JPH10111286A - Evaluation of water quality of reactor water of nuclear reactor - Google Patents

Evaluation of water quality of reactor water of nuclear reactor

Info

Publication number
JPH10111286A
JPH10111286A JP8266963A JP26696396A JPH10111286A JP H10111286 A JPH10111286 A JP H10111286A JP 8266963 A JP8266963 A JP 8266963A JP 26696396 A JP26696396 A JP 26696396A JP H10111286 A JPH10111286 A JP H10111286A
Authority
JP
Japan
Prior art keywords
reactor
water
current density
water quality
crack growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8266963A
Other languages
Japanese (ja)
Inventor
Yoichi Wada
陽一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8266963A priority Critical patent/JPH10111286A/en
Publication of JPH10111286A publication Critical patent/JPH10111286A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To control reactor water with high accuracy by calculating the relation between the corrosion current density and crack developing speed of a required region by simulation calculation. SOLUTION: An operation condition is hourly inputted to an operation apparatus 7 and water quality is calculated at every time and place by radiolysis analysis. Reactor water from the bottom of a pressure container 1 turned toward a reactor water purifying system 9 or a recirculating system 2 is guided to a sampling line 15 and diissolved oxygen, dissolved hydrogen, conductivity and pH are measured by a water quality measuring part 8 to be taken in the operation apparatus 7 and the calculated result is approximately corrected. The electrochemical reaction of stainless steel and a nickel base alloy is performed in high temp. pure water by using the result of radiolysis analysis and, from the data base of current density and a crack advancing speed, the crack developing speed of the structure at each region in the pressure container 1 is evaluated. When the calculated crack advance speed does not satisfy a control reference, a water quality control device 6 is operated by the operation apparatys 7. For example, hydrogen may be injected from the water quality control apparatus 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉構造材料の
応力腐食割れ防止など余寿命評価方法に関わり、特に沸
騰水型原子炉圧力容器1内機器の腐食損傷防止に好適な
材料選定および原子炉冷却水管理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the remaining life of a reactor structural material, such as stress corrosion cracking prevention, and more particularly to the selection of a material and an atom suitable for preventing corrosion damage to equipment in a boiling water reactor pressure vessel 1. It relates to a furnace cooling water management method.

【0002】[0002]

【従来の技術】原子炉が登場して以来、常により高い安
全性が求められ続けてきた。近年では安全性と両立させ
た上での、可能な限り長期にわたって稼働する技術が求
められている。そのため、経年化炉での炉内構造機器な
どの応力腐食割れ(SCC)環境を精度良く評価するこ
とへの関心が高い。このような炉内各部位での材料のS
CC挙動を評価する方法は例えば、特開平5−100087 号
公報で炉内の腐食環境を推測し水質を制御する方法につ
いて示されている。また、腐食環境を実効酸素濃度の形
で評価し、材料の亀裂の進展速度から余寿命を評価する
方法については特開平6−34786号公報について記載され
ている。
2. Description of the Related Art Since the advent of nuclear reactors, higher safety has always been required. In recent years, there has been a demand for a technology that operates for as long as possible while maintaining safety. Therefore, there is a high interest in accurately evaluating a stress corrosion cracking (SCC) environment of structural components in an aging furnace. The material S at each part in the furnace
As a method of evaluating the CC behavior, for example, Japanese Patent Application Laid-Open No. 5-100087 discloses a method of estimating a corrosive environment in a furnace and controlling water quality. Japanese Patent Application Laid-Open No. Hei 6-34786 describes a method of evaluating a corrosive environment in the form of an effective oxygen concentration and estimating a remaining life from a crack growth rate of a material.

【0003】[0003]

【発明が解決しようとする課題】従来技術ではSCCに
対しての腐食環境は実効酸素濃度,腐食電位で評価され
る。しかし実効酸素濃度は、酸素と過酸化水素の化学的
特性の違いを考慮せず、単に過酸化水素が酸素に分解し
たときのみの化学量論的扱いを行っているに過ぎない。
文献(Y. Wada et al.“Radiolytic Environments arou
nd RPV Internalsof BWR”,Proc. Int'l Sym. Plant Ag
ing and Life Predictions of CorrodibleStructures、
May 15−18,1995,Sapporo、 Japan、 JSCE、 (1995)。に
示したように、酸素と過酸化水素の腐食電位は実効酸素
で整理すると異なる挙動をする。一方、腐食環境指標と
して有効と考えられている腐食電位に関しても、SCC
評価指標として十分ではない。文献(Anzai et al.、 Co
rrosion Science、 36、 1201(1994).)に示されるように
過酸化水素が1ppm程度に高濃度の領域では過酸化水素
濃度に対して腐食電位が変化しない。そのため、腐食電
位では炉心12部のように高濃度の過酸化水素が水の放
射線分解で生成する領域での亀裂進展速度が従来の理論
範囲の中では評価できないことになる。また、仮に直接
センサを用いて亀裂進展速度を測定するにしても、セン
サの設置できない場所、あるいは任意の条件での亀裂進
展速度を評価するためには、理論的基盤に基づいた扱い
が必要となる。
In the prior art, the corrosive environment for SCC is evaluated based on the effective oxygen concentration and corrosion potential. However, the effective oxygen concentration does not take into account the difference in the chemical properties of oxygen and hydrogen peroxide, but merely performs stoichiometric treatment when hydrogen peroxide is decomposed into oxygen.
Literature (Y. Wada et al. “Radiolytic Environments arou
nd RPV Internalsof BWR ”, Proc. Int'l Sym. Plant Ag
ing and Life Predictions of CorrodibleStructures,
May 15-18, 1995, Sapporo, Japan, JSCE, (1995). As shown in the above, the corrosion potential of oxygen and hydrogen peroxide behaves differently when arranged by effective oxygen. On the other hand, the corrosion potential considered to be effective as a corrosion
Not enough as an evaluation index. Literature (Anzai et al., Co
rrosion Science, 36 , 1201 (1994)), the corrosion potential does not change with respect to the concentration of hydrogen peroxide in a region where the concentration of hydrogen peroxide is as high as about 1 ppm. Therefore, in the corrosion potential, the crack growth rate in a region where a high concentration of hydrogen peroxide is generated by the radiolysis of water, such as the core 12, cannot be evaluated within the conventional theoretical range. Even if the crack growth rate is measured directly using a sensor, it is necessary to treat the crack based on a theoretical basis in order to evaluate the crack growth rate in places where sensors cannot be installed or under arbitrary conditions. Become.

【0004】本発明の目的は、炉内の構造物の任意の場
所の亀裂進展速度をシミュレーションにより計算し、適
切な炉水管理の方法を提供することにある。
[0004] It is an object of the present invention to provide an appropriate method for managing the reactor water by calculating the crack growth rate of an arbitrary part of a structure in a furnace by simulation.

【0005】[0005]

【課題を解決するための手段】請求項1の水質評価方法
の特徴は電流密度を亀裂進展速度を求めるための指標と
してシミュレーションに用いることである。R.N. Parki
ns、 CorrosionScience、 20、 147(1980)に示されている
ように、亀裂進展速度Vtは電流密度Iaには以下の関
係が成り立つ。
A feature of the water quality evaluation method according to the present invention is that a current density is used in a simulation as an index for obtaining a crack growth rate. RN Parki
As shown in ns, CorrosionScience, 20 , 147 (1980), the following relationship is established between the crack growth rate Vt and the current density Ia.

【0006】[0006]

【数1】 Vt=IaM/zF ρ …(数1) ここでMは原子量、zは電荷、Fはファラデー定数、ρ
は密度である。
Vt = IaM / zF ρ (Equation 1) where M is atomic weight, z is electric charge, F is Faraday constant, ρ
Is the density.

【0007】ところが、原子炉環境のような高温純水環
境では、Parkins の実験のように種々の溶媒を含むこと
はなく、また酸素,過酸化水素の存在そのものが金属材
料表面の酸化皮膜の条件を変化させると考えられるの
で、
However, in a high temperature pure water environment such as a nuclear reactor environment, various solvents are not contained unlike the experiment of Parkins, and the existence of oxygen and hydrogen peroxide itself is a condition of the oxide film on the surface of the metal material. Is considered to change

【0008】[0008]

【数2】 Vt=f(Ia) …(数2) のように、電流密度の一般的関数として扱うことが必要
である。電流密度を原子炉内で知ることは困難なので、
皮膜の状態等を反映した電流密度をシミュレーションに
より得ることが必要である。
Vt = f (Ia) (Equation 2) It is necessary to treat this as a general function of the current density. It is difficult to know the current density inside the reactor,
It is necessary to obtain the current density reflecting the state of the film by simulation.

【0009】請求項2の水質評価方法の特徴は、原子炉
の構造物としてステンレス鋼とニッケル基合金を対象と
していることである。
A feature of the water quality evaluation method according to claim 2 is that stainless steel and a nickel-based alloy are used as structures of a nuclear reactor.

【0010】請求項3の水質評価方法の特徴は、腐食電
流密度はカソード反応により生じる電流密度Icとアノ
ード反応により生じる電流密度IaがIa+Ic=0の
関係を満たすときのIaまたはIcの絶対値を取ったも
のとすることである。
The characteristic of the water quality evaluation method according to the present invention is characterized in that the corrosion current density is an absolute value of Ia or Ic when the current density Ic generated by the cathodic reaction and the current density Ia generated by the anodic reaction satisfy the relationship of Ia + Ic = 0. It is to be taken.

【0011】シミュレーションにより腐食電流密度を計
算するのは、図1に示すように以下の手順で行う。
The calculation of the corrosion current density by simulation is performed according to the following procedure as shown in FIG.

【0012】初めに、原子炉の運転条件、つまり炉水流
量,給水流量,温度分布,線量率分布等を用いて、ラジ
オリシスの計算を実施する。ラジオリシスの計算方法に
ついては、Ibe et al.、 Nucl. Sci. Technol.、 23、11(1
986)に記載されている。ラジオリシス計算で得た原子炉
構造物の各点での酸素,水素,過酸化水素濃度を入力と
して、電気化学計算を行う。詳細はWadaによって記され
ている。この方法により各点の化学種濃度に応じて、金
属表面での電気化学反応により生じる電流密度が計算さ
れる。また化学種の電気化学反応が生じたときに、金属
の溶解反応によって生じる電流密度も考慮した。図2は
アノード電流密度とカソード反応電流密度の絶対値を電
位に対してプロットしたものである。図に示されるよう
に、アノード電流密度およびカソード電流密度を電位を
掃引して計算した時に金属表面を出入りする総電流密度
が見かけ上0となる電位で、電流密度を腐食電流密度と
して与える。
First, the radiolysis is calculated using the operating conditions of the nuclear reactor, that is, the reactor water flow rate, the feed water flow rate, the temperature distribution, the dose rate distribution, and the like. For the calculation method of radiolysis, see Ibe et al., Nucl. Sci. Technol., 23, 11 (1
986). Electrochemical calculations are performed using the oxygen, hydrogen, and hydrogen peroxide concentrations at each point of the reactor structure obtained by radiolysis calculation as inputs. Details are provided by Wada. According to this method, the current density generated by the electrochemical reaction on the metal surface is calculated according to the chemical species concentration at each point. In addition, when an electrochemical reaction of a chemical species occurs, a current density generated by a metal dissolution reaction was also considered. FIG. 2 is a plot of the absolute values of the anode current density and the cathode reaction current density with respect to the potential. As shown in the figure, when the anode current density and the cathode current density are calculated by sweeping the potential, the current density is given as the corrosion current density at a potential at which the total current density entering and exiting the metal surface is apparently zero.

【0013】また、この時の電位こそが腐食電位であ
る。このようにして計算された電流密度から予め実験室
にて様々な条件の原子炉炉水を模擬した環境で得られた
亀裂進展速度と電流密度の関係式を用いて、原子炉構造
物の特定の位置での応力腐食割れ環境を亀裂進展速度を
指標として評価する。
Further, the potential at this time is the corrosion potential. From the current density calculated in this way, the reactor structure is identified using the relational expression between the crack growth rate and the current density obtained in an environment simulating reactor water under various conditions in the laboratory in advance. The stress corrosion cracking environment at the position is evaluated using the crack growth rate as an index.

【0014】電流密度と亀裂進展速度の関係を見いだす
ために次の計算を実施した。実験データはAnzai らによ
って得られたものを用いた。試験環境は導電率は0.07μ
S/cmであり、1050℃で溶体化処理した後750℃
×100分+500℃×24時間で鋭敏化処理されたSU
S304コンパクトテンション(CT)試験片の応力拡大係
数は25〜27MPa・m05 とした。本論文で与えら
れている試験条件での酸素,過酸化水素および水素濃度
を用いて、
The following calculations were performed to find the relationship between current density and crack growth rate. The experimental data obtained by Anzai et al. Was used. The test environment has a conductivity of 0.07μ
S / cm, 750 ° C after solution treatment at 1050 ° C
SU sensitized at × 100 minutes + 500 ° C × 24 hours
S304 stress intensity factor of a compact tension (CT) test piece was 25~27MPa · m 0 · 5. Using the oxygen, hydrogen peroxide and hydrogen concentrations under the test conditions given in this paper,

【0015】[0015]

【化1】 Embedded image

【0016】[0016]

【化2】 Embedded image

【0017】[0017]

【化3】 Embedded image

【0018】[0018]

【化4】 Embedded image

【0019】の電気化学反応を考慮して、酸素および過
酸化水素の電気化学反応からカソード電流密度を、水素
の電気化学反応からアノード電流密度を計算した。また
SUS304の分極曲線から金属の溶出電流密度をアノード電
流密度として考慮した。これらの計算については、Wada
によって記載されている腐食電位を計算する手法と同じ
である。
In consideration of the electrochemical reaction described above, the cathode current density was calculated from the electrochemical reaction of oxygen and hydrogen peroxide, and the anode current density was calculated from the electrochemical reaction of hydrogen. Also
The elution current density of the metal was considered as the anode current density from the polarization curve of SUS304. For these calculations, see Wada
This is the same as the method for calculating the corrosion potential described in US Pat.

【0020】本発明の手順で求めた電流密度と、Anzai
らによって得られた亀裂進展速度をプロットしたものが
図3である。本図によれば、腐食電位では整理できなか
った亀裂進展速度を酸素系および過酸化水素共存系のそ
れぞれの場合を材料側の特性さえ揃えておけば、電流密
度で整理できることがわかる。
The current density obtained by the procedure of the present invention and the Anzai
FIG. 3 is a plot of the crack growth rate obtained by the present inventors. According to this figure, it can be seen that the crack growth rate, which could not be arranged by the corrosion potential, can be arranged by the current density if the properties on the material side are the same in each case of the oxygen system and the hydrogen peroxide coexisting system.

【0021】請求項4の原子炉水水質管理方法の特徴
は、請求項1記載の水質評価方法を用いて特定の部位の
亀裂進展速度を計算し、予め定めた基準値に基づいて、
亀裂の進展速度を減じる方策を実施することである。図
4は請求項4の水質管理方法の考え方を説明したもので
ある。請求項1の水質評価方法で原子炉内の単独または
複数の位置での構造物の亀裂進展速度を評価する。例え
ば、予め管理基準として設定した亀裂進展速度に対し絶
対値がこれを越える場合や、相対値で何倍になったかと
いうことを判定する。もし判定条件を満たさなかった場
合には、水質制御装置6を作動させ原子炉水質を変化さ
せる。水質制御装置6を作動後再び亀裂進展速度を評価
し、判定条件を満足するまで、水質制御装置6の作動と
亀裂進展速度の評価を繰り返す。
A feature of the method for managing water quality of a reactor water according to claim 4 is that a crack growth rate at a specific portion is calculated by using the water quality evaluation method according to claim 1, and based on a predetermined reference value,
Implement measures to reduce the rate of crack growth. FIG. 4 explains the concept of the water quality management method of the fourth aspect. According to the water quality evaluation method of the first aspect, a crack growth rate of a structure at one or a plurality of positions in a nuclear reactor is evaluated. For example, it is determined whether the absolute value exceeds the crack growth speed set in advance as a management standard or how many times the relative value has increased. If the determination conditions are not satisfied, the water quality control device 6 is operated to change the reactor water quality. After operating the water quality control device 6, the crack growth speed is evaluated again, and the operation of the water quality control device 6 and the evaluation of the crack growth speed are repeated until the determination condition is satisfied.

【0022】請求項5の原子炉水水質管理方法の特徴は
請求項4で亀裂進展速度を減じる方策として水素の注入
を行うことである。
A feature of the method for managing water quality of a reactor water according to claim 5 is that hydrogen is injected as a measure for reducing the crack growth rate in claim 4.

【0023】請求項6の原子炉水水質管理方法の特徴は
請求項4で亀裂進展速度を減じる方策として炉水浄化系
9の流量を増やすことにより、炉水導電率を低下させる
ことである。
A feature of the reactor water quality management method of claim 6 is that the reactor water conductivity is reduced by increasing the flow rate of the reactor water purification system 9 as a measure for reducing the crack growth rate in claim 4.

【0024】請求項7の原子炉管理方法の特徴は請求項
1の炉水水質評価を用いて亀裂進展速度推測し、一方同
時に亀裂進展速度を実測して比較することにより、炉内
環境条件が亀裂進展センサ14に与える影響を評価し、
原子炉内の環境を推定することである。
The feature of the nuclear reactor management method according to claim 7 is that the crack growth rate is estimated by using the reactor water quality evaluation of claim 1, and at the same time, the crack growth rate is actually measured and compared. Evaluate the effect on the crack growth sensor 14,
It is to estimate the environment inside the reactor.

【0025】請求項8の原子炉管理方法の特徴は請求項
7で推定する炉内環境条件が原子炉内のガンマ線あるい
は中性子線線量率であることである。
A feature of the nuclear reactor management method according to claim 8 is that the in-reactor environmental condition estimated in claim 7 is a gamma ray or neutron ray dose rate in the reactor.

【0026】図5は請求項7の水質管理方法の考え方を
説明したものである。始めに、原子炉内の単独または複
数の位置での構造物の亀裂進展速度を与えられた条件で
設定されている亀裂進展センサ14で計測する。続い
て、前記亀裂進展センサ14の設定条件に基づき請求項
1の水質評価方法で亀裂進展速度を評価する。亀裂進展
センサ14が炉内環境の影響を受けなければ炉水水質の
影響だけを感じることにより計算結果と同じ値を示すは
ずである。もし、亀裂進展センサ14が、完全に鋭敏化
しており放射線の影響をこれ以上受けないとき、亀裂進
展速度が遅くなった場合、照射により応力が変動したと
考えられる。従ってシミュレーションにより、亀裂進展
速度が一致する応力拡大係数を求めれば、照射による応
力変動のデータベースから炉内の照射量が推定される。
また、もし応力を一定にしたまま、ある鋭敏化度で亀裂
進展センサ14を設定した場合、同様に鋭敏化度の変化
を亀裂進展速度から読み出すことにより、炉内の線量率
が計算される。あるいは付近の構造物の鋭敏化度が同様
に計算される。
FIG. 5 explains the concept of the water quality management method of claim 7. First, the crack growth rate of a structure at one or a plurality of positions in a nuclear reactor is measured by a crack growth sensor 14 set under given conditions. Subsequently, the crack growth rate is evaluated by the water quality evaluation method according to claim 1 based on the setting conditions of the crack growth sensor 14. If the crack growth sensor 14 is not affected by the furnace environment, it should show the same value as the calculation result by feeling only the effect of the reactor water quality. If the crack growth sensor 14 is completely sensitized and is no longer affected by radiation, and if the crack growth rate is reduced, it is considered that the stress has fluctuated due to irradiation. Therefore, if the stress intensity factor at which the crack growth rate coincides is determined by simulation, the irradiation amount in the furnace is estimated from a database of stress fluctuation due to irradiation.
If the crack growth sensor 14 is set with a certain sensitization while keeping the stress constant, the dose rate in the furnace is calculated by reading the change in the sensitization from the crack growth rate in the same manner. Alternatively, the degree of sensitization of a nearby structure is calculated in the same manner.

【0027】請求項1記載の原子炉炉水の水質評価方法
によれば、炉水中に溶存する化学種の濃度は実効酸素濃
度という形態を取らずとも、電流密度として濃度と金属
表面との相互作用効果を共に考慮した扱いが可能であ
る。
According to the method for evaluating the water quality of reactor water according to the first aspect, the concentration of the chemical species dissolved in the reactor water does not take the form of the effective oxygen concentration, but the mutual relationship between the concentration and the metal surface as the current density. It is possible to handle in consideration of both effects.

【0028】請求項2記載の原子炉炉水の水質評価方法
によれば、請求項1の効果が得られると共に原子炉構造
材料として用いられている材料に即した評価が可能であ
る。請求項3記載の原子炉炉水の水質評価方法によれ
ば、請求項1の効果が得られるとともに、腐食電流密度
を計算するときに腐食電位の情報もまた考慮することが
可能でありSCC環境を精度良く評価することができ
る。
According to the method for evaluating the water quality of the reactor water according to the second aspect, the effects of the first aspect can be obtained and the evaluation can be performed in accordance with the material used as the reactor structural material. According to the method for evaluating the water quality of a reactor water according to claim 3, the effect of claim 1 can be obtained, and information of the corrosion potential can be considered when calculating the corrosion current density. Can be accurately evaluated.

【0029】請求項4記載の原子炉水水質管理方法によ
れば、酸素,過酸化水素など複数の酸化性成分が混在し
ている場合でも、実験室系でのデータベースが揃ってい
る範囲では、理論計算による電流密度との組み合わせに
より精度良く原子炉構造物のSCC環境の変化が検出で
きるため細かい水質管理が可能である。
According to the method for controlling water quality of a reactor water according to the fourth aspect, even when a plurality of oxidizing components such as oxygen and hydrogen peroxide are mixed, as long as a database in a laboratory system is available, Since the change in the SCC environment of the reactor structure can be detected with high accuracy by combining the current density with the theoretical calculation, fine water quality control is possible.

【0030】請求項5記載の原子炉水水質管理方法によ
れば、請求項4の効果が得られるとともに、水素注入に
より炉水中の酸化性成分濃度を低減し、SCC環境を緩
和することが可能である。
According to the method for managing water quality of a reactor water according to the fifth aspect, the effect of the fourth aspect can be obtained, and the concentration of oxidizing components in the reactor water can be reduced by hydrogen injection, thereby alleviating the SCC environment. It is.

【0031】請求項6記載の原子炉水水質管理方法によ
れば、請求項4の効果が得られるとともに、導電率の悪
化による亀裂進展速度の増加を制御可能である。
According to the method for managing water quality of a reactor water according to the sixth aspect, the effect of the fourth aspect can be obtained, and the increase in the crack growth rate due to the deterioration of the electric conductivity can be controlled.

【0032】請求項7記載の原子炉管理方法によれば、
炉内で直接測定することが困難な炉内環境因子について
推定することが可能となり、炉内のSCC環境シミュレ
ーションの精度がより高くなる。
According to the nuclear reactor management method of claim 7,
It is possible to estimate the in-furnace environmental factors that are difficult to measure directly in the furnace, and the accuracy of the SCC environment simulation in the furnace is further improved.

【0033】請求項8記載の原子炉管理方法によれば、
請求項7の効果が得られると共に、炉内の線量率分布を
推定することが可能となる。
According to the nuclear reactor management method of claim 8,
The effect of claim 7 is obtained, and the dose rate distribution in the furnace can be estimated.

【0034】[0034]

【発明の実施の形態】図6は本発明の水質管理方法の一
実施例を示したものである。
FIG. 6 shows an embodiment of the water quality management method of the present invention.

【0035】原子炉が沸騰水型原子炉である場合を用い
て説明する。原子炉が圧力容器1,再循環系2,タービ
ン3,復水器4,復水浄化系5,炉水浄化系9,給水系
10,ジェットポンプ11,炉心12の代表的機器で構
成されているものとする。このとき、本発明の原子炉水
質管理方法を用いたシステムは水質制御装置6,演算装
置7,水質測定部8の3つの要素から構成される。圧力
容器1内にはジェットポンプ11,炉心12などがあり
様々な温度分布,炉水流速分布および放射線線量率分布
を取る結果、炉水中の化学種成分濃度もまた原子炉内の
場所に応じて様々に変化する。また、場所による条件の
違いのみならず、原子炉の運転期間を通じて、再循環系
2の流量や給水系10の流量は炉心12での出力制御の
ために変動する。そこで演算装置7には、これらの運転
条件を時々刻々入力として取り込まれ、ラジオリシスの
解析により時間および場所依存の水質が計算される。炉
水浄化系9へ向かう圧力容器1底部からの炉水や再循環
系2からの炉水は圧力容器1外部に引き出されたサンプ
リングライン15へ導かれる。サンプリングライン15
に設けられた水質測定部8で溶存酸素,溶存水素,導電
率,pHが測定され、演算装置7に取り込まれる。適宜
取り込まれた水質データにより計算結果が補正される。
ラジオリシス解析の結果を用いてステンレスあるいはニ
ッケル基合金の高温純水中での電気化学反応の計算を行
い、図3に示すような電流密度と亀裂進展速度のデータ
ベースから、圧力容器1内の各部位での構造物の亀裂進
展速度を評価する。この時、原子炉運転時にラジオリシ
ス計算から得られない水質因子で亀裂進展速度に影響を
与えるものは導電率である。亀裂進展速度は導電率の依
存性を持ち、高導電率では速度が大きくなることが、例
えば特開平6−34786号公報について記載されているの
で、水質測定部8測定された導電率を演算装置7に取り
込んで、測定された導電率に対応する適切なデータベー
スを読み出す。このデータベースは予め解析式にフィッ
ティングしたものであってもよいし、適宜演算装置7内
で補間法などで数値処理されたものでもよい。計算され
た亀裂進展速度が、管理基準を満足しない場合には水質
制御装置6を演算装置7により動作させる。例えば、水
質制御装置6から水素を注入してもよい。
Description will be made using a case where the reactor is a boiling water reactor. The reactor is composed of typical equipment such as a pressure vessel 1, a recirculation system 2, a turbine 3, a condenser 4, a condensate purification system 5, a reactor water purification system 9, a water supply system 10, a jet pump 11, and a reactor core 12. Shall be At this time, the system using the reactor water quality management method of the present invention includes three elements: a water quality control device 6, an arithmetic unit 7, and a water quality measurement unit 8. In the pressure vessel 1, there are a jet pump 11, a reactor core 12, etc., and various temperature distributions, reactor water velocity distributions and radiation dose rate distributions are obtained. As a result, the concentration of chemical species components in the reactor water also depends on the location in the reactor. It changes in various ways. In addition, the flow rate of the recirculation system 2 and the flow rate of the water supply system 10 fluctuate due to power control in the reactor core 12 throughout the operation period of the nuclear reactor, as well as the difference in conditions depending on the location. Therefore, these operating conditions are fetched into the arithmetic unit 7 from time to time, and time- and location-dependent water quality is calculated by radiolysis analysis. The reactor water from the bottom of the pressure vessel 1 toward the reactor water purification system 9 and the reactor water from the recirculation system 2 are guided to a sampling line 15 drawn out of the pressure vessel 1. Sampling line 15
The dissolved oxygen, dissolved hydrogen, conductivity, and pH are measured by a water quality measurement unit 8 provided in The calculation result is corrected based on the water quality data taken in as appropriate.
Using the results of the radiolysis analysis, the electrochemical reaction of stainless steel or nickel-based alloy in high-temperature pure water was calculated, and from the database of the current density and crack growth rate as shown in FIG. To evaluate the crack growth rate of the structure at At this time, the water quality factor that cannot be obtained from the radiolysis calculation during the operation of the reactor and that affects the crack growth rate is electrical conductivity. The crack growth rate is dependent on the electrical conductivity, and it is described in Japanese Unexamined Patent Publication No. Hei 6-34786 that the speed increases with high electrical conductivity. 7. Read the appropriate database corresponding to the measured conductivity. This database may be one that has been fitted to an analytical expression in advance, or one that has been subjected to numerical processing by an interpolation method or the like in the arithmetic unit 7 as appropriate. When the calculated crack growth rate does not satisfy the management standard, the water quality control device 6 is operated by the arithmetic device 7. For example, hydrogen may be injected from the water quality control device 6.

【0036】図7は本発明の水質管理方法の別の実施例
を示したものである。図6でサンプリングライン15に
設置されている水質測定部8が再循環系2に設置されて
おり、炉内の水質環境を測定する場合である。
FIG. 7 shows another embodiment of the water quality management method of the present invention. FIG. 6 shows a case where the water quality measuring unit 8 installed in the sampling line 15 is installed in the recirculation system 2 to measure the water quality environment in the furnace.

【0037】図8は本発明の水質管理方法の別の実施例
を示したものである。本発明の原子炉水質管理方法を用
いたシステムは演算装置7,水質測定部8の2つから構
成される。演算装置7が直接炉水浄化系9を制御する。
管理基準を見たさない場合には炉水浄化系9への流量を
増加させることにより、導電率を低下させ亀裂進展速度
を低減する。
FIG. 8 shows another embodiment of the water quality management method of the present invention. The system using the reactor water quality management method of the present invention includes an arithmetic unit 7 and a water quality measurement unit 8. The arithmetic unit 7 directly controls the reactor water purification system 9.
If the management standard is not observed, the flow rate to the reactor water purification system 9 is increased to lower the conductivity and reduce the crack growth rate.

【0038】図9は本発明の水質管理方法の別の実施例
を示したものである。本発明の原子炉水質管理方法を用
いたシステムは水質制御装置6,演算装置7,水質測定
部8から構成される。計算された亀裂進展速度が、管理
基準を満足しない場合には水質制御装置6を演算装置7
により動作させる。例えば、水質制御装置6から水素を
注入してもよい。
FIG. 9 shows another embodiment of the water quality management method of the present invention. A system using the reactor water quality management method of the present invention includes a water quality control device 6, an arithmetic unit 7, and a water quality measurement unit 8. If the calculated crack growth rate does not satisfy the management standard, the water quality control device 6 is switched to the arithmetic device 7
To operate. For example, hydrogen may be injected from the water quality control device 6.

【0039】同時に炉水浄化系9への流量を増加させる
ことにより、導電率を低下させ亀裂進展速度を低減す
る。水素注入と同時に炉水浄化系9への流量を増加させ
ることにより、より電流密度を低くし、亀裂進展速度を
低下することができる。炉水浄化系9への流量を増やす
というより、むしろ再循環系2をバイパスして再び給水
系10に大量に再循環系2を流れる炉水を戻せば、水素
注入により酸化性成分濃度の低下した炉水がジェットポ
ンプ11のより上方まで流れるので、圧力容器1の底部
に対しての水素注入効果が良くなり、さらにジェットポ
ンプ11のより上方まで水素注入効果が期待される。
At the same time, by increasing the flow rate to the reactor water purification system 9, the conductivity is reduced and the crack growth rate is reduced. By increasing the flow rate to the reactor water purification system 9 simultaneously with the hydrogen injection, the current density can be further reduced and the crack growth rate can be reduced. Rather than increasing the flow rate to the reactor water purification system 9, rather than bypassing the recirculation system 2 and returning a large amount of reactor water flowing through the recirculation system 2 to the water supply system 10, the oxidizing component concentration is reduced by hydrogen injection. Since the reactor water flows above the jet pump 11, the hydrogen injection effect on the bottom of the pressure vessel 1 is improved, and the hydrogen injection effect is expected further above the jet pump 11.

【0040】図10は本発明の原子炉炉内のSCC環境
に対する影響因子を管理する方法の実施例を示したもの
である。原子炉が沸騰水型原子炉であるとして簡略のた
めに、圧力容器1,再循環系2,タービン3,復水器
4,復水浄化系5,炉水浄化系9,給水系10,ジェッ
トポンプ11,炉心12,炉内計装管13の代表的機器
で構成されているものとする。このとき、本発明の原子
炉管理方法を用いて、炉内の線量率を測定するシステム
は、演算装置7,水質測定部8,炉心12部の炉内計装
管13内に装荷された亀裂進展センサ14から構成され
る。演算装置7では時々刻々原子炉の運転条件が入力さ
れ、その条件での亀裂進展センサ14部での亀裂進展速
度を計算する。測定時間で積分すれば運転開始からの全
亀裂進展量がわかる。亀裂進展センサ14では炉心12
でのある一定期間の亀裂進展量を測定する。亀裂進展セ
ンサ14での亀裂進展量と計算により得られた亀裂進展
量とを比較する。今、亀裂進展センサ14の材料側条件
として、変化するものは、鋭敏化度,応力拡大係数,歪
み速度がある。原子炉が定常運転をし水質因子が全て一
定かつ計算によりわかっている場合、図11に示すよう
に中性子の照射により材料が鋭敏化するか、材料特性の
変化により応力が変化し応力拡大係数が初期値よりずれ
る。従って、実験室により予め照射量と鋭敏化あるいは
応力変化の関係を求めておけば、亀裂進展速度の計算値
と実測値の比較から中性子照射量が推定される。
FIG. 10 shows an embodiment of a method for managing an influential factor on the SCC environment in a nuclear reactor according to the present invention. For simplicity, assuming that the reactor is a boiling water reactor, a pressure vessel 1, a recirculation system 2, a turbine 3, a condenser 4, a condensate purification system 5, a reactor water purification system 9, a water supply system 10, a jet The pump 11, the core 12, and the in-furnace instrumentation tube 13 are assumed to be constituted by typical devices. At this time, the system for measuring the dose rate in the reactor using the reactor management method of the present invention includes the arithmetic unit 7, the water quality measurement unit 8, and the crack loaded in the in-core instrumentation tube 13 of the core 12. It consists of a progress sensor 14. The arithmetic unit 7 receives the operating conditions of the nuclear reactor every moment, and calculates the crack growth rate at the crack growth sensor 14 under the conditions. If integrated over the measurement time, the total amount of crack propagation from the start of operation can be determined. In the crack propagation sensor 14, the core 12
Is measured for a certain period of time. The amount of crack growth in the crack growth sensor 14 is compared with the amount of crack growth obtained by calculation. Now, as the material side conditions of the crack growth sensor 14, those that change include the sensitization, the stress intensity factor, and the strain rate. When the reactor operates in a steady state and the water quality factors are all constant and known by calculation, as shown in FIG. 11, the material becomes sensitized by neutron irradiation, or the stress changes due to the change in the material properties, and the stress intensity factor increases. It deviates from the initial value. Therefore, if the relationship between the dose and the sensitization or stress change is determined in advance by the laboratory, the neutron dose can be estimated from a comparison between the calculated value of the crack growth rate and the actually measured value.

【0041】図12は本発明の電流密度を実測する方法
の実施例を示したものである。炉内構造物18の例えば
SCC環境を評価するためにある溶接部17を選んだと
き、その近傍に参照電極16,対極20および試料極2
1を設置する。試料極21は溶接部17近傍と冶金学的
特性を同じになるように準備したものである。参照電極
16,対極20および試料極21は演算装置7に電気的
に接続されているものとする。演算装置7と炉内構造物
18は共に接地19を通じて電気的に接続されているも
のとする。図13に示すように参照電極16を用いて溶
接部位17近傍の腐食電位を測定する。同時に試料極2
1の腐食電位を参照電極16で測定し、試料極21と溶
接部17近傍の腐食環境が同じであることを確認する。
次に、試料極21と参照電極16および対極20を用い
て、試料極21の腐食電位の近傍で電位を貴および卑側
に掃引し、このとき対極20との間に流れる電流密度を
電位に対して測定する。腐食電位近傍の電流密度変化の
ターフェル勾配から腐食電位での電流密度を推定し、こ
れを測定で得た電流密度とする。
FIG. 12 shows an embodiment of the method for measuring the current density according to the present invention. When, for example, a certain welded portion 17 of the furnace internal structure 18 is selected for evaluating the SCC environment, the reference electrode 16, the counter electrode 20 and the sample electrode 2
1 is set. The sample electrode 21 was prepared so as to have the same metallurgical properties as the vicinity of the weld 17. It is assumed that the reference electrode 16, the counter electrode 20, and the sample electrode 21 are electrically connected to the arithmetic unit 7. It is assumed that the arithmetic unit 7 and the in-furnace structure 18 are both electrically connected through the ground 19. As shown in FIG. 13, the corrosion potential near the welding portion 17 is measured using the reference electrode 16. Sample electrode 2 at the same time
The corrosion potential of Sample No. 1 is measured with the reference electrode 16 to confirm that the corrosion environment in the vicinity of the sample electrode 21 and the welded portion 17 is the same.
Next, using the sample electrode 21, the reference electrode 16, and the counter electrode 20, the potential is swept toward the noble and base sides near the corrosion potential of the sample electrode 21, and the current density flowing between the sample electrode 21 and the counter electrode 20 at this time is set to the potential. Measure for The current density at the corrosion potential is estimated from the Tafel slope of the current density change near the corrosion potential, and this is defined as the current density obtained by the measurement.

【0042】[0042]

【発明の効果】本発明の適用により、原子炉構造物の各
部位での亀裂進展速度がシミュレーションにより解析評
価可能となり、応力腐食割れに対する効果的な水質管理
方法を提供することが可能となる。
According to the present invention, the crack growth rate at each part of the reactor structure can be analyzed and evaluated by simulation, and an effective water quality control method for stress corrosion cracking can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】原子炉構造物のある場所での亀裂の進展速度を
評価するための手順を示した説明図。
FIG. 1 is an explanatory diagram showing a procedure for evaluating a crack growth rate at a certain location of a reactor structure.

【図2】アノード電流密度とカソード電流密度と腐食電
流密度の関係を示す電流密度−電位図。
FIG. 2 is a current density-potential diagram showing a relationship between an anode current density, a cathode current density, and a corrosion current density.

【図3】実験により求められた亀裂進展速度と、実験条
件を入力として解析により得られた電流密度の関係を示
したグラフ。
FIG. 3 is a graph showing a relationship between a crack growth rate obtained by an experiment and a current density obtained by an analysis using the experimental conditions as input.

【図4】原子炉構造物のある場所での亀裂の進展速度を
評価し、その評価結果から炉水水質を制御するための手
順を示した説明図。
FIG. 4 is an explanatory diagram showing a procedure for evaluating a crack growth rate at a certain location of a reactor structure and controlling reactor water quality based on the evaluation result.

【図5】原子炉構造物のある場所での亀裂の進展速度を
実測し、解析結果と比較することにより、原子炉内の他
の影響因子を推測するための手順を示した説明図。
FIG. 5 is an explanatory diagram showing a procedure for estimating another influencing factor in the reactor by actually measuring a crack growth rate at a certain location of the reactor structure and comparing the result with an analysis result.

【図6】本発明の水質制御方法を示す実施例の系統図。FIG. 6 is a system diagram of an embodiment showing a water quality control method of the present invention.

【図7】本発明の水質制御方法を示す実施例の系統図。FIG. 7 is a system diagram of an embodiment showing a water quality control method of the present invention.

【図8】本発明の水質制御方法を示す実施例の系統図。FIG. 8 is a system diagram of an embodiment showing a water quality control method of the present invention.

【図9】本発明の水質制御方法を示す実施例の系統図。FIG. 9 is a system diagram of an embodiment showing a water quality control method of the present invention.

【図10】本発明の水質影響因子を推測する方法を示す
実施例の系統図。
FIG. 10 is a system diagram of an embodiment showing a method for estimating a water quality affecting factor of the present invention.

【図11】亀裂長さと放射線照射の影響を示す説明図。FIG. 11 is an explanatory diagram showing the effect of crack length and radiation irradiation.

【図12】電流密度の実測方法を示す説明図。FIG. 12 is an explanatory view showing a method of measuring a current density.

【図13】電流密度を決定する方法を示す説明図。FIG. 13 is an explanatory diagram showing a method for determining a current density.

【符号の説明】[Explanation of symbols]

1…圧力容器、2…再循環系、3…タービン、4…復水
器、5…復水浄化系、6…水質制御装置、7…演算装
置、8…水質測定部、9…炉水浄化系、10…給水系、
11…ジェットポンプ、12…炉心、15…サンプリン
グライン。
DESCRIPTION OF SYMBOLS 1 ... Pressure vessel, 2 ... Recirculation system, 3 ... Turbine, 4 ... Condenser, 5 ... Condensate purification system, 6 ... Water quality control device, 7 ... Operation device, 8 ... Water quality measurement part, 9 ... Furnace water purification System, 10 ... water supply system,
11: jet pump, 12: core, 15: sampling line.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】原子炉の構造物の曝されている炉水の腐食
環境を推定する方法であって、前記構造物を構成する材
料と等しい材料から構成された予亀裂を持つ試験片を原
子炉水を模擬した水中に配置し、前記亀裂の進展速度
と、亀裂が進展しているときの模擬炉水に曝された前記
試験片に生じる腐食電流密度との関係を予め求めたうえ
で、前記構造物が炉水に接しているときに流れる腐食電
流密度を腐食環境を評価したい部位毎に計算または実測
により決定することにより、前記構造物の亀裂進展速度
として腐食環境の度合いを示すことを特徴とする原子炉
炉水の水質評価方法。
1. A method for estimating the corrosive environment of reactor water exposed to a structure of a nuclear reactor, comprising the steps of: Arranged in water simulated reactor water, on the previously determined relationship between the growth rate of the crack and the corrosion current density generated in the test piece exposed to the simulated reactor water when the crack is growing, By calculating or measuring the corrosion current density flowing when the structure is in contact with the reactor water for each part where the corrosion environment is to be evaluated by measuring or actually measuring, it is possible to indicate the degree of the corrosion environment as the crack growth rate of the structure. Characteristic water quality evaluation method for reactor water.
【請求項2】請求項1において、前記構造物を構成する
材料がステンレス,ニッケル基合金である原子炉炉水の
水質評価方法。
2. The method according to claim 1, wherein the material constituting the structure is a stainless steel or nickel-based alloy.
【請求項3】請求項1において、腐食電流密度は原子炉
炉水中の化学種と前記構造物を構成する材料とが混成電
位を形成したときにカソード反応により生じる電流密度
Icとアノード反応により生じる電流密度IaがIa+
Ic=0の関係を満たすときのIaまたはIcの絶対値
を取ったものとする原子炉炉水の水質評価方法。
3. The corrosion current density according to claim 1, wherein the corrosion current density is generated by a current density Ic generated by a cathodic reaction and an anodic reaction when a chemical species in the reactor water and a material constituting the structure form a hybrid potential. When the current density Ia is Ia +
A method for evaluating the water quality of reactor water, in which the absolute value of Ia or Ic when the relationship of Ic = 0 is taken.
【請求項4】請求項1に記載の前記水質評価方法を用い
て前記構造物のある特定の部位の亀裂進展速度を計算
し、予め定めた基準値に基づいて、亀裂の進展速度を減
じる方策を実施する原子炉炉水の管理方法。
4. A method for calculating a crack growth rate at a specific portion of the structure using the water quality evaluation method according to claim 1, and reducing the crack growth rate based on a predetermined reference value. Reactor water management method to implement.
【請求項5】請求項4において、前記亀裂進展速度を減
じる方策が水素の注入である原子炉炉水の管理方法。
5. The method according to claim 4, wherein the measure for reducing the crack growth rate is hydrogen injection.
【請求項6】請求項4において、前記亀裂進展速度を減
じる方策が炉水浄化系の流量を増すことによる炉水導電
率の低下である原子炉炉水の管理方法。
6. The reactor water management method according to claim 4, wherein the measure for reducing the crack growth rate is a decrease in reactor water conductivity by increasing a flow rate of the reactor water purification system.
【請求項7】請求項1に記載の水質評価方法を用いて前
記構造物のある特定の部位の亀裂進展速度を計算し、ま
た特定の部位の亀裂進展速度を実測し、前記測定値と前
記実測値を比較することにより、原子炉内環境を推測す
る原子炉の管理方法。
7. The method of claim 1, wherein a crack growth rate of a specific portion of the structure is calculated, and a crack growth speed of the specific portion is actually measured. Reactor management method that estimates the environment inside the reactor by comparing measured values.
【請求項8】請求項7において、前記原子炉内環境とし
て推測する因子がガンマ線、あるいは中性子線量率であ
る原子炉の管理方法。
8. The method according to claim 7, wherein the factor estimated as the environment inside the reactor is a gamma ray or a neutron dose rate.
JP8266963A 1996-10-08 1996-10-08 Evaluation of water quality of reactor water of nuclear reactor Pending JPH10111286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8266963A JPH10111286A (en) 1996-10-08 1996-10-08 Evaluation of water quality of reactor water of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8266963A JPH10111286A (en) 1996-10-08 1996-10-08 Evaluation of water quality of reactor water of nuclear reactor

Publications (1)

Publication Number Publication Date
JPH10111286A true JPH10111286A (en) 1998-04-28

Family

ID=17438144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8266963A Pending JPH10111286A (en) 1996-10-08 1996-10-08 Evaluation of water quality of reactor water of nuclear reactor

Country Status (1)

Country Link
JP (1) JPH10111286A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037466A (en) * 2002-07-15 2004-02-05 General Electric Co <Ge> Method of and apparatus for estimating cracks for nuclear reactor
JP2008051500A (en) * 2006-07-26 2008-03-06 Yasoji Tsukagami Method and apparatus for evaluating local corrosion developing process
JP2009036558A (en) * 2007-07-31 2009-02-19 Hitachi-Ge Nuclear Energy Ltd Method of monitoring stress corrosion crack, and management method of plant
JP2009281826A (en) * 2008-05-21 2009-12-03 Toshiba Corp Corrosion environment assessment method and corrosion mitigation method in radiation exposure field
JP2010096533A (en) * 2008-10-14 2010-04-30 Japan Atom Power Co Ltd:The Corrosion potential measuring instrument
CN111551482A (en) * 2020-05-15 2020-08-18 中国核动力研究设计院 Comprehensive dynamic water corrosion test device with high-temperature and high-pressure one-loop and two-loop linkage operation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037466A (en) * 2002-07-15 2004-02-05 General Electric Co <Ge> Method of and apparatus for estimating cracks for nuclear reactor
JP4538621B2 (en) * 2002-07-15 2010-09-08 ゼネラル・エレクトリック・カンパニイ Method and apparatus for performing crack estimation for a nuclear reactor
JP2008051500A (en) * 2006-07-26 2008-03-06 Yasoji Tsukagami Method and apparatus for evaluating local corrosion developing process
JP4544635B2 (en) * 2006-07-26 2010-09-15 八十治 塚上 Local corrosion progress evaluation method and local corrosion progress evaluation device
JP2009036558A (en) * 2007-07-31 2009-02-19 Hitachi-Ge Nuclear Energy Ltd Method of monitoring stress corrosion crack, and management method of plant
JP2009281826A (en) * 2008-05-21 2009-12-03 Toshiba Corp Corrosion environment assessment method and corrosion mitigation method in radiation exposure field
JP2010096533A (en) * 2008-10-14 2010-04-30 Japan Atom Power Co Ltd:The Corrosion potential measuring instrument
CN111551482A (en) * 2020-05-15 2020-08-18 中国核动力研究设计院 Comprehensive dynamic water corrosion test device with high-temperature and high-pressure one-loop and two-loop linkage operation
CN111551482B (en) * 2020-05-15 2022-03-25 中国核动力研究设计院 Comprehensive dynamic water corrosion test device with high-temperature and high-pressure one-loop and two-loop linkage operation

Similar Documents

Publication Publication Date Title
KR101488549B1 (en) Doppler reactivity coefficient measuring method
JP2938758B2 (en) Method for evaluating corrosion resistance of metal material, method for designing highly corrosion-resistant alloy, method for diagnosing corrosion state of metal material, and method for operating plant
JP3053325B2 (en) Corrosion potential simulation method and reactor plant operation monitoring device
JPH0762667B2 (en) Solution quantitative analysis device, quantitative analysis method, and water quality control system for nuclear reactor
US5398268A (en) Nuclear power plant having a water chemistry control system for a primary cooling system thereof and an operation method thereof
JPH10111286A (en) Evaluation of water quality of reactor water of nuclear reactor
JP4777835B2 (en) Crevice water quality measurement method and crevice water quality measurement device
JP2008008750A (en) Corrosive environment determination method of nuclear reactor cooling water, and device therefor
US4759902A (en) Use of electrochemical potential to predict radiation buildup on nuclear reactor coolant piping
JP2934100B2 (en) Method and apparatus for estimating remaining life of materials constituting LWR plant
Majidi et al. Four Nondestructive Electrochemical tests for detecting sensitization in type 304 and 304L Stainless Steels
McKee et al. Calibration stability of oxygen meters for LMFBR sodium systems
JP3061707B2 (en) Method and apparatus for measuring corrosion of metallic materials
JPH0658903A (en) Crack tip potential measuring method and water quality controlling method
JP2743717B2 (en) Sensitivity detection method for structural materials and water quality control system for nuclear power plant
JPH0777597A (en) Water quality control method for nuclear reactor
JP5226975B2 (en) Stress corrosion cracking monitoring method and monitoring device therefor
JP4557511B2 (en) Method and apparatus for inhibiting corrosion of nuclear reactor structural members
Wada et al. High temperature electrochemical reaction parameters affecting electrochemical corrosion potential of stainless steels in hydrogen peroxide environment
Wada et al. High temperature electrochemical reaction parameters affecting electrochemical corrosion potential of nickel-base alloy 82 weld metal
Konys et al. Electrochemical oxygen sensors for corrosion control in lead-cooled nuclear reactors
Hata et al. Optimization of dissolved hydrogen concentration for mitigating corrosive conditions of pressurised water reactor primary coolant under irradiation (2) evaluation of electrochemical corrosion potential
JP2000121780A (en) Method for simulating corrosion potential of reactor structual material, method for controlling nuclear power plant, system for monitoring nuclear power plant and nuclear power plant using such system
Hanawa et al. Determination of Electrochemical Corrosion Potential along the JMTR In-Pile Loop-II: Validation of ECP Electrodes and the Extrapolation of Measured ECP Data
Uchida Corrosion monitoring applications in nuclear power plants–a review