JPH09219306A - Low loss oxide magnetic material and method for manufacturing the same - Google Patents

Low loss oxide magnetic material and method for manufacturing the same

Info

Publication number
JPH09219306A
JPH09219306A JP8022579A JP2257996A JPH09219306A JP H09219306 A JPH09219306 A JP H09219306A JP 8022579 A JP8022579 A JP 8022579A JP 2257996 A JP2257996 A JP 2257996A JP H09219306 A JPH09219306 A JP H09219306A
Authority
JP
Japan
Prior art keywords
mol
zno
loss
magnetic material
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8022579A
Other languages
Japanese (ja)
Inventor
Yukiko Nakamura
由紀子 中村
Satoru Narutani
哲 成谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8022579A priority Critical patent/JPH09219306A/en
Publication of JPH09219306A publication Critical patent/JPH09219306A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide NiZn group ferrite of high resistance (specific resistance >=10<6> Ωcm) and a low loss if excited with a large current in a high frequency band of 2M to 10MHz. SOLUTION: A basical compound composition of this magnetic material is composed of Fe2 O3 : 48 to 51mol%, ZnO: 11 to 25mol% and NiO: 24 to 41mol%. Alternatively, the basical compound composition is composed of Fe2 O3 : 48 to 51mol%, ZnO: 11 to 25mol%, CuO: 8mol% and NiO: 16 to 41mol%. Further, a Mo oxide of 5000ppm or less by conversion into MoO3 is added thereto, mean crystal particle size is 1 to 3μm and also the burning density is 85 to 96% of theoretical density. A ZnO compounded amount in the basical compound composition is -1.7×f+30-2.0<=ZnO<=-1.7×f+30+2.0 (mol%) in response to drive frequency f(MHz) of a transformer, however it is more preferable that it is coordinated in the range of 2<=f<=10 (MHz) and 11<=ZnO<=25 (mol%).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低損失酸化物磁性
材料およびその製造方法に関し、特に、2M〜10MHzの
高周波帯域で使用されるスイッチング電源用メイントラ
ンス、なかでもチップトランスや薄膜トランスのように
巻線と磁性材料が一体構造をとるような部品に好適に用
いられる、高抵抗でかつ低損失な酸化物磁性材料につい
ての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low loss oxide magnetic material and a method for manufacturing the same, and more particularly to a main transformer for a switching power supply used in a high frequency band of 2 to 10 MHz, such as a chip transformer or a thin film transformer. In addition, it is a proposal for an oxide magnetic material having high resistance and low loss, which is preferably used for a component in which a winding and a magnetic material have an integrated structure.

【0002】[0002]

【従来の技術】スイッチング電源は、100k〜200kHz帯域
の変換周波数で使われるのが一般的であり、このような
スイッチング電源のトランス材料としては、従来から、
低損失MnZnフェライトが用いられている。ところが、電
子機器の小型軽量化に伴い、最近では、さらに高い周波
数帯域でもなお低損失特性を示す酸化物磁性材料に対す
る要求が高まっている。
2. Description of the Related Art A switching power supply is generally used at a conversion frequency in the 100k to 200kHz band, and as a transformer material for such a switching power supply, conventionally,
Low-loss MnZn ferrite is used. However, with the reduction in size and weight of electronic devices, recently, there has been an increasing demand for oxide magnetic materials that exhibit low loss characteristics even in a higher frequency band.

【0003】この要求に対し、上記用途に用いられる従
来のMnZnフェライトであっても、基本成分組成や微量添
加物、粉砕方法、焼成方法などを工夫することにより、
2M〜3MHz程度の周波数帯域までであれば、低損失で
かつ所望の温度特性を示す材料を得ることができる。し
かしながら、従来のMnZnフェライトでは、2M〜3MHz
を超える高周波帯域でも低損失特性を示す材料を安定し
て得ることは困難であった。
In response to this demand, even in the conventional MnZn ferrite used for the above-mentioned applications, by devising the basic component composition, trace additives, pulverization method, firing method, etc.,
A material having a low loss and a desired temperature characteristic can be obtained up to a frequency band of about 2 MHz to 3 MHz. However, with conventional MnZn ferrites, 2M-3MHz
It has been difficult to stably obtain a material exhibiting a low loss characteristic even in a high frequency band exceeding 1.0.

【0004】そこで、2M〜3MHzを超える高周波帯域
では、MnZnフェライトに代わる上記トランス材料とし
て、高周波磁気特性に優れかつ高抵抗のNiZn系フェライ
トが注目されている。
Therefore, in the high frequency band exceeding 2 MHz to 3 MHz, NiZn type ferrite having excellent high frequency magnetic characteristics and high resistance has been attracting attention as the transformer material replacing the MnZn ferrite.

【0005】一方、部品の小型化、自動実装化という最
近の傾向に伴い、小型トランスのチップ化が進んでい
る。このようなチップトランスでは、巻線と磁性材料を
一体構造にするため、該磁性材料として高抵抗を示すNi
Zn系フェライトが既に使用されている。
On the other hand, with the recent trend toward miniaturization of parts and automatic mounting, miniaturization of transformers into chips is progressing. In such a chip transformer, since the winding and the magnetic material are made into an integral structure, the magnetic material that has a high resistance is Ni.
Zn-based ferrite has already been used.

【0006】しかしながら、上記のNiZn系フェライト
は、励磁電流の微弱な信号処理用に開発されたものであ
り、それ故に、スイッチング電源用トランスのように大
電流で励磁すると、ヒステリシス損失が大きくなるとい
う問題があった。
However, the NiZn type ferrite described above was developed for processing weak signals of the exciting current, and therefore, when excited with a large current like a transformer for a switching power supply, the hysteresis loss becomes large. There was a problem.

【0007】このように、従来技術では、高周波、大電
流励磁下で好適に作用する低損失NiZn系フェライトを得
ることはできなかった。これに対し、発明者らは先に、
特開平7−272917号公報に開示の高周波低損失NiZn系フ
ェライトを提案した。しかしながら、この提案のNiZn系
フェライトは、その提案の実施例に示すように対象とし
た周波数が1MHzであり、これを2M〜10MHz程度のさ
らに高い周波数帯域で用いると、磁気損失が著しく増大
するという問題があった。
As described above, in the prior art, it was not possible to obtain a low-loss NiZn-based ferrite that suitably operates under high frequency and large current excitation. On the other hand, the inventors first
A high-frequency low-loss NiZn-based ferrite disclosed in JP-A-7-272917 has been proposed. However, the NiZn-based ferrite of this proposal has a target frequency of 1 MHz as shown in the embodiment of the proposal, and if it is used in a higher frequency band of about 2 M to 10 MHz, magnetic loss is significantly increased. There was a problem.

【0008】[0008]

【発明が解決しようとする課題】以上説明したように従
来のNiZn系フェライトは、高抵抗であり、かつ高周波帯
域まで磁性を示すものの、高周波,大電流励磁下で大き
な磁気損失を招くという問題があった。
As described above, the conventional NiZn type ferrite has a high resistance and exhibits magnetism up to a high frequency band, but has a problem that it causes a large magnetic loss under high frequency and large current excitation. there were.

【0009】本発明の主たる目的は、従来技術が抱える
上記問題を解消すること、即ち、高抵抗(比抵抗≧106
Ωcm)で、かつ2M〜10MHzの高周波帯域で大電流で励
磁しても低損失なNiZn系フェライトを提供することにあ
る。本発明の他の目的は、上記の磁気特性を有するNiZn
系フェライトを製造するのに適した方法を提案すること
にある。
The main object of the present invention is to solve the above problems of the prior art, that is, high resistance (specific resistance ≧ 10 6).
The purpose of the present invention is to provide a NiZn-based ferrite which has a low loss even when excited with a large current in a high frequency band of 2 MHz to 10 MHz. Another object of the present invention is NiZn having the above magnetic properties.
The purpose is to propose a method suitable for producing a system ferrite.

【0010】[0010]

【課題を解決するための手段】上記目的実現のために鋭
意研究を重ねた結果、発明者らは、以下の内容を要旨構
成とする本発明を開発したのである。即ち、本発明は、 (1) 基本成分組成がFe2O3:48〜51 mol%、ZnO:11〜25 m
ol%およびNiO:24〜41%からなるものに、さらに、MoO3
換算で 5000ppm以下のMo酸化物を添加してなる、平均結
晶粒径が1〜3μmで、かつその焼結密度が理論密度の
85〜96%であることを特徴とする低損失酸化物磁性材料
である。
As a result of intensive studies to achieve the above object, the inventors have developed the present invention having the following contents. That is, the present invention provides (1) basic component composition is Fe 2 O 3: 48~51 mol% , ZnO: 11~25 m
ol% and NiO: 24-41%, and MoO 3
The average crystal grain size is 1 to 3 μm, and the sintering density is the theoretical density
It is a low loss oxide magnetic material characterized by 85 to 96%.

【0011】(2) 基本成分組成がFe2O3:48〜51 mol%、
ZnO:11〜25 mol%、CuO:8 mol%未満およびNiO:16〜41
mol%からなるものに、さらに、MoO3換算で 5000ppm以
下のMo酸化物を添加してなる、平均結晶粒径が1〜3μ
mで、かつその焼結密度が理論密度の85〜96%であるこ
とを特徴とする低損失酸化物磁性材料である。
(2) The basic component composition is Fe 2 O 3 : 48 to 51 mol%,
ZnO: 11-25 mol%, CuO: less than 8 mol% and NiO: 16-41
The average crystal grain size is 1 to 3μ, which is made by adding more than 5000ppm of Mo oxide in terms of MoO 3 to the one consisting of mol%.
and a sintered density of 85 to 96% of the theoretical density, which is a low loss oxide magnetic material.

【0012】(3) 上記(1)(2)に記載の低損失酸化物磁性
材料において、基本成分組成におけるZnO配合量を、ト
ランスの駆動周波数f(MHz)に応じて、 −1.7 ×f+30−2.0 ≦ZnO≦−1.7 ×f+30+2.0 ( mol%) 但し、2≦f≦10(MHz),11≦ZnO≦25( mol%)の
範囲に調整したことを特徴とする低損失酸化物磁性材料
である。
(3) In the low loss oxide magnetic material described in (1) and (2) above, the ZnO compounding amount in the basic component composition is -1.7 xf + 30- depending on the driving frequency f (MHz) of the transformer. 2.0 ≦ ZnO ≦ −1.7 × f + 30 + 2.0 (mol%) However, low loss oxide magnetic material characterized by being adjusted within the range of 2 ≦ f ≦ 10 (MHz) and 11 ≦ ZnO ≦ 25 (mol%) Is.

【0013】そして、上記本発明にかかる低損失酸化物
磁性材の製造方法は、主要成分である酸化物原料を秤量
し、混合し、仮焼して得られたフェライト仮焼粉に副成
分を添加して粉砕し、次いで、造粒して成形したのち焼
成することにより、請求項1または2に記載の低損失酸
化物磁性材料を製造するにあたり、上記副成分として、
MoO3換算で 5000ppm以下のMo酸化物を添加し、1000〜11
30℃の温度範囲に保持して焼成することを特徴とする。
In the method for producing a low-loss oxide magnetic material according to the present invention, the oxide raw material which is a main component is weighed, mixed and calcined to obtain a calcined ferrite powder, which contains a sub-component. When the low-loss oxide magnetic material according to claim 1 or 2 is manufactured by adding and crushing, then granulating and shaping, and then firing, as the subcomponent,
Add 1000ppm or less of Mo oxide in terms of MoO 3
It is characterized in that it is baked in the temperature range of 30 ° C.

【0014】[0014]

【発明の実施の形態】本発明にかかる酸化物磁性材料の
基本成分を構成するFe2O3 は、その含有量を48〜51 mol
%とする。この範囲に限定する理由は、Fe2O3 の含有量
が48 mol%未満では、トランスの磁芯などに使用する場
合に、安全性の観点から特に重視される高周波駆動時の
100 ℃における磁気損失に関し、ヒステリシス損失を低
減することができない。一方、Fe2O3 の含有量が51 mol
%を超えると、電気抵抗が急激に低下するために、渦電
流損失が高くなるとともに、NiZn系フェライトの長所の
1つであるコアへの直接巻線ができなくなるからであ
る。なお、より好ましいFe2O3 の含有量は、48.5〜50.0
mol%であり、この範囲で最も優れた低磁気損失特性が
得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Fe 2 O 3 constituting the basic component of the oxide magnetic material according to the present invention has a content of 48 to 51 mol.
%. The reason for limiting to this range is that when the Fe 2 O 3 content is less than 48 mol%, it is especially important from the viewpoint of safety when used in a magnetic core of a transformer, etc.
Regarding magnetic loss at 100 ° C, hysteresis loss cannot be reduced. On the other hand, the content of Fe 2 O 3 is 51 mol
%, The electrical resistance sharply decreases, the eddy current loss increases, and direct winding to the core, which is one of the advantages of NiZn ferrite, cannot be performed. The content of more preferred Fe 2 O 3 is from 48.5 to 50.0
It is mol%, and the most excellent low magnetic loss characteristics can be obtained in this range.

【0015】本発明にかかる酸化物磁性材料の基本成分
を構成するZnOは、その含有量を11〜25 mol%とする。
この範囲に限定する理由は、ZnOの含有量が11 mol%未
満では、ヒステリシス損失を低減することができず、一
方、25 mol%を超えると、高周波磁気特性が劣化し、10
0 ℃での残留損失が著しく増大するからである(特に、
4MHz以上で顕著となる。)。
ZnO, which is a basic component of the oxide magnetic material according to the present invention, has a content of 11 to 25 mol%.
The reason for limiting this range is that if the ZnO content is less than 11 mol%, the hysteresis loss cannot be reduced, while if it exceeds 25 mol%, the high-frequency magnetic properties deteriorate and
This is because the residual loss at 0 ° C increases significantly (in particular,
It becomes remarkable above 4 MHz. ).

【0016】より好ましいZnOの含有量は、トランスの
駆動周波数に依存し、駆動周波数が高くなると、最適Zn
O含有量の範囲は低下する。この点に関し、発明者らは
実験を行い以下の知見を得た。すなわち、まず、Fe2O3:
49mol%と一定、ZnO:10〜27 mol%および残部NiOと
組成比を変えて秤量し、湿式混合し、850 ℃で3時間仮
焼し、得られたNiZnフェライト仮焼粉にMoO3:3500ppmを
添加して湿式粉砕し、次いで、PVAをバインダーとし
て造粒し、成形圧力1ton/cm2 で成形して外径36mm, 内
径24mm, 高さ8mmのトロイダル形状の成形体を得、その
後、この成形体を大気中,1100℃で3時間焼成すること
により、各種のNiZnフェライト焼結体を作製した。そし
て、このようにして作製したNiZnフェライト焼結体につ
いて、(3MHz,20mT)、(6MHz,10mT)、(10MH
z, 5mT)でのコアロスを測定する実験を行った。その
結果、図1に示す結果から、駆動周波数f(MHz)と最
適ZnO含有量(mol%)の関係は、 ZnO=−1.7 ×f+30( mol%) ・・・・(1) 但し、2≦f≦10(MHz),11≦ZnO ≦25( mol%)で
表すことができる。さらに、高周波磁気損失は、焼結密
度や結晶粒径、結晶粒径分布、粒界構造などにも依存す
るため、最適ZnO含有量の範囲は、上記(1) 式で与えら
れる最適値±2.0 ( mol%)の幅を持つことを知見し
た。従って、例えば、駆動周波数fが3MHzの場合のZn
O含有量は22.9〜25 mol%であり、駆動周波数fが6M
Hzの場合のZnO含有量は17.8〜21.8 mol%であり、駆動
周波数fが10MHzの場合のZnO含有量は11〜15 mol%と
なる。
The more preferable ZnO content depends on the driving frequency of the transformer, and the higher the driving frequency, the more optimal the Zn content.
The range of O content decreases. With respect to this point, the inventors conducted experiments and obtained the following findings. That is, first, Fe 2 O 3 :
Constantly 49 mol%, ZnO: 10-27 mol% and the balance NiO were weighed in different composition ratios, wet-mixed and calcined at 850 ° C for 3 hours, and the obtained NiZn ferrite calcined powder had MoO 3 : 3500ppm. Was added and wet pulverized, then PVA was used as a binder and granulated, and molded at a molding pressure of 1 ton / cm 2 to obtain a toroidal shaped body having an outer diameter of 36 mm, an inner diameter of 24 mm, and a height of 8 mm. Various types of NiZn ferrite sintered bodies were produced by firing the formed body in the air at 1100 ° C. for 3 hours. Then, with respect to the NiZn ferrite sintered body produced in this way, (3 MHz, 20 mT), (6 MHz, 10 mT), (10 MHz
An experiment was conducted to measure the core loss at z, 5mT). As a result, from the result shown in FIG. 1, the relationship between the driving frequency f (MHz) and the optimum ZnO content (mol%) is ZnO = −1.7 × f + 30 (mol%) (1) where 2 ≦ It can be expressed by f ≦ 10 (MHz) and 11 ≦ ZnO ≦ 25 (mol%). Further, since the high frequency magnetic loss depends on the sintering density, the crystal grain size, the crystal grain size distribution, the grain boundary structure, etc., the range of the optimal ZnO content is the optimal value ± 2.0 given by the above formula (1). It was found to have a width of (mol%). Therefore, for example, Zn when the drive frequency f is 3 MHz
O content is 22.9-25 mol% and driving frequency f is 6M
The ZnO content in the case of Hz is 17.8 to 21.8 mol%, and the ZnO content in the case of the driving frequency f of 10 MHz is 11 to 15 mol%.

【0017】本発明にかかる酸化物磁性材料の基本成分
を構成するNiOは、その含有量を24〜41 mol%とする。
この範囲に限定する理由は、NiOの含有量が24 mol%未
満では、高周波磁気特性が劣化するために、100 ℃での
残留損失が増大し、一方、41 mol%を超えると、ヒステ
リシス損失が増大するからである。より好ましいNiOの
含有量は、トランスの駆動周波数に依存し、駆動周波数
が高くなると、最適ZnO含有量の低下に伴い最適NiO含
有量の範囲は高くなる。例えば、駆動周波数fが3MHz
の場合の好ましいNiO含有量は26〜29 mol%り、駆動周
波数fが10MHzの場合の好ましいNiO含有量は34〜41 m
ol%となる。
The NiO constituting the basic component of the oxide magnetic material according to the present invention has a content of 24-41 mol%.
The reason for limiting this range is that when the NiO content is less than 24 mol%, the high-frequency magnetic properties deteriorate, and the residual loss increases at 100 ° C, while when it exceeds 41 mol%, the hysteresis loss increases. Because it will increase. The more preferable NiO content depends on the drive frequency of the transformer, and as the drive frequency increases, the range of the optimum NiO content increases as the optimum ZnO content decreases. For example, drive frequency f is 3MHz
In the case of, the preferable NiO content is 26 to 29 mol%, and when the driving frequency f is 10 MHz, the preferable NiO content is 34 to 41 m.
ol%.

【0018】本発明においては、焼成温度の低減(焼結
促進)と原料コストの削減をするために、上記NiO成分
の一部を8 mol%未満、より好ましくは6 mol%以下の
CuO成分で置換することができる。NiO成分のCuO成分
による置換量を8 mol%未満とする理由は、8 mol%以
上のCuO で置換すると、結晶粒内の結晶磁気異方性定数
および磁歪定数が大きく変化すること、あるいは焼成温
度が低下して後述するようなMoO3添加による粒界応力緩
和効果が得られなくなることにより、高周波磁気損失が
著しく劣化するからである。
In the present invention, in order to reduce the firing temperature (accelerate the sintering) and reduce the raw material cost, a part of the NiO component is less than 8 mol%, more preferably 6 mol% or less.
It can be replaced by the CuO component. The reason why the substitution amount of the NiO component by the CuO component is less than 8 mol% is that the substitution of the CuO component by 8 mol% or more significantly changes the magnetocrystalline anisotropy constant and the magnetostriction constant in the crystal grain, or the firing temperature. Is decreased, and the grain boundary stress relaxation effect due to the addition of MoO 3 as described later cannot be obtained, so that the high frequency magnetic loss is significantly deteriorated.

【0019】本発明においては、低損失の酸化物磁性材
料を得るために、上述したNiZn系フェライトの基本成分
に加えてさらに、副成分としてMo酸化物を添加する。こ
のMo酸化物は、MoO3換算で5000ppm 以下を含み、より好
ましくはMoO3で1500〜4500ppm 、さらに好ましくはMoO3
換算で3000超〜4000ppm を含む。この理由は、Mo酸化物
の含有量が 5000ppmを超えると、結晶粒の異常粒成長を
起こしやすくなり、損失低減効果が得られなくなるから
である。
In the present invention, in order to obtain an oxide magnetic material with low loss, in addition to the basic component of the NiZn type ferrite described above, a Mo oxide is further added as a secondary component. This Mo oxide contains 5000 ppm or less in terms of MoO 3 , more preferably 1500 to 4500 ppm in MoO 3 , and more preferably MoO 3.
Includes over 3000 to 4000 ppm in conversion. The reason for this is that if the Mo oxide content exceeds 5000 ppm, abnormal grain growth of crystal grains tends to occur, and the loss reduction effect cannot be obtained.

【0020】本発明においては、MoO3添加による損失改
善作用をより効果的に引きだすために、平均結晶粒径を
1〜3μmの範囲とする必要がある。この理由は、平均
結晶粒径が1μmより小さいと、ヒステリシス損失が増
大し、一方、平均結晶粒径が3μmより大きいと、高周
波磁気特性が劣化して 100℃での残留損失が増大するか
らである。また、焼結密度は、理論密度の85〜96%の範
囲にすることが望ましい。この理由は、焼結密度が理論
密度の85%未満であると、実効的な磁性体占有率が低い
ために損失を低減することができず、一方、理論密度の
96%を超える高密度では、粒界の残留圧縮応力が高くな
るために、損失を低減することができなくなるからであ
る。
In the present invention, in order to more effectively bring out the loss improving effect by the addition of MoO 3 , it is necessary to set the average crystal grain size in the range of 1 to 3 μm. The reason is that if the average crystal grain size is smaller than 1 μm, the hysteresis loss increases, while if the average crystal grain size is larger than 3 μm, the high frequency magnetic properties deteriorate and the residual loss at 100 ° C. increases. is there. Further, the sintered density is preferably in the range of 85 to 96% of the theoretical density. The reason for this is that if the sintered density is less than 85% of the theoretical density, the loss cannot be reduced because the effective magnetic material occupancy rate is low.
This is because at a high density of more than 96%, the residual compressive stress at the grain boundary becomes high, so that the loss cannot be reduced.

【0021】上述のMoO3添加によるNiZn系フェライトの
損失改善機構は、発明者らの検討によれば、以下のよう
に説明できる。すなわち、焼成温度域に沸点を持つMoO3
(単体での沸点:1257℃)を添加することにより、焼成
時に、MoO3の一部が粒界から蒸発し、粒界に残留する圧
縮応力が緩和されて、ヒステリシス損失が低減されるも
のと推測できる。また、MoO3は、低融点酸化物(単体で
の融点: 795℃)であり、焼成時の昇温過程で液相を生
じて焼結体の緻密化を促進し、保持過程では結晶粒径の
均一化に寄与する。その結果、ヒステリシス損失の原因
となる1μm未満の結晶粒の比率、および残留損失の原
因となる3μm超の結晶粒の比率が低減し、高周波磁気
損失が低減されるものと推測できる。このことから、結
晶粒径は、平均で1〜3μmとする必要がある。
The loss improving mechanism of the NiZn type ferrite by the addition of MoO 3 described above can be explained as follows according to the study by the inventors. That is, MoO 3 having a boiling point in the firing temperature range
By adding (boiling point of single substance: 1257 ° C), part of MoO 3 is evaporated from the grain boundaries during firing, and the compressive stress remaining at the grain boundaries is relaxed, and hysteresis loss is reduced. I can guess. MoO 3 is a low-melting oxide (melting point of a single substance: 795 ° C), which produces a liquid phase during the temperature rising process during firing and promotes densification of the sintered body, and the crystal grain size during the holding process. Contribute to the homogenization of. As a result, it can be presumed that the ratio of crystal grains of less than 1 μm that causes the hysteresis loss and the ratio of crystal grains of more than 3 μm that causes the residual loss are reduced, and the high frequency magnetic loss is reduced. Therefore, the crystal grain size needs to be 1 to 3 μm on average.

【0022】このように本発明の酸化物磁性材料は、Mo
O3の上記熱的性質を利用して低損失化を実現している。
それ故に、本発明にかかる酸化物磁性材料の製造方法
は、焼成過程における保持温度を1000〜1130℃の範囲に
維持することが望ましい。この理由は、1000℃未満で
は、焼結密度および結晶粒径が小さくなってヒステリシ
ス損失が増大し、一方、1130℃を超えると、焼結密度お
よび結晶粒径が大きくなって残留損失が増大すると共
に、焼結体の緻密化が進み過ぎることでMoO3の蒸発が抑
制されてヒステリシス損失低減効果も得られなくなるか
らである。
Thus, the oxide magnetic material of the present invention is Mo
A low loss is realized by utilizing the thermal properties of O 3 .
Therefore, in the method for producing an oxide magnetic material according to the present invention, it is desirable to maintain the holding temperature in the firing process in the range of 1000 to 1130 ° C. The reason for this is that below 1000 ° C, the sintered density and crystal grain size become small and the hysteresis loss increases, while above 1130 ° C, the sintered density and crystal grain size become large and the residual loss increases. At the same time, since the densification of the sintered body proceeds too much, the evaporation of MoO 3 is suppressed, and the hysteresis loss reducing effect cannot be obtained.

【0023】以上説明したような本発明の酸化物磁性材
料によれば、比抵抗≧106 Ωcmで、かつ2M〜10MHzの
高周波帯域で大電流で励磁しても低損失なNiZn系フェラ
イトを得ることができる。
According to the oxide magnetic material of the present invention as described above, a NiZn ferrite having a specific resistance ≧ 10 6 Ωcm and a low loss even when excited with a large current in a high frequency band of 2 M to 10 MHz is obtained. be able to.

【0024】[0024]

【実施例】【Example】

(実施例1) (1)表1に示す成分組成比となるように、主要酸化物原
料であるFe2O3, ZnOおよびNiO を秤量し、湿式混合し、
850 ℃で3時間仮焼してNiZn系フェライト仮焼粉を得
た。 (2)次に、上記仮焼粉にMoO3を3000ppm 添加した後、湿
式粉砕し、乾燥した後、バインダーとしてPVAを添加
して造粒し、その後、成形圧力1ton/cm2 で成形して外
径36mm, 内径24mm, 高さ8mmのトロイダル形状の成形体
を得た。 (3)そして、得られた成形体を、大気中,1100℃で3時
間焼成してNiZn系フェライトを得た。
(Example 1) (1) Fe 2 O 3 , ZnO and NiO, which are main oxide raw materials, were weighed and wet-mixed so that the component composition ratios shown in Table 1 were obtained.
It was calcined at 850 ° C for 3 hours to obtain a calcined powder of NiZn ferrite. (2) Next, after adding 3000 ppm of MoO 3 to the above calcined powder, wet pulverizing and drying, and then adding PVA as a binder to granulate, and then molding at a molding pressure of 1 ton / cm 2. A toroidal shaped body having an outer diameter of 36 mm, an inner diameter of 24 mm and a height of 8 mm was obtained. (3) Then, the obtained compact was fired in the air at 1100 ° C. for 3 hours to obtain a NiZn ferrite.

【0025】このようにして得られたNiZn系フェライト
について、焼結密度、平均結晶粒径、3MHz,20mT,100℃
の条件下でのコアロスおよび室温,10V印加の条件下で
の比抵抗を測定した。その結果を表1に示す。なお、表
1に示す比較例として、本発明範囲を逸脱する成分組成
のNiZn系フェライトを同様の方法にて作製し、同様の評
価を行った。
With respect to the NiZn-based ferrite thus obtained, the sintering density, the average crystal grain size, 3 MHz, 20 mT, and 100 ° C.
The core loss under the above conditions and the specific resistance under the conditions of room temperature and 10 V application were measured. Table 1 shows the results. In addition, as a comparative example shown in Table 1, NiZn-based ferrite having a composition deviating from the scope of the present invention was produced by the same method, and the same evaluation was performed.

【0026】表1に示す結果から明らかなように、本発
明にかかる成分組成の範囲内において、比抵抗> 106Ω
cmで、かつコアロス<1200kW/m3 のNiZn系フェライト
が得られることがわかった。
As is clear from the results shown in Table 1, within the range of the component composition of the present invention, the specific resistance is> 10 6 Ω.
It was found that a NiZn-based ferrite having a cm and a core loss of <1200 kW / m 3 can be obtained.

【0027】[0027]

【表1】 *MoO3添加量:3000ppm , 焼成温度:1100℃ 比抵抗測定条件:室温,10V印加 コアロス測定条件:3MHz,20mT,100℃ [Table 1] * MoO 3 addition amount: 3000ppm, firing temperature: 1100 ℃ Specific resistance measurement condition: room temperature, 10V applied core loss measurement condition: 3MHz, 20mT, 100 ℃

【0028】(実施例2) (1)表2に示す成分組成比となるように、主要酸化物原
料であるFe2O3, ZnOおよびNiO を秤量し、湿式混合し、
950 ℃で2時間仮焼してNiZn系フェライト仮焼粉を得
た。 (2)次に、上記仮焼粉にMoO3を3500ppm 添加した後、湿
式粉砕し、乾燥した後、バインダーとしてPVAを添加
して造粒し、その後、成形圧力1ton/cm2 で成形して外
径36mm, 内径24mm, 高さ8mmのトロイダル形状の成形体
を得た。 (3)そして、得られた成形体を、大気中,1050℃で3時
間焼成して Ni-Zn系フェライトを得た。
Example 2 (1) Fe 2 O 3 , ZnO and NiO, which are the main oxide raw materials, were weighed and wet mixed so that the composition ratio shown in Table 2 was obtained.
It was calcined at 950 ° C for 2 hours to obtain a calcined powder of NiZn ferrite. (2) Next, after adding 3500 ppm of MoO 3 to the above calcined powder, wet pulverizing and drying, and then adding PVA as a binder to granulate, and then molding at a molding pressure of 1 ton / cm 2. A toroidal shaped body having an outer diameter of 36 mm, an inner diameter of 24 mm and a height of 8 mm was obtained. (3) Then, the obtained molded body was fired in the air at 1050 ° C. for 3 hours to obtain a Ni—Zn ferrite.

【0029】このようにして得られたNiZn系フェライト
について、焼結密度、平均結晶粒径、6MHz,10mT,100℃
の条件下でのコアロスおよび室温,10V印加の条件下で
の比抵抗を測定した。その結果を表2に示す。
With respect to the NiZn-based ferrite thus obtained, the sintering density, the average crystal grain size, 6 MHz, 10 mT, and 100 ° C.
The core loss under the above conditions and the specific resistance under the conditions of room temperature and 10 V application were measured. Table 2 shows the results.

【0030】表2に示す結果から明らかなように、本発
明にかかる成分組成の範囲内において、比抵抗> 106Ω
cmで、かつコアロス<1200kW/m3 のNiZn系フェライト
が得られ、特に、請求項3に記載した駆動周波数に応じ
た ZnO量の範囲内で、コアロス<1100kW/m3 が得られ、
効果が著しいことがわかった。
As is clear from the results shown in Table 2, within the range of the component composition according to the present invention, the specific resistance is> 10 6 Ω.
cm, and a core loss <1200 kW / m 3 of NiZn-based ferrite was obtained. In particular, core loss <1100 kW / m 3 was obtained within the range of the ZnO amount according to the driving frequency described in claim 3,
It turned out that the effect was remarkable.

【0031】[0031]

【表2】 *MoO3添加量:3500ppm , 焼成温度:1050℃ 比抵抗測定条件:室温,10V印加 コアロス測定条件:6MHz,10mT,100℃[Table 2] * MoO 3 addition amount: 3500ppm, firing temperature: 1050 ℃ Specific resistance measurement condition: room temperature, 10V applied core loss measurement condition: 6MHz, 10mT, 100 ℃

【0032】(実施例3) (1)表3に示す成分組成比となるように、主要酸化物原
料であるFe2O3, ZnOおよびNiO を秤量し、湿式混合し、
925 ℃で2時間仮焼してNiZn系フェライト仮焼粉を得
た。 (2)次に、上記仮焼粉にMoO3を4000ppm 添加した後、湿
式粉砕し、乾燥した後、バインダーとしてPVAを添加
して造粒し、その後、成形圧力1ton/cm2 で成形して外
径36mm, 内径24mm, 高さ8mmのトロイダル形状の成形体
を得た。 (3)そして、得られた成形体を、大気中,1080℃で3時
間焼成してNiZn系フェライトを得た。
Example 3 (1) Fe 2 O 3 , ZnO and NiO, which are main oxide raw materials, were weighed and wet-mixed so that the component composition ratios shown in Table 3 were obtained.
It was calcined at 925 ° C for 2 hours to obtain a calcined powder of NiZn ferrite. (2) Next, after adding 4000 ppm of MoO 3 to the above calcined powder, wet pulverizing and drying, and then adding PVA as a binder to granulate, and then molding at a molding pressure of 1 ton / cm 2. A toroidal shaped body having an outer diameter of 36 mm, an inner diameter of 24 mm and a height of 8 mm was obtained. (3) Then, the obtained compact was fired in the air at 1080 ° C. for 3 hours to obtain a NiZn ferrite.

【0033】このようにして得られたNiZn系フェライト
について、焼結密度、平均結晶粒径、10MHz,5mT,100℃
の条件下でのコアロスおよび室温,10V印加の条件下で
の比抵抗を測定した。その結果を表3に示す。なお、表
3に示す比較例として、本発明範囲を逸脱する成分組成
のNiZn系フェライトを同様の方法にて作製し、同様の評
価を行った。
With respect to the NiZn-based ferrite thus obtained, the sintering density, the average crystal grain size, 10 MHz, 5 mT and 100 ° C.
The core loss under the above conditions and the specific resistance under the conditions of room temperature and 10 V application were measured. Table 3 shows the results. In addition, as a comparative example shown in Table 3, NiZn-based ferrite having a composition deviating from the scope of the present invention was produced by the same method, and the same evaluation was performed.

【0034】表3に示す結果から明らかなように、本発
明にかかる成分組成の範囲内において、比抵抗> 106Ω
cmで、かつコアロス<450kW/m3のNiZn系フェライトが
得られ、特に、請求項3に記載した駆動周波数に応じた
ZnO量の範囲内で、コアロス<400kW/m3が得られ、とり
わけ効果が顕著であった。
As is clear from the results shown in Table 3, within the range of the composition of the present invention, the specific resistance is> 10 6 Ω.
cm, and a core loss <450 kW / m 3 of NiZn-based ferrite was obtained, in particular according to the driving frequency described in claim 3.
Within the range of ZnO amount, core loss <400 kW / m 3 was obtained, and the effect was particularly remarkable.

【0035】[0035]

【表3】 *MoO3添加量:4000ppm , 焼成温度:1080℃ コアロス測定条件:10MHz,5mT,100℃[Table 3] * MoO 3 addition amount: 4000ppm, firing temperature: 1080 ℃ Core loss measurement condition: 10MHz, 5mT, 100 ℃

【0036】(実施例4)表1のNo.1の成分組成に対
し、異なる焼成温度で焼成して得たNiZn系フェライトに
ついて、焼結密度、平均結晶粒径、3MHz,20mT,100℃の
条件下でのコアロスおよび室温,10V印加の条件下での
比抵抗を測定した。その結果を表4に示す。表4に示す
結果から明らかなように、本発明にかかる焼結密度、平
均結晶粒径の範囲内において、低損失となることがわか
った。
Example 4 With respect to the composition of No. 1 in Table 1, NiZn-based ferrites obtained by firing at different firing temperatures were tested for sintering density, average crystal grain size, 3 MHz, 20 mT, 100 ° C. The core loss under the conditions and the specific resistance under the conditions of room temperature and 10 V application were measured. The results are shown in Table 4. As is clear from the results shown in Table 4, it was found that the loss was low within the ranges of the sintered density and the average crystal grain size according to the present invention.

【0037】[0037]

【表4】 *MoO3添加量:3000ppm コアロス測定条件:3MHz,20mT,100℃[Table 4] * MoO 3 addition amount: 3000ppm Core loss measurement condition: 3MHz, 20mT, 100 ° C

【0038】(実施例5)表1のNo.3の成分組成に対
し、NiOの一部をCuOに置換して、実施例1と同様の方
法にて得たNiZn系フェライトについて、焼結密度、平均
結晶粒径、3MHz,20mT,100℃の条件下でのコアロスおよ
び室温,10V印加の条件下での比抵抗を測定した。その
結果を表5に示す。表5に示す結果から明らかなよう
に、本発明にかかるCuOの置換量において、低損失とな
ることがわかった。
Example 5 With respect to the composition of No. 3 in Table 1, a part of NiO was replaced with CuO, and a NiZn type ferrite obtained by the same method as in Example 1 was sintered density. The average crystal grain size, the core loss under the conditions of 3 MHz, 20 mT and 100 ° C., and the specific resistance under the conditions of room temperature and 10 V application were measured. The results are shown in Table 5. As is clear from the results shown in Table 5, it was found that the substitution amount of CuO according to the present invention resulted in low loss.

【0039】[0039]

【表5】 *MoO3添加量:3000ppm , 焼成温度:1100℃ コアロス測定条件:3MHz,20mT,100℃[Table 5] * MoO 3 addition amount: 3000ppm, firing temperature: 1100 ℃ Core loss measurement condition: 3MHz, 20mT, 100 ℃

【0040】(実施例6)表3のNo.1の同じ成分組成と
なるように主要酸化物原料を仮焼し、得られた仮焼粉に
添加するMoO3の量を変化させること以外は、実施例3と
同様の方法にてNiZn系フェライトを得た。
(Example 6) Other than changing the amount of MoO 3 added to the obtained calcined powder by calcining the main oxide raw material so as to have the same composition as No. 1 in Table 3. A NiZn-based ferrite was obtained in the same manner as in Example 3.

【0041】このようにして得られたNiZn系フェライト
について、焼結密度、平均結晶粒径、10MHz,5mT,100℃
の条件下でのコアロスおよび室温,10V印加の条件下で
の比抵抗を測定した。その結果を表6に示す。表6に示
す結果から明らかなように、本発明にかかるCuO置換量
において、低損失となることがわかった。
With respect to the NiZn-based ferrite thus obtained, the sintered density, the average crystal grain size, 10 MHz, 5 mT, and 100 ° C.
The core loss under the above conditions and the specific resistance under the conditions of room temperature and 10 V application were measured. Table 6 shows the results. As is clear from the results shown in Table 6, it was found that the CuO substitution amount according to the present invention resulted in low loss.

【0042】[0042]

【表6】 *焼成温度:1080℃ コアロス測定条件:10MHz,5mT,100℃[Table 6] * Baking temperature: 1080 ℃ Core loss measurement condition: 10MHz, 5mT, 100 ℃

【0043】なお、上述した各実施例では、MoO3の添加
は粉砕前に行ったが、仮焼温度が1000℃以下の温度範囲
であれば他の成分とともに仮焼前に入れても同様の効果
が得られる。
In each of the above-mentioned examples, the addition of MoO 3 was carried out before the pulverization. However, if the calcination temperature is in the temperature range of 1000 ° C. or less, the addition of MoO 3 together with other components before the calcination is similar. The effect is obtained.

【0044】[0044]

【発明の効果】以上説明したように本発明の酸化物磁性
材料によれば、高抵抗(比抵抗≧106Ωcm)で、かつ2
M〜10MHzの高周波帯域で大電流で励磁しても低損失な
NiZn系フェライトを得ることができる。したがって、本
発明の酸化物磁性材料は、2M〜10MHzで使用するスイ
ッチング電源用トランスのような高周波,大電流励磁下
での用途に対し優れた特性を発揮し、特に、チップトラ
ンスや薄膜トランスのような巻線と磁性体が一体化した
構造を有するトランスのコア材料として優れた特性を発
揮する。
As described above, according to the oxide magnetic material of the present invention, high resistance (specific resistance ≧ 10 6 Ωcm) and 2
Low loss even when excited with a large current in the high frequency band of M to 10 MHz
NiZn type ferrite can be obtained. Therefore, the oxide magnetic material of the present invention exhibits excellent characteristics for applications under high frequency and large current excitation such as a transformer for a switching power supply used at 2M to 10MHz, and particularly, for a chip transformer and a thin film transformer. It exhibits excellent characteristics as a core material of a transformer having a structure in which a winding and a magnetic material are integrated.

【図面の簡単な説明】[Brief description of drawings]

【図1】ZnO含有量とコアロスの関係を示す図である。FIG. 1 is a diagram showing a relationship between ZnO content and core loss.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基本成分組成がFe2O3:48〜51 mol%、Zn
O:11〜25 mol%およびNiO:24〜41%からなるもの
に、さらに、MoO3換算で 5000ppm以下のMo酸化物を添加
してなる、平均結晶粒径が1〜3μmで、かつその焼結
密度が理論密度の85〜96%であることを特徴とする低損
失酸化物磁性材料。
1. The basic component composition is Fe 2 O 3 : 48 to 51 mol%, Zn
O: 11 to 25 mol% and NiO: 24 to 41%, further added with 5000 ppm or less of Mo oxide in terms of MoO 3 , the average crystal grain size is 1 to 3 μm, and the calcination thereof is performed. A low-loss oxide magnetic material having a binding density of 85 to 96% of the theoretical density.
【請求項2】 基本成分組成がFe2O3:48〜51 mol%、Zn
O:11〜25 mol%、CuO:8 mol%未満およびNiO:16
〜41 mol%からなるものに、さらに、MoO3換算で 5000p
pm以下のMo酸化物を添加してなる、平均結晶粒径が1〜
3μmで、かつその焼結密度が理論密度の85〜96%であ
ることを特徴とする低損失酸化物磁性材料。
2. The basic component composition is Fe 2 O 3 : 48 to 51 mol%, Zn
O: 11-25 mol%, CuO: less than 8 mol% and NiO: 16
〜41 mol% and further 5000p in terms of MoO 3
The average crystal grain size is 1 to 1 made by adding Mo oxide of pm or less.
A low-loss oxide magnetic material having a 3 μm and a sintered density of 85 to 96% of the theoretical density.
【請求項3】 基本成分組成におけるZnO配合量を、ト
ランスの駆動周波数f(MHz)に応じて、 −1.7 ×f+30−2.0 ≦ZnO≦−1.7 ×f+30+2.0 ( mol%) 但し、2≦f≦10(MHz),11≦ZnO≦25( mol%)の
範囲に調整したことを特徴とする請求項1または2に記
載の低損失酸化物磁性材料。
3. The amount of ZnO compounded in the basic composition is −1.7 × f + 30−2.0 ≦ ZnO ≦ −1.7 × f + 30 + 2.0 (mol%), where 2 ≦ f, depending on the driving frequency f (MHz) of the transformer. 3. The low loss oxide magnetic material according to claim 1, wherein the range is ≤10 (MHz) and 11≤ZnO≤25 (mol%).
【請求項4】 主要成分である酸化物原料を秤量し、混
合し、仮焼して得られたフェライト仮焼粉に副成分を添
加して粉砕し、次いで、造粒して成形したのち焼成する
ことにより、請求項1〜3のいずれか1に記載の低損失
酸化物磁性材料を製造するにあたり、 上記副成分として、MoO3換算で 5000ppm以下のMo酸化物
を添加し、1000〜1130℃の温度範囲に保持して焼成する
ことを特徴とする低損失酸化物磁性材料の製造方法。
4. An oxide raw material, which is a main component, is weighed, mixed, and calcined to obtain a calcined ferrite powder. By doing so, in producing the low-loss oxide magnetic material according to any one of claims 1 to 3, as the above-mentioned auxiliary component, 5000 ppm or less of Mo oxide in terms of MoO 3 is added, and 1000 to 1130 ° C. A method for producing a low-loss oxide magnetic material, which comprises firing in the temperature range of 1.
JP8022579A 1996-02-08 1996-02-08 Low loss oxide magnetic material and method for manufacturing the same Pending JPH09219306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8022579A JPH09219306A (en) 1996-02-08 1996-02-08 Low loss oxide magnetic material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8022579A JPH09219306A (en) 1996-02-08 1996-02-08 Low loss oxide magnetic material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JPH09219306A true JPH09219306A (en) 1997-08-19

Family

ID=12086780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8022579A Pending JPH09219306A (en) 1996-02-08 1996-02-08 Low loss oxide magnetic material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH09219306A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179460A (en) * 2000-12-08 2002-06-26 Kyocera Corp Ferrite material and ferrite core by using the same
JP2004224634A (en) * 2003-01-23 2004-08-12 Tdk Corp Ferrite magnetic material and ferrite core
JPWO2008096795A1 (en) * 2007-02-07 2010-05-27 日立金属株式会社 Low loss ferrite and electronic parts using the same
JP2019062086A (en) * 2017-09-27 2019-04-18 日立金属株式会社 Magnetic core arranged by use of nickel zinc-based ferrite
JP2020136593A (en) * 2019-02-25 2020-08-31 日立金属株式会社 Transformer device
JP2022078141A (en) * 2017-09-27 2022-05-24 日立金属株式会社 NiZn FERRITE

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179460A (en) * 2000-12-08 2002-06-26 Kyocera Corp Ferrite material and ferrite core by using the same
JP2004224634A (en) * 2003-01-23 2004-08-12 Tdk Corp Ferrite magnetic material and ferrite core
JP4654559B2 (en) * 2003-01-23 2011-03-23 Tdk株式会社 Ferrite magnetic material and ferrite core
JPWO2008096795A1 (en) * 2007-02-07 2010-05-27 日立金属株式会社 Low loss ferrite and electronic parts using the same
JP2019062086A (en) * 2017-09-27 2019-04-18 日立金属株式会社 Magnetic core arranged by use of nickel zinc-based ferrite
JP2022078141A (en) * 2017-09-27 2022-05-24 日立金属株式会社 NiZn FERRITE
JP2020136593A (en) * 2019-02-25 2020-08-31 日立金属株式会社 Transformer device

Similar Documents

Publication Publication Date Title
JP3108803B2 (en) Mn-Zn ferrite
KR20050039755A (en) Ferrite material
WO2007032338A1 (en) Ferrite material
JP2004247603A (en) MnZn-BASED FERRITE WAVE ABSORBER
WO2022085281A1 (en) MnZn-BASED FERRITE
JP3108804B2 (en) Mn-Zn ferrite
JPH09306716A (en) Sintered ferrite material and manufacture thereof
JP3256460B2 (en) Oxide magnetic material and method for producing the same
JPH09219306A (en) Low loss oxide magnetic material and method for manufacturing the same
JP2007335633A (en) MnCoZn FERRITE, AND MAGNETIC CORE FOR TRANSFORMER
JPH06310320A (en) Oxide magnetic substance material
TWI751302B (en) Nickel-based ferrite sintered body, coil parts, and manufacturing method of nickel-based ferrite sintered body
JP4750563B2 (en) MnCoZn ferrite and transformer core
CN115215642A (en) Ferrite composition, electronic component, and power supply device
WO2022070634A1 (en) MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME
JP2004247602A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP2000327411A (en) Production of nickel - zinc based ferrite
JPH08310856A (en) Nickel-copper-zinc ferrite sintered compact
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JP2007031210A (en) Mn-Zn FERRITE
JPH08236336A (en) Low-loss oxide magnetic material
JPH06333719A (en) Ni-zn soft ferrite
JPH07272917A (en) Low-loss oxide soft magnetic material
JP2008184364A (en) Oxide magnetic material
JP2005187247A (en) Manufacturing method of low-loss oxide magnetic material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817