrogen injection effect,
As described above, it is also possible to control the reactor water quality only by using the dissolved oxygen concentration instead of using it together.

(発明が解決しようとする課題) 従来から行われている水素注入法においては、水素注
入の効果を表す指標として炉水中の溶存酸素濃度および
または材料腐食電位を採用している。すなわち、それ等
の値がある値以下となるまで腐食環境が抑えられれば、
SCCの発生は抑制されるとするものである。
(Problems to be Solved by the Invention) In a conventional hydrogen injection method, a dissolved oxygen concentration in reactor water and / or a material corrosion potential is adopted as an index indicating an effect of hydrogen injection. That is, if the corrosive environment is suppressed until those values fall below a certain value,
It is assumed that the occurrence of SCC is suppressed.

しかしながら、SCC発生限界に影響を与えるもう一つ
の大きな水質因子として導電率がある。炉水の導電率を
支配するのは炉水中の不純物イオンであり、この不純物
イオンの種類にもよるが一般に導電率が高い程SCCが発
生し易いことが認められている。このSCC発生に関与す
る導電率の値はプラントによって異なり、個々のプラン
トに通用する一般的な値を求めることはできない。従っ
て、同じ値の溶存酸素濃度、材料腐食電位の環境であっ
てもあるプラントでは腐食感受性を示しまたは示さない
ことがある。逆に云えばSCC発生限界を示す溶存酸素濃
度、材料腐食電位の値が個々のプラント毎に異なること
となる。
However, another major water quality factor affecting SCC limits is conductivity. It is recognized that the conductivity of the reactor water is dominated by impurity ions in the reactor water. Depending on the type of the impurity ions, it is generally recognized that the higher the conductivity, the more easily SCC is generated. The value of the conductivity involved in the SCC generation varies from plant to plant, and a general value that can be applied to each plant cannot be obtained. Therefore, even in an environment with the same value of dissolved oxygen concentration and material corrosion potential, some plants may or may not exhibit corrosion susceptibility. Conversely, the values of the dissolved oxygen concentration and the material corrosion potential, which indicate the SCC generation limit, differ for each plant.

一方、水素注入条件下では炉水が酸化性環境から還元
性環境に変化するため、O−16の(n、p)反応で生じ
る放射性N−16の化合物の化学形態が揮発性に変化す
る。その結果、主蒸気系の放射線量率が上昇する副次的
な影響を生じ、運転中の従業員の被曝量の増加、プラン
ト敷地境界におけるスカイシャイン線量率の上昇等の問
題を生じることとなる。第5図は水素注入量と主蒸気系
放射線量率との関係を示す線図で、縦軸は主蒸気系放射
線量率(相対値)、横軸は水素注入量(任意単位)とし
てある。
On the other hand, under hydrogen injection conditions, the reactor water changes from an oxidizing environment to a reducing environment, so that the chemical form of the radioactive N-16 compound generated by the (n, p) reaction of O-16 changes to volatile. As a result, there is a side effect of increasing the radiation dose rate of the main steam system, which causes problems such as an increase in the exposure of operating employees and an increase in the skyshine dose rate at the plant site boundary. . FIG. 5 is a diagram showing the relationship between the hydrogen injection amount and the main steam-based radiation dose rate. The vertical axis represents the main steam-based radiation dose rate (relative value), and the horizontal axis represents the hydrogen injection amount (arbitrary unit).

本発明は上記の事情に基づきなされたもので、炉水の
導電率制御を主とし、溶存酸素濃度、材料腐食電位の制
御を従としてSCC発生を抑制し、前記の各問題を解決し
た原子力プラントを提供することを目的としている。
The present invention has been made based on the above-described circumstances, and mainly relates to control of electric conductivity of reactor water, dissolved oxygen concentration, suppression of SCC generation by controlling material corrosion potential, and a nuclear power plant that has solved the above-mentioned problems. It is intended to provide.

[発明の構成] (課題を解決するための手段) 本発明の原子力プラントは、原子炉圧力容器と、この
原子炉圧力容器内に収容された炉心と、炉心で発生した
蒸気を導く主蒸気系と、前記原子炉圧力容器内の冷却材
を再循環させる再循環系と、主蒸気系の蒸気に仕事をさ
せるタービンと、このタービンから排出される蒸気を復
水させる復水器と、この復水を前記原子炉圧力容器に送
り込むものであって高圧復水ポンプ、復水浄化系、低圧
復水ポンプ、給水加熱器、給水ポンプを含む給水系と、
この給水系の前記復水浄化系と低圧復水ポンプとの間に
注入する水素注入設備とを有するものにおいて、前記原
子炉再循環系の炉水を浄化して前記原子炉圧力容器内に
戻す原子炉冷却材浄化系と、この原子炉冷却材浄化系に
流入する前の再循環系の炉水の導電率、溶存酸素濃度を
測定し、その測定結果及び導電率・溶存酸素相関曲線に
より水素注入量を決定し、炉水の導電率を0.1μs/cm以
下に保持する試料分析ラックとを設けたことを特徴とす
る。
[Structure of the Invention] (Means for Solving the Problems) A nuclear power plant of the present invention includes a reactor pressure vessel, a reactor core housed in the reactor pressure vessel, and a main steam system for guiding steam generated in the reactor core. A recirculation system that recirculates coolant in the reactor pressure vessel, a turbine that works on steam in the main steam system, a condenser that condenses steam discharged from the turbine, A water supply system that feeds water into the reactor pressure vessel and includes a high-pressure condensate pump, a condensate purification system, a low-pressure condensate pump, a feedwater heater, and a feedwater pump;
A hydrogen injection system for injecting water between the condensate purification system and the low-pressure condensate pump of the water supply system, wherein the reactor water of the reactor recirculation system is purified and returned to the reactor pressure vessel. Measure the conductivity and dissolved oxygen concentration of the reactor water in the reactor coolant purification system and the recirculation system before flowing into the reactor coolant purification system, and measure the hydrogen based on the measurement results and the conductivity / dissolved oxygen correlation curve. A sample analysis rack for determining the injection amount and maintaining the conductivity of the reactor water at 0.1 μs / cm or less is provided.

(作用) 原子炉一次系材料であるSUS304鋭敏化材のSCCについ
て、その発生限界を溶存酸素および導電率の2つの環境
因子の相関について調べたところ、溶存酸素濃度がある
レベル以上になると、BWRの運転条件下ではオーステナ
イト系ステンレス鋼にSCCに対する感受性が現れるこ
と、その発生限界は溶存酸素濃度が高い程低くなってい
ることが分かった。さらに、導電率が低くなると溶存酸
素濃度がある程度高くなっていてもSCC感受性は見られ
ず、特に導電率0.1μs/cm以下では溶存酸素濃度100ppb
以上でもSCC感受性が見られないことも分かった。
(Action) The SCC of SUS304 sensitized material, which is the primary material of the reactor, was examined for its generation limit in relation to the two environmental factors of dissolved oxygen and conductivity. When the dissolved oxygen concentration exceeded a certain level, the BWR It was found that the austenitic stainless steel exhibited sensitivity to SCC under the operating conditions of, and its generation limit was lower as the dissolved oxygen concentration was higher. Furthermore, even if the dissolved oxygen concentration is somewhat high when the conductivity is low, no SCC sensitivity is observed, especially when the conductivity is 0.1 μs / cm or less, the dissolved oxygen concentration is 100 ppb.
It was also found that no SCC sensitivity was observed.

一般に我国のBWRプラントの溶存酸素濃度は100〜200p
pbであり、上記の結果から炉水の導電率を0.1μs/cm以
下に保っておけば、SCCの発生はないこととなる。ま
た、万一0.1μs/cm以下の導電率であるにもかかわら
ず、SCCの発生があった場合には僅かな量の水素注入を
行うことにより、SCCの発生しない範囲に水質を改善す
ることができる。
Generally, the dissolved oxygen concentration of BWR plants in Japan is 100-200p
From the above results, if the conductivity of the reactor water is kept at 0.1 μs / cm or less, no SCC is generated. In the unlikely event that the SCC is generated even though the conductivity is 0.1 μs / cm or less, a small amount of hydrogen should be injected to improve the water quality to a range where SCC does not occur. Can be.

(実施例) 第3図と同一部分には同一符号を付した第1図は本発
明一実施例の系統図である。但し、この図においてはタ
ービンは高圧タービン3a、低圧タービン3bとして示して
ある。原子炉再循環系12から分岐して原子炉冷却材浄化
系13が設置され、浄化された炉水は原子炉圧力容器2に
戻される。また、前記原子炉冷却材浄化系13からはサン
プリングライン14により炉水がサンプリングされ、サン
プリングされた炉水には試料分析ラック15において導電
率、溶存酸素濃度等の測定が施される。図中、16は水素
注入設備を示している。
(Embodiment) FIG. 1 is a system diagram of one embodiment of the present invention, in which the same parts as those in FIG. However, in this figure, the turbines are shown as a high-pressure turbine 3a and a low-pressure turbine 3b. A reactor coolant purification system 13 branches from the reactor recirculation system 12, and the purified reactor water is returned to the reactor pressure vessel 2. Reactor water is sampled from the reactor coolant purification system 13 by a sampling line 14, and the sampled reactor water is subjected to measurement of conductivity, dissolved oxygen concentration, and the like in a sample analysis rack 15. In the figure, reference numeral 16 denotes a hydrogen injection facility.

なお、前記の試料分析ラック15は溶存酸素濃度および
炉水伝導率を測定するが、炉水導電率の測定結果により
前記原子炉冷却材浄化系を制御し、炉水伝導率が0.1μs
/cmを超えないように水質を管理するようになってい
る。
The sample analysis rack 15 measures the dissolved oxygen concentration and the reactor water conductivity.The reactor coolant purification system is controlled based on the measurement result of the reactor water conductivity, and the reactor water conductivity is 0.1 μs.
Water quality is controlled so that it does not exceed / cm.

第2図は原子炉一次系材料であるSUS304鋭敏化材のSC
Cについて、その発生限界を溶存酸素および導電率の2
つの環境因子の相関について調べた実験データを示すも
ので、導電率・溶存酸素相関曲線という■はSCC発生を
また□はSCCなしをそれぞれ示している。この図から溶
存酸素濃度があるレベル以上になると、BWRの運転条件
下ではオーステナイト系ステンレス鋼にSCCに対する感
受性が現れること、その発生限界は溶存酸素濃度が高い
程低くなっていることが分かる。さらに、導電率が低く
なると溶存酸素濃度がある程度高くなっていてもSCC感
受性は見られず、特に導電率0.1μs/cm以下では溶存酸
素濃度100ppb以上でもSCC感受性が見られないことも分
かる。
Fig. 2 shows SC of SUS304 sensitized material which is the primary material of nuclear reactor
For C, its emission limit is defined as the dissolved oxygen and conductivity.
The experimental data obtained by examining the correlation between two environmental factors are shown. The ■ in the conductivity / dissolved oxygen correlation curve indicates the occurrence of SCC, and the □ indicates no SCC. From this figure, it can be seen that when the dissolved oxygen concentration exceeds a certain level, the austenitic stainless steel exhibits sensitivity to SCC under the operating conditions of the BWR, and that the generation limit decreases as the dissolved oxygen concentration increases. Furthermore, it can be seen that SCC sensitivity is not observed when the conductivity is low even if the dissolved oxygen concentration is somewhat high, and that SCC sensitivity is not observed even when the dissolved oxygen concentration is 100 ppb or more when the conductivity is 0.1 μs / cm or less.

一般に我国のBWRプラントの溶存酸素濃度は100〜200p
pbであり、第2図から炉水の導電率を0.1μs/cm以下に
保っておけば、SCCの発生はないこととなる。また、万
一0.1μs/cm以下の導電率であるにもかかわらず、SCCの
発生があった場合には僅かな量の水素注入を行うことに
より、SCCの発生しない範囲に水質を改善することがで
きる。
Generally, the dissolved oxygen concentration of BWR plants in Japan is 100-200p
In FIG. 2, if the conductivity of the reactor water is kept at 0.1 μs / cm or less, no SCC is generated. In the unlikely event that the SCC is generated even though the conductivity is 0.1 μs / cm or less, a small amount of hydrogen should be injected to improve the water quality to a range where SCC does not occur. Can be.

[発明の効果] 上記から明らかなように本発明の原子力プラントにお
いては、炉水の導電率を管理するだけで溶存酸素を水に
するための水素注入を全く必要としないか、もし注入す
るとしても極めて微小な量でよく、主蒸気系のN−16に
よる放射線量率の上昇割合を抑制することができる。ま
た、その結果従業員の被曝量の低下を図ることができ、
プラント敷地境界におけるスカイシャイン線量率の上昇
を抑制することができる。このことは第5図の線図にも
示されている。
[Effects of the Invention] As is clear from the above, in the nuclear power plant of the present invention, hydrogen injection for converting dissolved oxygen into water is not required at all just by controlling the conductivity of reactor water, or if injection is performed, May be extremely small, and the rate of increase of the radiation dose rate by N-16 in the main steam system can be suppressed. Also, as a result, the exposure of employees can be reduced,
An increase in the skyshine dose rate at the plant site boundary can be suppressed. This is also shown in the diagram of FIG.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明一実施例の系統図、第2図は鋭敏化ステ
ンレス鋼のSCC発生限界におよぼす導電率と溶存酸素濃
度との相関を示す線図、第3図は従来の原子力プラント
の系統図、第4図は前記プラントの水素注入試験におけ
る溶存酸素低減効果を示す線図、第5図は水素注入量と
主蒸気系放射線量率との関係を示す線図である。 1……炉心、2……原子炉圧力容器、3……タービン、
3a……高圧タービン、3b……低圧タービン、4……復水
器、5……高圧復水ポンプ、6……復水浄化系、7……
低圧復水ポンプ、8……給水加熱器、9……給水ポン
プ、10……再循環ポンプ、11……注入点、12……原子炉
再循環系、13……原子炉冷却材浄化系、14……サンプリ
ングライン、15……試料分析ラック、16……水素注入設
FIG. 1 is a system diagram of one embodiment of the present invention, FIG. 2 is a diagram showing the correlation between the conductivity and the dissolved oxygen concentration which affect the SCC generation limit of sensitized stainless steel, and FIG. 3 is a diagram of a conventional nuclear power plant. FIG. 4 is a system diagram, FIG. 4 is a diagram showing a dissolved oxygen reduction effect in a hydrogen injection test of the plant, and FIG. 5 is a diagram showing a relationship between the hydrogen injection amount and the main steam radiation dose rate. 1 ... core, 2 ... reactor pressure vessel, 3 ... turbine,
3a High-pressure turbine, 3b Low-pressure turbine, 4 Condenser, 5 High-pressure condensate pump, 6 Condensate purification system, 7
Low-pressure condensate pump, 8: Feed water heater, 9: Feed water pump, 10: Recirculation pump, 11: Injection point, 12: Reactor recirculation system, 13: Reactor coolant purification system, 14 ... Sampling line, 15 ... Sample analysis rack, 16 ... Hydrogen injection equipment

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子炉圧力容器と、この原子炉圧力容器内
に収容された炉心と、炉心で発生した蒸気を導く主蒸気
系と、前記原子炉圧力容器内の冷却材を再循環させる再
循環系と、主蒸気系の蒸気に仕事をさせるタービンと、
このタービンから排出される蒸気を復水させる復水器
と、この復水を前記原子炉圧力容器に送り込むものであ
って高圧復水ポンプ、復水浄化系、低圧復水ポンプ、給
水加熱器、給水ポンプを含む給水系と、この給水系の前
記復水浄化系と低圧復水ポンプとの間に注入する水素注
入設備とを有するものにおいて、前記原子炉再循環系の
炉水を浄化して前記原子炉圧力容器内に戻す原子炉冷却
材浄化系と、この原子炉冷却材浄化系に流入する前の再
循環系の炉水の導電率、溶存酸素濃度を測定し、その測
定結果及び導電率・溶存酸素相関曲線により水素注入量
を決定し、炉水の導電率を0.1μs/cm以下に保持する試
料分析ラックとを設けたことを特徴とする原子力プラン
ト。
1. A reactor pressure vessel, a reactor core housed in the reactor pressure vessel, a main steam system for guiding steam generated in the reactor core, and a recirculation system for recirculating a coolant in the reactor pressure vessel. A circulation system, a turbine that works on the steam of the main steam system,
A condenser for condensing steam discharged from the turbine, and a condenser for sending the condensate to the reactor pressure vessel, wherein the high-pressure condensate pump, the condensate purification system, the low-pressure condensate pump, the feed water heater, A water supply system including a water supply pump, and a hydrogen injection facility for injecting the condensate between the condensate purification system and the low-pressure condensate pump of the water supply system, wherein the reactor water of the reactor recirculation system is purified. The reactor coolant purification system to be returned into the reactor pressure vessel, and the conductivity and dissolved oxygen concentration of the reactor water in the recirculation system before flowing into the reactor coolant purification system were measured. A nuclear power plant comprising: a sample analysis rack for determining a hydrogen injection amount based on a rate / dissolved oxygen correlation curve and maintaining a reactor water conductivity of 0.1 μs / cm or less.
JP63021193A 1988-02-02 1988-02-02 Nuclear power plant Expired - Lifetime JP2654050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63021193A JP2654050B2 (en) 1988-02-02 1988-02-02 Nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021193A JP2654050B2 (en) 1988-02-02 1988-02-02 Nuclear power plant

Publications (2)

Publication Number Publication Date
JPH01197698A JPH01197698A (en) 1989-08-09
JP2654050B2 true JP2654050B2 (en) 1997-09-17

Family

ID=12048124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021193A Expired - Lifetime JP2654050B2 (en) 1988-02-02 1988-02-02 Nuclear power plant

Country Status (1)

Country Link
JP (1) JP2654050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808970B2 (en) * 1992-03-19 1998-10-08 株式会社日立製作所 Nuclear power plant, its water quality control method and its operation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137594A (en) * 1976-05-12 1977-11-17 Toshiba Corp Water quality monitoring system in atomic power plant
JPS62209349A (en) * 1986-03-11 1987-09-14 Nippon Atom Ind Group Co Ltd Apparatus for monitoring corrosive environment
JPH0721554B2 (en) * 1986-04-26 1995-03-08 株式会社東芝 Control device for hydrogen injection into reactor

Also Published As

Publication number Publication date
JPH01197698A (en) 1989-08-09

Similar Documents

Publication Publication Date Title
Guzonas et al. Supercritical water-cooled reactor materials–Summary of research and open issues
Hillner Corrosion of zirconium-base alloys—an overview
US5719911A (en) System for monitoring noble metal distribution in reactor circuit during plant application
JP2654050B2 (en) Nuclear power plant
Yeh et al. The efficiency of noble metals in reducing the corrosion potential in the primary coolant circuits of boiling water reactors operating under hydrogen water chemistry operation
JP3270200B2 (en) Reactor pressure vessel furnace bottom water quality measurement system
Ishigure et al. Water chemistry experience of nuclear power plants in Japan
Garzarolli et al. In-reactor testing of IASCC resistant stainless steels
Devendra et al. A Review on Noble Metals in Controlling Intergranular Stress Corrosion Cracking in BWRs
JPH06167596A (en) Corrosion suppression method and device for reactor primary system structure material
Rebak et al. Electrochemical behavior of accident tolerant fuel cladding materials under simulated light water reactor conditions
JPS63231298A (en) Hydrogen injection method of boiling water type reactor
JPS6385496A (en) Hydrogen injection method of boiling water type nuclear power plant
Rebak et al. Assessing the electrochemical behavior of ferritic FeCrAl alloys in high temperature water
JPH0694883A (en) Core environment measuring device for atomic power plant
Farawila et al. XEDOR-reduced order stress model for online maneuvering of boiling water reactors
Kodama et al. IASCC susceptibility of irradiated austenitic stainless steel under very low dissolved oxygen
Fife et al. Boiling Water Reactor feedwater nozzle/sparger. Interim program report
Aizawa et al. A mechanism for corrosion product deposition on the carbon steel piping in the residual heat removal system of BWRs
Nomura ON THE CORROSION OF ALUMINUM IN THE REACTOR. II. WATER CHEMISTRY OF IN-PILE LOOP
Hale et al. Real time monitoring of environmental crack growth in BWRs
Kysela In-pile irradiation research at NRI Rez for corrosion and material testing
Ljungberg et al. Water Impurity Effects in BWR Pipe Cracking
JPH04125498A (en) Facility of nuclear power generation
Eason et al. Radiation-induced segregation, hardening, and IASCC

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 11