JP2000028789A - Method for operating nuclear power generation plant of boiling water type - Google Patents

Method for operating nuclear power generation plant of boiling water type

Info

Publication number
JP2000028789A
JP2000028789A JP10200073A JP20007398A JP2000028789A JP 2000028789 A JP2000028789 A JP 2000028789A JP 10200073 A JP10200073 A JP 10200073A JP 20007398 A JP20007398 A JP 20007398A JP 2000028789 A JP2000028789 A JP 2000028789A
Authority
JP
Japan
Prior art keywords
hydrogen
nuclear power
boiling water
power plant
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10200073A
Other languages
Japanese (ja)
Inventor
Shunsuke Uchida
俊介 内田
Naoto Shigenaka
尚登 茂中
Masahiko Tachibana
正彦 橘
Atsushi Watanabe
敦志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10200073A priority Critical patent/JP2000028789A/en
Publication of JP2000028789A publication Critical patent/JP2000028789A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PROBLEM TO BE SOLVED: To make it possible to accelerate the higher effect than usual injection of hydrogen by injecting more excessive hydrogen than the quantity of hydrogen injected continuously ahead of the implementation of the continuous injection of hydrogen and controlling the property of an oxide film on the surface of a material. SOLUTION: Before hydrogen is continuously injected, a more excessive quantity of hydrogen injected continuously-for example, about twice of the most appropriate quantity in the hydrogen concentration on a reactor basis-is added for the time film-for approximately 20 hours, for instance-required to stabilize a certain value of the property of an oxide. As a result, the replacement of the oxide film with that of a reduced type leads to a condition where the film is a reduced type and the low concentration of oxidative species during the period when hydrogen is injected continuously afterward to secure the soundness of constituting members. As to the position where hydrogen is injected, it may be impregnated from a pipe of a feed water system downstream from a feed water heater 12 in a boiling water nuclear power plant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、沸騰水型原子力発
電プラント(BWR発電プラント)の運転方法に係り、
特に原子炉構造材の健全性確保のために水素を注入する
運転方法に関する。
The present invention relates to a method of operating a boiling water nuclear power plant (BWR power plant),
In particular, the present invention relates to an operation method for injecting hydrogen for ensuring the integrity of reactor structural materials.

【0002】[0002]

【従来の技術】BWR発電プラントの原子炉圧力容器
内、特に圧力容器下部の構造材の健全性、特に応力腐食
割れの発生と進展抑制を確保する有力な手段として、水
素注入が採用されている。BWR発電プラントでの水素
注入では、給水系の給水加熱器出口から水素を注入し、
主として原子炉炉心周辺のダウンカマ部において注入し
た水素と酸素、あるいは過酸化水素との直接反応あるい
はOHラジカルなどを介した間接反応により、ダウンカ
マ部さらには圧力容器下部での酸素、あるいは過酸化水
素の濃度を低減させるものである。注入された水素は原
子炉炉心部で水層から蒸気層に移行し、移行した水素は
主蒸気に同伴してタービンの復水器から蒸気抽出器で排
気され、酸水素再結合器で水に戻される。
2. Description of the Related Art Hydrogen injection has been adopted as an effective means for ensuring the soundness of structural materials in a reactor pressure vessel of a BWR power plant, particularly in the lower part of the pressure vessel, and in particular, for the generation and suppression of stress corrosion cracking. . In hydrogen injection at the BWR power plant, hydrogen is injected from the feedwater heater outlet of the feedwater system,
Due to the direct reaction between the injected hydrogen and oxygen or hydrogen peroxide or the indirect reaction via OH radicals, etc., mainly in the downcomer section around the reactor core, oxygen or hydrogen peroxide This is to reduce the concentration. The injected hydrogen moves from the water layer to the steam layer at the reactor core, and the transferred hydrogen is exhausted from the turbine condenser by the steam extractor along with the main steam, and is converted to water by the oxyhydrogen recombiner. Will be returned.

【0003】水素注入は、これまで10数基のプラント
で採用されている。図2にその実施の一例を示す。水素
は給水系から原子炉に入り、再循環水に混じったのち、
ダウンカマ部に至る。注入効果はダウンカマ部での水素
濃度で決まるため、注入量の指標としては、給水での濃
度よりもむしろダウンカマ部での濃度、すなわち次の相
関で定義される炉心換算水素濃度[H2eff を採用す
る。
[0003] Hydrogen injection has so far been employed in dozens of plants. FIG. 2 shows an example of the implementation. Hydrogen enters the reactor from the water supply system, mixes with the recirculated water,
We reach down kama part. Since the injection effect is determined by the hydrogen concentration in the downcomer section, the index of the injection amount is not the concentration in the feedwater but the concentration in the downcomer section, that is, the core-converted hydrogen concentration [H 2 ] eff defined by the following correlation: Is adopted.

【0004】炉心換算水素濃度[H2eff =[給水中
の水素濃度]×[給水流量]/[再循環流量] 炉心換算水素濃度の増加とともに、炉水中の酸素濃度測
定値が低下する。ここで測定されるのは酸素の濃度であ
るが、炉内雰囲気では酸素とほぼ等濃度の過酸化水素が
存在し、サンプリング系を経て測定されるまでには過酸
化水素の大半が熱分解して酸素に代わってしまうため、
測定された濃度のすべてが、炉内では酸素というわけで
はなく、酸素と過酸化水素の混合物である。このため、
以下、測定された酸素濃度を実効酸素濃度[O2eff
と定義する。すなわち、 実効酸素濃度[O2eff =[酸素濃度]+(1/2)×
[過酸化水素濃度] これまでの知見では、実効酸素濃度を20ppb 以下に低
減できるとステンレス鋼の応力腐食割れの発生,進展が
抑制されるとされており、水素注入量としては実効酸素
濃度をこの値(目標値)以下にすることを第1目標とす
る。一方、BWR発電プラントにおいて水素注入を採用
した場合の課題の一つがタービン系の線量率抑制にあ
る。即ち、炉心部で以下に示す水の放射化反応の結果生
成する放射性の窒素16の一部がボラタイルなアンモニ
ア形態となって、蒸気に同伴してタービン系に移行する
割合が増え、その結果タービン系の線量率が増大する。
Core equivalent hydrogen concentration [H 2 ] eff = [Hydrogen concentration in feed water] × [Feed water flow rate] / [Recirculation flow rate] As the core equivalent hydrogen concentration increases, the measured oxygen concentration in the reactor water decreases. Here, the concentration of oxygen is measured.However, in the furnace atmosphere, hydrogen peroxide has almost the same concentration as oxygen, and most of the hydrogen peroxide thermally decomposes before being measured through the sampling system. Instead of oxygen,
All of the measured concentrations are not oxygen in the furnace, but a mixture of oxygen and hydrogen peroxide. For this reason,
Hereinafter, the measured oxygen concentration is referred to as the effective oxygen concentration [O 2 ] eff
Is defined. That is, effective oxygen concentration [O 2 ] eff = [oxygen concentration] + (1/2) ×
[Hydrogen peroxide concentration] According to the findings so far, if the effective oxygen concentration can be reduced to 20 ppb or less, the occurrence and propagation of stress corrosion cracking of stainless steel will be suppressed. The first goal is to make the value equal to or less than this value (target value). On the other hand, one of the problems when hydrogen injection is adopted in a BWR power generation plant is the suppression of the dose rate of the turbine system. That is, a part of the radioactive nitrogen 16 generated as a result of the following water activation reaction in the core becomes a volatile ammonia form, and the rate of transfer to the turbine system accompanying the steam increases. The system dose rate increases.

【0005】16O (n,p) 16N [10MeV以上の
高エネルギー中性子による反応]図2には、水素注入の
結果としてのタービン系線量率を図示する。タービン系
線量率の増大は運転中の従事者の受ける放射線線量の増
大を招く可能性があり、あまり大きな増大は好ましくな
いため、タービン系線量率の許容値を上限として、水素
注入量は制限される、その結果、図2に示したように最
適な注入量が決められる。
16 O (n, p) 16 N [Reaction with High Energy Neutrons Above 10 MeV] FIG. 2 illustrates the turbine system dose rate as a result of hydrogen injection. An increase in the turbine system dose rate may cause an increase in the radiation dose received by the operating personnel, and a too large increase is not preferable.Therefore, the hydrogen injection amount is limited up to the allowable value of the turbine system dose rate. As a result, the optimum injection amount is determined as shown in FIG.

【0006】こうして、実効酸素濃度で注入量を決める
場合には、上記のようなプロセスで最適値をきめること
ができるが、ステンレス鋼の応力腐食割れの水質環境の
指標として、腐食電位が主流となりつつある。図3に腐
食環境の評価因子を示す。応力腐食割れの亀裂進展速度
を例にとると、主要な評価因子としては、腐食電位,導
電率,pH,流速,温度、その他有機不純物濃度などが
挙げられる。腐食電位を決める因子としては、酸素,過
酸化水素濃度(代表して実効酸素濃度),水素濃度,腐
食性のラジカル濃度などが挙げられる。しかし、これま
では実効酸素濃度を評価指標にするか、腐食電位を評価
指標にするかの決定的な決め手を欠いていた。
When the injection amount is determined by the effective oxygen concentration in this way, the optimum value can be determined by the above-described process. However, as an index of the water quality environment of stress corrosion cracking of stainless steel, the corrosion potential becomes the mainstream. It is getting. FIG. 3 shows the evaluation factors of the corrosive environment. Taking the crack growth rate of stress corrosion cracking as an example, the main evaluation factors include corrosion potential, conductivity, pH, flow rate, temperature, and other organic impurity concentrations. Factors that determine the corrosion potential include oxygen, hydrogen peroxide concentration (typically, effective oxygen concentration), hydrogen concentration, and corrosive radical concentration. However, until now, there has been no decisive decision whether to use the effective oxygen concentration as the evaluation index or the corrosion potential as the evaluation index.

【0007】図4に、腐食電位(ECP)を評価指標に
した場合および実効酸素濃度を評価指標にした場合の亀
裂進展速度を示す。いずれも濃度範囲に不一致がみられ
るが、データベースで妥当性が裏付けられている。図2
には、水素注入の結果としての腐食電位も併記している
が、実効酸素濃度に比べて腐食電位の低下は緩やかで、
腐食環境の評価指標としていずれをとるかで、水素注入
量の最適値は異なってくる可能性がある。
FIG. 4 shows the crack growth rate when the corrosion potential (ECP) is used as the evaluation index and when the effective oxygen concentration is used as the evaluation index. In all cases, there is a discrepancy in the concentration range, but the database supports the validity. FIG.
Also shows the corrosion potential as a result of hydrogen implantation, but the decrease in corrosion potential is slower than the effective oxygen concentration,
The optimum value of the hydrogen injection amount may differ depending on which evaluation index is used for the corrosive environment.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、BW
R発電プラントの原子炉構造材の健全性確保のために水
素注入を連続的に実施する際、事前に構造材料表面の酸
化被膜をプリコンディションすることによって、通常の
水素注入以上の注入効果をもたらすことができる沸騰水
型原子力発電プラントの運転方法を提供することにあ
る。さらに、構造材料の腐食環境評価指標の最適化を図
り、妥当な水素注入量を最適に制御できる沸騰水型原子
力発電プラントの運転方法を提供することにある。即
ち、応力腐食割れの亀裂進展速度を最終ターゲットとす
るため、腐食電位あるいは実効酸素濃度といった間接的
な評価指標ではなく、亀裂進展速度を抑制するための直
接的な指標として亀裂進展速度そのものを採用し、水素
注入量の最適化あるいは注入効果を促進することを意図
している。
SUMMARY OF THE INVENTION An object of the present invention is to provide a BW
When hydrogen injection is continuously performed to ensure the soundness of the reactor structural material of the R power plant, the oxide film on the surface of the structural material is pre-conditioned in advance to provide an injection effect more than that of normal hydrogen injection. It is an object of the present invention to provide a method of operating a boiling water nuclear power plant capable of operating the nuclear power plant. Another object of the present invention is to provide a method for operating a boiling water nuclear power plant that optimizes a corrosive environment evaluation index of a structural material and can optimally control an appropriate amount of hydrogen injection. In other words, since the crack growth rate of stress corrosion cracking is the final target, the crack growth rate itself is used as a direct index to suppress the crack growth rate, rather than an indirect evaluation index such as corrosion potential or effective oxygen concentration. In addition, it is intended to optimize the hydrogen implantation amount or to promote the implantation effect.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の第1の発明は、連続して水素注入を実施する沸騰水型
原子力発電プラントの運転方法において、前記連続水素
注入の実施に先立って、連続的に注入する水素量よりも
過剰の水素を注入することにより、材料表面の酸化被膜
性状を制御する。
According to a first aspect of the present invention, there is provided a method for operating a boiling water nuclear power plant in which hydrogen is continuously injected. By injecting an excess of hydrogen from the amount of hydrogen to be continuously injected, the properties of the oxide film on the material surface are controlled.

【0010】第2の発明は、連続して水素注入を実施す
る沸騰水型原子力発電プラントの運転方法において、プ
ラント起動運転の出力が定格に達する前に、連続的に注
入する水素量よりも過剰の水素を注入することにより、
材料表面の酸化被膜性状を制御する。
A second aspect of the present invention relates to a method for operating a boiling water nuclear power plant in which hydrogen is continuously injected. By injecting hydrogen,
Control the properties of the oxide film on the material surface.

【0011】第3の発明は、連続して水素注入を実施す
る沸騰水型原子力発電プラントの運転方法において、前
記連続水素注入の実施中に、連続的に注入する水素量よ
りも過剰の水素を適宜注入することにより、材料表面の
酸化被膜性状を繰り返し制御する。
According to a third aspect of the present invention, there is provided a method for operating a boiling water nuclear power plant wherein hydrogen is continuously injected. By properly injecting, the properties of the oxide film on the material surface are repeatedly controlled.

【0012】第4の発明は、第1乃至第3の発明の何れ
かにおいて、前記酸化被膜性状の制御を、腐食電位測定
又は亀裂進展速度測定により監視する。
In a fourth aspect based on any one of the first to third aspects, the control of the property of the oxide film is monitored by measuring a corrosion potential or measuring a crack growth rate.

【0013】ここで、腐食電位の定義を図5に示す。ス
テンレス鋼の腐食電位は、金属表面での酸素,過酸化水
素の還元に伴うカソード電流と、金属イオンの溶出など
の酸化反応に伴うアノード電流が自然にバランスする電
位で定義される。アノード電流は水側の酸素,過酸化水
素の濃度に依存するが、アノード電流は金属の表面性状
に強く依存することが知られている。酸素と過酸化水素
では、還元作用が異なるため、両者の腐食電位への影響
度が異なる。
Here, the definition of the corrosion potential is shown in FIG. The corrosion potential of stainless steel is defined as the potential at which the cathodic current associated with the reduction of oxygen and hydrogen peroxide on the metal surface and the anodic current associated with the oxidation reaction such as elution of metal ions naturally balance. It is known that the anodic current depends on the concentrations of oxygen and hydrogen peroxide on the water side, but the anodic current strongly depends on the surface properties of the metal. Oxygen and hydrogen peroxide have different reducing effects, and therefore have different degrees of influence on the corrosion potential.

【0014】酸素雰囲気,過酸化水素雰囲気で腐食電位
を測定する試みは、これまで腐食研究者の大きな課題の
一つであった。高温では過酸化水素の熱分解特に材料表
面での接触分解が大きく、過酸化水素単独の雰囲気を作
ることが困難で、その結果過酸化水素の腐食電位への影
響の定量的な評価が十分に行えなかった。発明者らは、
Journal of Nuclear Science and Technology, Vol.
35,No. 4,pp.301〜308,April 1998
に記載されている過酸化水素単独雰囲気での実験法を確
立し、過酸化水素濃度をパラメータとして腐食電位およ
び同雰囲気での亀裂進展速度の測定を可能とした。この
結果、以下に示すような新しい知見を得た。本発明は本
知見に基づいてなされたものである。
Attempts to measure the corrosion potential in an oxygen atmosphere or a hydrogen peroxide atmosphere have been one of the major issues for corrosion researchers. At high temperatures, thermal decomposition of hydrogen peroxide, especially catalytic decomposition at the material surface, is large, making it difficult to create an atmosphere of hydrogen peroxide alone, and as a result, the quantitative evaluation of the effect of hydrogen peroxide on the corrosion potential is sufficient. I couldn't do it. The inventors have
Journal of Nuclear Science and Technology, Vol.
35, No. 4, pp. 301-308, April 1998.
The experimental method described in (1) was established in an atmosphere of hydrogen peroxide alone, and the corrosion potential and the crack growth rate in the atmosphere were measured using the hydrogen peroxide concentration as a parameter. As a result, the following new findings were obtained. The present invention has been made based on this finding.

【0015】すなわち、図6に表面を機械研磨して予め
表面の酸化被膜を脱離したステンレス鋼試験片につい
て、酸素および過酸化水素雰囲気で腐食電位を測定した
結果を示す。図6から、酸化種(酸素あるいは過酸化水
素)濃度の低下により腐食電位が低下し、酸素よりも過
酸化水素の方が低下が遅れることが判る。すなわち、低
濃度でも過酸化水素の場合の腐食電位は酸素の場合より
も高い。
That is, FIG. 6 shows the results of measuring the corrosion potential of a stainless steel test piece whose surface was mechanically polished and the oxide film on the surface was removed in advance in an atmosphere of oxygen and hydrogen peroxide. From FIG. 6, it can be seen that the corrosion potential decreases due to the decrease in the concentration of the oxidizing species (oxygen or hydrogen peroxide), and the reduction of hydrogen peroxide is slower than that of oxygen. That is, even at a low concentration, the corrosion potential in the case of hydrogen peroxide is higher than in the case of oxygen.

【0016】ところが、過酸化水素雰囲気で電位測定を
繰り返し、試験片表面に過酸化水素で形成された酸化被
膜が形成されるにつれて、腐食電位は図7に示すよう
に、ヒステリシスを示すようになる。すなわち、過酸化
水素で形成された被膜が存在する場合には、図5に示し
たアノード分極特性が右側に大きくシフトし、その結果
腐食電位は過酸化水素の濃度に依存せず高い値を保つ。
この傾向は雰囲気を酸素に変えてもほぼ同じで、一旦過
酸化水素で安定な酸化被膜が形成されると、過酸化水素
でなく酸素でもほぼ図7の高い腐食電位を示す。ここ
で、注目したいのは、酸素と過酸化水素とでは、形成さ
れる酸化被膜に差異があり、過酸化水素雰囲気の場合、
この傾向が顕著に見られる点である。
However, the potential measurement was repeated in a hydrogen peroxide atmosphere, and as the oxide film formed of hydrogen peroxide was formed on the surface of the test piece, the corrosion potential showed hysteresis as shown in FIG. . That is, when there is a film formed of hydrogen peroxide, the anodic polarization characteristic shown in FIG. 5 shifts greatly to the right, and as a result, the corrosion potential maintains a high value independent of the concentration of hydrogen peroxide. .
This tendency is almost the same even when the atmosphere is changed to oxygen. Once a stable oxide film is formed with hydrogen peroxide, not only hydrogen peroxide but also oxygen exhibits a high corrosion potential as shown in FIG. Here, it should be noted that there is a difference in the oxide film formed between oxygen and hydrogen peroxide, and in the case of a hydrogen peroxide atmosphere,
This tendency is notable.

【0017】次に、酸素および過酸化水素の雰囲気で亀
裂進展速度を測定した結果を図8および図9に示す。図
8のように、酸素雰囲気で測定した結果は単調な左下が
りの相関を示し、酸素濃度が低下するに従って亀裂進展
速度も単調に低下する。一方、図9のように、過酸化水
素雰囲気では、亀裂進展速度は過酸化水素濃度にあまり
依存せず、3桁強の濃度範囲で亀裂進展速度はほぼ一定
になる。図10は、この相関を腐食電位を指標として、
酸素雰囲気および過酸化水素雰囲気でそれぞれ示したも
のである。酸素雰囲気では従来から示されている左下が
りの相関が得られているが、過酸化水素では、腐食電位
変化に拘わらずほぼ一定の亀裂進展速度を示している。
すなわち、腐食電位を指標にしては、亀裂進展の正しい
評価が難しいことを示唆している。
Next, FIGS. 8 and 9 show the results of measuring the crack growth rate in an atmosphere of oxygen and hydrogen peroxide. As shown in FIG. 8, the result measured in an oxygen atmosphere shows a monotonically decreasing correlation to the left, and the crack growth rate monotonically decreases as the oxygen concentration decreases. On the other hand, as shown in FIG. 9, in a hydrogen peroxide atmosphere, the crack growth rate does not depend much on the hydrogen peroxide concentration, and the crack growth rate becomes almost constant in a concentration range of slightly more than three digits. FIG. 10 shows this correlation using the corrosion potential as an index.
These are shown in an oxygen atmosphere and a hydrogen peroxide atmosphere, respectively. In an oxygen atmosphere, a downward-sloping correlation shown conventionally has been obtained, but in hydrogen peroxide, a substantially constant crack growth rate is shown regardless of the change in corrosion potential.
That is, it indicates that it is difficult to correctly evaluate the crack growth using the corrosion potential as an index.

【0018】原子炉圧力容器内の酸素,過酸化水素のそ
れぞれの濃度を測定することは、先にも記述したよう
に、サンプリング配管内での過酸化水素の熱分解のため
非常に難しく、現在できる定量法は、実効酸素濃度の測
定と、ラジオリシスモデルによる水の放射線分解の理論
解析に基づく酸素および過酸化水素の各濃度の予測によ
るものである。
As described above, it is very difficult to measure the respective concentrations of oxygen and hydrogen peroxide in a reactor pressure vessel because of thermal decomposition of hydrogen peroxide in a sampling pipe. Possible quantification methods rely on measuring the effective oxygen concentration and predicting the respective concentrations of oxygen and hydrogen peroxide based on a theoretical analysis of the radiolysis of water by a radiolysis model.

【0019】発明者らがNuclear Science and Engineer
ing:85,339−349(1983)で報告したBWRに
おける水の放射線分解と理論モデルの概要を図11に、
本モデルによる解析結果の一例を図12に示す。水素注
入の結果、酸素濃度は急激に低下するが、過酸化水素濃
度は比較的長く存在する。しかし、過酸化水素濃度が十
分に低下しても腐食電位はなかなか低下せず、水素注入
量が炉心換算水素濃度で約60ppb を越えて急激に低下
する傾向を示す。このことは、腐食電位の低下が過酸化
水素の減少よりも水素の増加によることを示唆してい
る。
[0019] The inventors have been working on Nuclear Science and Engineer.
ing: 85, 339-349 (1983), FIG. 11 shows an overview of the radiolysis of water in the BWR and a theoretical model.
FIG. 12 shows an example of an analysis result by the present model. As a result of the hydrogen injection, the oxygen concentration drops sharply, but the hydrogen peroxide concentration exists for a relatively long time. However, even if the hydrogen peroxide concentration is sufficiently reduced, the corrosion potential does not readily decrease, and the amount of injected hydrogen tends to rapidly decrease beyond about 60 ppb in terms of core-converted hydrogen concentration. This suggests that the decrease in corrosion potential is due to an increase in hydrogen rather than a decrease in hydrogen peroxide.

【0020】すなわち、水素によって過酸化水素支配型
の酸化被膜が還元され、新たな被膜性状に変わるため、
アノード分極特性に変化が生じ、その結果腐食電位が過
酸化水素支配型を脱するものと考えられる。亀裂進展速
度についても同様の考え方が可能で、過酸化水素雰囲気
での酸化被膜支配の場合には、亀裂進展速度は過酸化水
素濃度に依存し難く、この被膜が壊れて還元型あるいは
酸素支配型の酸化被膜になると、亀裂進展速度は酸化種
濃度に依存するようになる。
That is, the hydrogen peroxide-dominated oxide film is reduced by hydrogen and changes to a new film property.
It is considered that a change occurs in the anodic polarization characteristics, and as a result, the corrosion potential escapes from the hydrogen peroxide dominant type. The same concept can be applied to the crack growth rate. In the case of an oxide film dominated in a hydrogen peroxide atmosphere, the crack growth rate is hardly dependent on the hydrogen peroxide concentration. , The crack growth rate depends on the concentration of the oxidizing species.

【0021】この相関を模式的に示したものが図13で
ある。すなわち、通常水質(NWC)では、十分な酸素濃
度があり亀裂進展速度は酸素濃度によって支配される
が、水素注入により被膜が過酸化水素支配型に変わる
(HWC)と亀裂進展速度は一定値に止まる。更に水素
注入量が増大すると、被膜が還元型に転じ、再び亀裂進
展速度が低下する。
FIG. 13 schematically shows this correlation. That is, in normal water quality (NWC), there is a sufficient oxygen concentration, and the crack growth rate is controlled by the oxygen concentration. However, when the coating is changed to a hydrogen peroxide dominated type by hydrogen injection (HWC), the crack growth rate becomes a constant value. Stop. When the amount of hydrogen injection further increases, the coating turns into a reduced type, and the crack growth rate again decreases.

【0022】[0022]

【発明の実施の形態】上記実験および解析結果に基づ
き、通常の水素注入においては酸化被膜が過酸化水素型
となり、水素注入により十分な亀裂進展速度の低減が難
しいという課題に対し、本発明では過剰の水素を注入す
ることにより、酸化被膜性状の積極的な変換を行う点に
特徴がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Based on the results of the above experiments and analysis, the present invention solves the problem that the oxide film becomes a hydrogen peroxide type in normal hydrogen implantation and it is difficult to sufficiently reduce the crack growth rate by hydrogen implantation. It is characterized in that the oxide film properties are positively converted by injecting excess hydrogen.

【0023】本発明による沸騰水型原子力発電プラント
の運転方法の一実施例では、連続的な水素注入に先だっ
て、連続注入する水素量よりも過剰な水素量、例えば炉
心換算水素濃度で最適値の約2倍の水素を酸化被膜性状
を一定値に安定させるために必要な時間、例えば約20
時間にわたって添加する。この結果、酸化被膜を還元型
に変えて置くことによって、その後の連続的な水素注入
期間中、被膜は還元型,酸化種濃度は低いという条件を
作り出し、構造材の健全性を確保できる。水素の注入位
置としては、例えば図1に示す沸騰水型原子力発電プラ
ントの給水加熱器12の下流側の給水系配管から注入す
れば良い。
In one embodiment of the method of operating a boiling water nuclear power plant according to the present invention, prior to continuous hydrogen injection, an excess amount of hydrogen, such as an optimum core concentration-converted hydrogen concentration, over the amount of hydrogen continuously injected. About twice as much hydrogen is required to stabilize the oxide film properties to a certain value, for example, about 20 times.
Add over time. As a result, by replacing the oxide film with the reduced type, the condition that the film is reduced and the concentration of the oxidized species is low during the subsequent continuous hydrogen injection period is created, and the soundness of the structural material can be secured. As the hydrogen injection position, for example, the hydrogen may be injected from a water supply pipe downstream of the water heater 12 of the boiling water nuclear power plant shown in FIG.

【0024】水素注入期間、連続的に水素濃度を高く保
ち亀裂進展速度を低減することは、構造材の健全性確保
の観点からは好ましいが、先にも記述したようにタービ
ン線量率の増大という問題を派生し、好ましくない。一
方、従来の最適水素注入量では構造材健全性確保の点で
はもの足りない。このため、図14に示すように水素注
入初期、プラントの起動時に通常よりも過剰の水素、例
えば炉心換算水素濃度で最適値の約2倍の水素を酸化被
膜性状を一定に安定させるために必要な時間、例えば約
20時間にわたって添加し、酸化被膜を還元型に変えて
置く。その後水素注入量を所定値に戻すことにより、被
膜は還元型、酸化種濃度は低いという条件を作り出せ
る。
It is preferable from the viewpoint of ensuring the soundness of the structural material to continuously increase the hydrogen concentration and reduce the crack growth rate during the hydrogen injection period, but as described above, it is necessary to increase the turbine dose rate. Derived problems, not preferred. On the other hand, the conventional optimal hydrogen injection amount is not sufficient in securing structural material integrity. For this reason, as shown in FIG. 14, at the initial stage of hydrogen injection, excess hydrogen than usual, for example, about twice as much as the optimum value in core equivalent hydrogen concentration, is required to stabilize the oxide film properties at the start of the plant. For an appropriate time, for example, about 20 hours, and the oxide film is changed to a reduced form. Thereafter, by returning the hydrogen injection amount to a predetermined value, it is possible to create a condition that the film is reduced and the concentration of oxidized species is low.

【0025】この酸化被膜還元の結果、同じ水素注入量
でも亀裂進展速度を十分に低減でき、しかも水素注入量
の多い状態が、炉出力が小さく、タービンへの蒸気供給
量が少なく、さらに炉心での窒素−16の生成量が少な
い起動時に限定されるため、定格運転においてもタービ
ン線量率の増大を招くことはない。しかも起動時には循
環流量が定格時に比べて十分に小さいため、定格時用に
準備した水素注入装置からの水素注入でも十分に過剰に
炉心換算水素濃度を達成することができる。
As a result of the reduction of the oxide film, the crack growth rate can be sufficiently reduced even with the same amount of hydrogen injection, and when the amount of hydrogen injection is large, the furnace output is small, the steam supply amount to the turbine is small, and the Since the amount of generated nitrogen-16 is limited during the start-up, the turbine dose rate does not increase even in the rated operation. In addition, since the circulation flow rate at the time of startup is sufficiently smaller than that at the time of rating, even when hydrogen is injected from the hydrogen injection device prepared for the time of rating, it is possible to achieve a sufficiently excessive core-converted hydrogen concentration.

【0026】本発明の別の実施例では、水素注入量を増
やして酸化被膜を還元型に変える時期を起動時に限定せ
ず、適宜水素注入量を増やす。このようにして酸化被膜
性状を還元型に転換する頻度を増やすことが効果的であ
る。この場合、当然タービン線量率は水素注入量増加の
期間は増大するが、タービン系でのパトロール制限など
予め運転操作上の対応策を打って置くことにより、仮に
一時的にタービン線量率が増大しても、従事者の受ける
放射線量を抑制しつつ、構造材料の健全性確保が達成可
能となる。
In another embodiment of the present invention, the time for changing the oxide film to the reduction type by increasing the hydrogen injection amount is not limited to the start-up time, and the hydrogen injection amount is appropriately increased. Thus, it is effective to increase the frequency of converting the oxide film properties to the reduced type. In this case, the turbine dose rate naturally increases during the period of increasing the hydrogen injection rate.However, if measures such as patrol restrictions on the turbine system are taken in advance in operation, the turbine dose rate temporarily increases temporarily. Even so, it is possible to achieve the soundness of the structural material while suppressing the radiation dose received by the worker.

【0027】別の実施例では、ボトムドレイン系に設置
した腐食電位モニタで被膜性状変化を常時監視し、連続
水素注入実施前に必要な過剰水素量および過剰水素供給
期間を腐食電位モニタのモニタ値を用いて決める。この
ようにすれば、より確実に最適な水素量、最適な時間
で、酸化被膜性状の制御が可能となる。また、腐食電位
モニタのモニタ値を用いて適宜水素注入量を増大させる
ことにより、材料表面の酸化被膜性状を常に還元型に保
つことができる。
In another embodiment, changes in film properties are constantly monitored by a corrosion potential monitor installed in the bottom drain system, and the amount of excess hydrogen and the excess hydrogen supply period required before continuous hydrogen implantation are monitored by the monitor values of the corrosion potential monitor. Determine using. This makes it possible to more reliably control the properties of the oxide film with the optimum amount of hydrogen and the optimum time. In addition, by appropriately increasing the amount of hydrogen implantation using the monitored value of the corrosion potential monitor, the property of the oxide film on the material surface can always be kept in the reduced type.

【0028】別の実施例では、ボトムドレイン系に設置
した亀裂進展速度モニタで被膜性状変化を常時監視し、
連続水素注入実施前に必要な過剰水素量および過剰水素
供給期間を亀裂進展速度モニタのモニタ値を用いて決め
る。このようにすることにより、一層確実に最適な水素
量,最適な時間で、酸化被膜性状の制御が可能となる。
また、亀裂進展速度モニタのモニタ値を用いて適宜水素
注入量を増大させることにより、亀裂進展速度を常に低
く保つことができる。
In another embodiment, a change in film properties is constantly monitored by a crack growth rate monitor installed in a bottom drain system.
The amount of excess hydrogen and the period of supply of excess hydrogen necessary before the continuous hydrogen injection are determined using the monitoring values of the crack growth rate monitor. This makes it possible to more reliably control the properties of the oxide film with the optimum amount of hydrogen and the optimum time.
In addition, by appropriately increasing the hydrogen injection amount using the monitored value of the crack growth rate monitor, the crack growth rate can be kept low at all times.

【0029】別の実施例では、図15に示すように、水
素注入用のアキュミュレータ15を用いて、一時的に水
素注入量を増大する。この場合、水素発生装置14から
の水素の一部を注入に先立ってアキュミュレータ15に
貯え、貯えられた水素を用いて短期の注入量増加に対応
する。
In another embodiment, as shown in FIG. 15, a hydrogen injection amount is temporarily increased by using an accumulator 15 for hydrogen injection. In this case, a part of the hydrogen from the hydrogen generator 14 is stored in the accumulator 15 prior to the injection, and the stored hydrogen is used to cope with a short-term increase in the injection amount.

【0030】[0030]

【発明の効果】本発明によれば、通常の水素注入設備を
用い、運転方法を改善するだけで、タービン線量率への
大きなインパクトなしに、酸化被膜の還元と亀裂進展速
度の低減が可能となる。
According to the present invention, it is possible to reduce the oxide film and reduce the crack growth rate without any significant impact on the turbine dose rate by improving the operation method using ordinary hydrogen injection equipment. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるBWR発電プラントの運転方法の
一実施例を実施するプラント構成図。
FIG. 1 is a plant configuration diagram for implementing one embodiment of a method of operating a BWR power plant according to the present invention.

【図2】水素注入効果の事例を示す図。FIG. 2 is a diagram showing an example of a hydrogen injection effect.

【図3】腐食環境の評価因子を示す図。FIG. 3 is a diagram showing evaluation factors for a corrosive environment.

【図4】亀裂進展速度と腐食電位および実効酸素濃度の
相関図。
FIG. 4 is a correlation diagram between a crack growth rate, a corrosion potential, and an effective oxygen concentration.

【図5】腐食電位の定義を示す図。FIG. 5 is a diagram showing a definition of a corrosion potential.

【図6】実効酸素濃度と腐食電位の相関図。FIG. 6 is a correlation diagram between effective oxygen concentration and corrosion potential.

【図7】実効酸素濃度と腐食電位の相関図。FIG. 7 is a correlation diagram between effective oxygen concentration and corrosion potential.

【図8】酸素濃度と亀裂進展速度の相関図。FIG. 8 is a correlation diagram between an oxygen concentration and a crack growth rate.

【図9】過酸化水素濃度と亀裂進展速度の相関図。FIG. 9 is a correlation diagram between a hydrogen peroxide concentration and a crack growth rate.

【図10】腐食電位と亀裂進展速度の相関図。FIG. 10 is a correlation diagram between a corrosion potential and a crack growth rate.

【図11】BWRにおける水の放射線分解と理論モデル
の概要図。
FIG. 11 is a schematic diagram of radiolysis of water in a BWR and a theoretical model.

【図12】水素注入時の原子炉内での酸素,過酸化水
素,腐食電位の解析例を示す図。
FIG. 12 is a diagram showing an example of analysis of oxygen, hydrogen peroxide, and corrosion potential in a nuclear reactor during hydrogen injection.

【図13】実効酸素濃度と亀裂進展速度の相関図。FIG. 13 is a correlation diagram between the effective oxygen concentration and the crack growth rate.

【図14】酸化被膜の制御運転を示す図。FIG. 14 is a diagram showing a control operation of an oxide film.

【図15】本発明によるBWR発電プラントの運転方法
の別の実施例を実施するプラント構成図。
FIG. 15 is a plant configuration diagram for implementing another embodiment of the method of operating a BWR power plant according to the present invention.

【符号の説明】[Explanation of symbols]

14…水素発生装置、15…アキュミュレータ、16…
水素注入装置。
14 ... hydrogen generator, 15 ... accumulator, 16 ...
Hydrogen injection device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橘 正彦 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 (72)発明者 渡辺 敦志 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiko Tachibana 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Power & Electricity Development Division, Hitachi, Ltd. (72) Inventor Atsushi Watanabe Omika-cho, Hitachi City, Ibaraki Prefecture 7-2-1, Hitachi, Ltd. Power and Electricity Development Division

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】連続して水素注入を実施する沸騰水型原子
力発電プラントの運転方法において、前記連続水素注入
の実施に先立って、連続的に注入する水素量よりも過剰
の水素を注入することにより、材料表面の酸化被膜性状
を制御することを特徴とする沸騰水型原子力発電プラン
トの運転方法。
1. A method for operating a boiling water nuclear power plant in which hydrogen is continuously injected, wherein an excess amount of hydrogen is injected before the continuous hydrogen injection is performed. A method for operating a boiling water nuclear power plant, wherein the property of an oxide film on a material surface is controlled by the method.
【請求項2】連続して水素注入を実施する沸騰水型原子
力発電プラントの運転方法において、プラント起動運転
の出力が定格に達する前に、連続的に注入する水素量よ
りも過剰の水素を注入することにより、材料表面の酸化
被膜性状を制御することを特徴とする沸騰水型原子力発
電プラントの運転方法。
2. A method for operating a boiling water nuclear power plant in which hydrogen is continuously injected, wherein an excess amount of hydrogen is injected before the output of the plant start-up operation reaches a rated value. A method for operating a boiling water nuclear power plant, wherein the properties of the oxide film on the surface of the material are controlled.
【請求項3】連続して水素注入を実施する沸騰水型原子
力発電プラントの運転方法において、前記連続水素注入
の実施中に、連続的に注入する水素量よりも過剰の水素
を適宜注入することにより、材料表面の酸化被膜性状を
繰り返し制御することを特徴とする沸騰水型原子力発電
プラントの運転方法。
3. A method for operating a boiling water nuclear power plant in which hydrogen is continuously injected, wherein during the continuous hydrogen injection, an excess amount of hydrogen is injected as needed in excess of the amount of hydrogen continuously injected. A method for operating a boiling water nuclear power plant, wherein the properties of an oxide film on a material surface are repeatedly controlled by the method.
【請求項4】請求項1乃至3の何れかにおいて、前記酸
化被膜性状の制御を腐食電位測定により監視することを
特徴とする沸騰水型原子力発電プラントの運転方法。
4. The method for operating a boiling water nuclear power plant according to claim 1, wherein the control of the property of the oxide film is monitored by measuring a corrosion potential.
【請求項5】請求項1乃至3の何れかにおいて、前記酸
化被膜性状の制御を亀裂進展速度測定により監視するこ
とを特徴とする沸騰水型原子力発電プラントの運転方
法。
5. The method for operating a boiling water nuclear power plant according to claim 1, wherein the control of the property of the oxide film is monitored by measuring a crack growth rate.
【請求項6】水素注入設備を具備する沸騰水型原子力発
電プラントの運転方法において、前記水素注入設備の出
口側にアキュミュレータを設け、アキュミュレータに蓄
えた余剰水素を用いて、請求項1乃至5の何れかの運転
を実施することを特徴とする沸騰水型原子力発電プラン
トの運転方法。
6. A method for operating a boiling water nuclear power plant having a hydrogen injection facility, wherein an accumulator is provided at an outlet side of the hydrogen injection facility, and excess hydrogen stored in the accumulator is used. 5. A method for operating a boiling water nuclear power plant, wherein the operation according to any one of 5 is performed.
【請求項7】連続して水素注入を実施する沸騰水型原子
力発電プラントの運転方法において、水素注入量を亀裂
進展速度を測定することにより制御することを特徴とす
る沸騰水型原子力発電プラントの運転方法。
7. A method for operating a boiling water nuclear power plant which continuously performs hydrogen injection, wherein the amount of hydrogen injected is controlled by measuring a crack growth rate. how to drive.
【請求項8】請求項6の運転を実施するために水素注入
設備の出口側に前記アキュミュレータを設けたことを特
徴とする沸騰水型原子力発電プラント。
8. A boiling water nuclear power plant, wherein said accumulator is provided at an outlet side of a hydrogen injection facility for carrying out the operation of claim 6.
JP10200073A 1998-07-15 1998-07-15 Method for operating nuclear power generation plant of boiling water type Pending JP2000028789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10200073A JP2000028789A (en) 1998-07-15 1998-07-15 Method for operating nuclear power generation plant of boiling water type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10200073A JP2000028789A (en) 1998-07-15 1998-07-15 Method for operating nuclear power generation plant of boiling water type

Publications (1)

Publication Number Publication Date
JP2000028789A true JP2000028789A (en) 2000-01-28

Family

ID=16418405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10200073A Pending JP2000028789A (en) 1998-07-15 1998-07-15 Method for operating nuclear power generation plant of boiling water type

Country Status (1)

Country Link
JP (1) JP2000028789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029940A (en) * 2004-07-15 2006-02-02 Tokyo Electric Power Co Inc:The Hydrogen injection method for boiling water type nuclear power plant
JP2008008750A (en) * 2006-06-29 2008-01-17 Tohoku Univ Corrosive environment determination method of nuclear reactor cooling water, and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029940A (en) * 2004-07-15 2006-02-02 Tokyo Electric Power Co Inc:The Hydrogen injection method for boiling water type nuclear power plant
JP4717388B2 (en) * 2004-07-15 2011-07-06 東京電力株式会社 Hydrogen injection method for boiling water nuclear power plant
JP2008008750A (en) * 2006-06-29 2008-01-17 Tohoku Univ Corrosive environment determination method of nuclear reactor cooling water, and device therefor

Similar Documents

Publication Publication Date Title
JP2001004789A (en) Reactor structure material and corrosion reducing method for reactor structure material
US20030180180A1 (en) Method of reducing corrosion of metal material
JP2000028789A (en) Method for operating nuclear power generation plant of boiling water type
US4940564A (en) Suppression of deposition of radioactive substances in boiling water type, nuclear power plant
JP4634709B2 (en) Method for reducing corrosion of reactor structural materials
JP2024002814A (en) Method for improving reliability of nuclear power plant
JP3941392B2 (en) Reactor operation method
JP2005003565A (en) Corrosion reduction method for reactor structural material
US20040057549A1 (en) Method of operating nuclear reactor
JP2001228289A (en) Reactor power plant and its operation method
JP4555625B2 (en) Operation method of nuclear power plant
JPH09264988A (en) Method for decreasing stress corrosion cracking of metal in high-temperature water by controlling ph of tip of crack
JP2002071883A (en) Surface treatment method of structural material for nuclear power plant, and operating method of nuclear power plant
JP3941503B2 (en) Method for mitigating stress corrosion cracking of nuclear plant structural components
JP4518984B2 (en) Hydrogen injection method for nuclear power plant
Angeliu et al. Applying slip-oxidation to the SCC of austenitic materials in BWR/PWR environments
JPH1090485A (en) System and method for controlling dissolved oxygen concentration in reactor water
JP4717388B2 (en) Hydrogen injection method for boiling water nuclear power plant
JPS6319838B2 (en)
JP3404560B2 (en) Boiling water nuclear power plant and start-up operation method thereof
JP2006250723A (en) Injection method of hydrogen of nuclear power plant
JPH0843586A (en) Method for decreasing occurrence or growth of crack in surface of metal part
JPH05209991A (en) Contamination prevention method for reactor piping
JP2005030814A (en) Operation method for nuclear power generation plant
US3373083A (en) Method of inhibiting the corrosion of graphite in a co2-cooled nuclear reactor