JPH07272917A - Low-loss oxide soft magnetic material - Google Patents

Low-loss oxide soft magnetic material

Info

Publication number
JPH07272917A
JPH07272917A JP6061263A JP6126394A JPH07272917A JP H07272917 A JPH07272917 A JP H07272917A JP 6061263 A JP6061263 A JP 6061263A JP 6126394 A JP6126394 A JP 6126394A JP H07272917 A JPH07272917 A JP H07272917A
Authority
JP
Japan
Prior art keywords
loss
mol
low
magnetic material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6061263A
Other languages
Japanese (ja)
Other versions
JP3300522B2 (en
Inventor
Yukiko Nakamura
由紀子 中村
Shigeaki Takagi
重彰 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13166180&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07272917(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP06126394A priority Critical patent/JP3300522B2/en
Publication of JPH07272917A publication Critical patent/JPH07272917A/en
Application granted granted Critical
Publication of JP3300522B2 publication Critical patent/JP3300522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To propose an Ni-Zn ferrite which shows high-resistance and low-loss property in a frequency band of 1MHz or over and a high magnetic filed of 0.1Oe. CONSTITUTION:This is a low-loss oxide soft magnetic material which has fundamental ingredient composition being constituted by adding Mo oxides of 100-10000ppm in terms of MoO3 further to a substance which includes Fe2O3 by 48-51mol%, ZnO by over 25-34mol%, and NiO by 15-27mol% and the rest of which consists of inevitable impurities, or a substance which includes Fezes by 48-51mol%, ZnO by over 25-34mol%, CuO by under 3mol%, and NiO by 15-27mol% and the rest of which consists of inevitable impurities, and the sintered density is 83-97% of the theoretical.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低損失酸化物軟質磁性
材料、特に、高周波,高磁場下で用いられるスイッチン
グ電源用メイントランス,バックライトトランス,電源
用チョークコイル,TV用フライバックトランスなどの分
野で好適に用いられる高抵抗,低損失Ni-Zn 系フェライ
トに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low loss oxide soft magnetic material, particularly a switching power supply main transformer, a backlight transformer, a power supply choke coil, a TV flyback transformer, etc., which are used under high frequency and high magnetic field. The present invention relates to high-resistance, low-loss Ni-Zn ferrites that are suitable for use in the field of.

【0002】[0002]

【従来の技術】一般に、スイッチング電源は、100k〜20
0kHz帯域の変換周波数で使われるのが普通である。こう
したスイッチング電源に用いられるトランス材料として
は、従来、低損失Mn-Zn フェライトが用いられている
が、電子機器の小型軽量化に伴い、近年では、さらに高
い周波数帯域でもなお低損失特性を示す酸化物軟質磁性
材料に対する要求が高まっている。
2. Description of the Related Art In general, switching power supplies are 100 k to 20
It is usually used at conversion frequencies in the 0kHz band. Conventionally, low-loss Mn-Zn ferrite has been used as the transformer material used in such switching power supplies.However, as electronic devices have become smaller and lighter in recent years, in recent years, oxides that exhibit low-loss characteristics even at higher frequency bands have been used. The demand for soft magnetic materials is increasing.

【0003】さて、上記の用途に用いられる従来のMn-Z
n フェライトであっても、基本成分組成や微量添加物,
粉砕方法,焼成方法などを工夫することにより、1MHz
程度の周波数帯域までであれば、低損失で、かつ所望の
温度特性を示す材料が得られていた。しかしながら、従
来のMn-Zn フェライトでは、1MHz以上の高周波帯域で
も、高抵抗かつ低損失特性を示す材料を安定して得るこ
とは困難であった。
The conventional Mn-Z used for the above applications
n Even if it is ferrite, the basic composition and trace additives,
1MHz by devising the crushing method and firing method
A material having a low loss and a desired temperature characteristic was obtained up to a frequency band of a certain degree. However, with the conventional Mn-Zn ferrite, it was difficult to stably obtain a material exhibiting high resistance and low loss characteristics even in a high frequency band of 1 MHz or higher.

【0004】これに対し最近、上記Mn-Zn フェライトに
代わるものとして、Ni-Zn 系フェライトが注目されてい
る。それは、このNi-Zn 系フェライトが、1MHzを超え
るような高周波帯域においても、なお、磁気特性に優れ
かつ高抵抗を有するからである。ところが、このNi-Zn
系フェライトについては、ヒステリシス損失が大きいた
めに低損失材とすることが難しいという欠点があった。
On the other hand, recently, Ni-Zn type ferrite has been attracting attention as an alternative to the above Mn-Zn ferrite. This is because this Ni-Zn ferrite has excellent magnetic characteristics and high resistance even in a high frequency band exceeding 1 MHz. However, this Ni-Zn
The system ferrite has a drawback that it is difficult to use a low-loss material because of large hysteresis loss.

【0005】しかも、このNi-Zn 系フェライトは、電源
用トランスやバックライトトランス等の高磁場下で使用
されるべく開発された低損失Ni-Zn 系フェライトではな
い。例えば、特開平5−3112号公報および特開平5−21
222 号公報に提案されているMo含有Ni-Zn 系フェライト
などは、低磁場下での透磁率μi の温度特性、透磁率μ
i の制御に着目したものである。すなわち、これらの従
来技術は、高周波帯域の高磁場下で好適に用いられる低
損失Ni-Zn 系フェライトについての提案ではなかった。
Moreover, this Ni-Zn ferrite is not a low-loss Ni-Zn ferrite developed to be used under a high magnetic field such as a power transformer or a backlight transformer. For example, JP-A-5-3112 and JP-A-5-21
The Mo-containing Ni-Zn ferrites proposed in JP 222 do not include the temperature characteristics of the permeability μ i and the permeability μ i under a low magnetic field.
It focuses on the control of i . That is, these conventional techniques were not proposals for a low-loss Ni-Zn system ferrite that is preferably used under a high magnetic field in a high frequency band.

【0006】[0006]

【発明が解決しようとする課題】以上説明したように、
従来のMn-Zn フェライトは、高周波帯域で高抵抗かつ低
損失特性を示すものではなく、一方従来のNi-Zn 系フェ
ライトは、高周波帯域で優れた磁気特性を有しかつ高抵
抗を示すが、低損失材とすることが難しいことに加え、
高周波,高磁場印加時には高磁気損失を招くという問題
があった。
As described above,
Conventional Mn-Zn ferrite does not show high resistance and low loss characteristics in the high frequency band, while conventional Ni-Zn ferrite has excellent magnetic characteristics and high resistance in the high frequency band. In addition to being difficult to use as a low loss material,
There was a problem that high magnetic loss was caused when high frequency and high magnetic field were applied.

【0007】本発明の主たる目的は、従来技術が抱える
上記問題を解消すること、即ち、高周波,高磁場下にお
いて、優れた磁気特性を示す低損失酸化物軟質磁性材料
を得ることにある。本発明の具体的な目的は、1MHz以
上の高周波帯域,0.1 Oe以上の高磁場下においても、高
抵抗で、かつ低損失特性を示すNi-Zn 系フェライトを提
案することにある。さらに本発明の他の具体的な目的
は、比抵抗≧106 Ωcm,コアロス値≦120mW/cm3 (1
MHz,20mT,100℃)を同時に実現できるNi-Zn 系フェライ
トを提案することにある。
A main object of the present invention is to solve the above problems of the prior art, that is, to obtain a low loss oxide soft magnetic material exhibiting excellent magnetic characteristics under high frequency and high magnetic field. A specific object of the present invention is to propose a Ni-Zn system ferrite that exhibits high resistance and low loss characteristics even in a high frequency band of 1 MHz or higher and a high magnetic field of 0.1 Oe or higher. Still another specific object of the present invention is to have a specific resistance ≧ 10 6 Ωcm, a core loss value ≦ 120 mW / cm 3 (1
The purpose is to propose a Ni-Zn series ferrite that can simultaneously achieve MHz, 20 mT, 100 ° C).

【0008】[0008]

【課題を解決するための手段】上記目的実現のために鋭
意研究を重ねた結果、発明者らは、以下の内容を要旨構
成とする本発明を開発したのである。即ち、本発明は、 (1) Fe2O3:48〜51 mol%、ZnO :25超〜34 mol%、NiO:
15〜27 mol%および残部不可避的不純物からなるもの
に、さらに、MoO3換算で 100〜10000ppmのMo酸化物を添
加してなる基本成分組成を有し、かつ、その焼結密度
が、理論密度の83〜97%であることを特徴とする低損失
酸化物軟質磁性材料である。
As a result of intensive studies to achieve the above object, the inventors have developed the present invention having the following contents. That is, the present invention is, (1) Fe 2 O 3 : 48~51 mol%, ZnO: 25 ultra ~34 mol%, NiO:
It has a basic component composition consisting of 15 to 27 mol% and the balance unavoidable impurities, and further contains 100 to 10,000 ppm of Mo oxide in terms of MoO 3 , and its sintered density is the theoretical density. It is a low loss oxide soft magnetic material characterized by being 83 to 97% of.

【0009】(2) 上記(1) に記載の低損失酸化物軟質磁
性材料の各成分組成は、下記の範囲にすることがより好
ましい。即ち、Fe2O3 については48.5〜50.0 mol%、Zn
O については27〜31 mol%、NiO については19〜24.5 m
ol%、Mo酸化物の添加量についてはMoO3換算で1000〜60
00ppm 、さらに好ましくはMoO3換算で2000〜5000ppmと
するのがよい。
(2) The composition of each component of the low loss oxide soft magnetic material described in (1) above is more preferably in the following range. That is, for Fe 2 O 3 , 48.5 to 50.0 mol%, Zn
27-31 mol% for O, 19-24.5 m for NiO
ol%, Mo oxide addition amount is 1000-60 in terms of MoO 3
00 ppm, and more preferably 2000 to 5000 ppm in terms of MoO 3 .

【0010】(3) Fe2O3:48〜51 mol%、ZnO :25超〜34
mol%、CuO:3 mol%未満、NiO:15〜27 mol%および残
部不可避的不純物からなるものに、さらに、MoO3換算で
100〜10000ppmのMo酸化物を添加してなる基本成分組成
を有し、かつ、その焼結密度が、理論密度の83〜97%で
あることを特徴とする低損失酸化物軟質磁性材料であ
る。
(3) Fe 2 O 3 : 48-51 mol%, ZnO: over 25-34
mol%, CuO: less than 3 mol%, NiO: those consisting of 15 to 27 mol%, and the balance inevitable impurities, further, calculated as MoO 3
A low loss oxide soft magnetic material characterized by having a basic composition of 100 to 10,000 ppm of Mo oxide and having a sintered density of 83 to 97% of the theoretical density. .

【0011】(4) 上記(3) に記載の低損失酸化物軟質磁
性材料の各成分組成は、下記の範囲にすることがより好
ましい。即ち、Fe2O3 については48.5〜50.0 mol%、Zn
O については27〜31 mol%、CuO については2 mol%以
下、NiO については19〜24.5mol%、Mo酸化物の添加量
についてはMoO3換算で1000〜6000ppm 、さらに好ましく
はMoO3換算で2000〜5000ppm とするのがよい。
(4) The composition of each component of the low loss oxide soft magnetic material described in (3) above is more preferably in the following range. That is, for Fe 2 O 3 , 48.5 to 50.0 mol%, Zn
27 to 31 mol% for O, 2 mol% or less for CuO, 19 to 24.5 mol% for NiO, and the addition amount of Mo oxide is 1000 to 6000 ppm in terms of MoO 3 , more preferably 2000 in terms of MoO 3. It is recommended to set it to ~ 5000ppm.

【0012】(5) 上記(1) 〜(4) に記載の各酸化物軟質
磁性材料は、その比抵抗が106 Ωcm以上、1MHz,20mT,1
00℃でのコアロス値が120mW/cm3 以下であることを特
徴とする低損失酸化物軟質磁性材料である。
(5) Each of the oxide soft magnetic materials described in (1) to (4) above has a specific resistance of 10 6 Ωcm or more, 1 MHz, 20 mT, 1
It is a low-loss oxide soft magnetic material having a core loss value of 120 mW / cm 3 or less at 00 ° C.

【0013】(6) 上記(1) 〜(5) に記載の各酸化物軟質
磁性材料は、その用途が、1MHz以上の高周波帯域,0.
1 Oe以上の高磁場下で使われるスイッチング電源用メイ
ントランス,バックライトトランス,電源用チョークコ
イル,TV用フライバックトランスなどの高周波対応低損
失磁性材料である。
(6) Each of the oxide soft magnetic materials described in (1) to (5) above has a use in a high frequency band of 1 MHz or more,
It is a low-loss magnetic material compatible with high frequencies, such as main transformers for switching power supplies, backlight transformers, choke coils for power supplies, and flyback transformers for TVs used in high magnetic fields of 1 Oe or more.

【0014】[0014]

【作用】ここで、本発明にかかる酸化物軟質磁性材料の
基本成分を構成するFe2O3 は、ヒステリス損失を支配す
る結晶磁気異方性定数k1 と渦電流損失を支配する電気
抵抗を調整する役割を担い、その含有量は48〜51 mol
%、より好ましくは48.5〜50.0 mol%とする。この数値
に限定される理由は、Fe2O3 の含有量が48 mol%未満で
は、100 ℃でのヒステリシス損失を低減することができ
ず、一方、51 mol%超では、電気抵抗が急激に低下する
ために、渦電流損失が高くなるとともに、コアに直接巻
線できなくなるからである。
Here, Fe 2 O 3 constituting the basic component of the soft oxide magnetic material according to the present invention has a crystal magnetic anisotropy constant k 1 that controls the hysteresis loss and an electrical resistance that controls the eddy current loss. It plays a role of adjusting, the content is 48-51 mol
%, And more preferably 48.5 to 50.0 mol%. The reason for being limited to this value is that if the Fe 2 O 3 content is less than 48 mol%, the hysteresis loss at 100 ° C cannot be reduced, while if it exceeds 51 mol%, the electrical resistance becomes sharp. This is because the eddy current loss increases due to the decrease, and the core cannot be wound directly.

【0015】本発明にかかる酸化物軟質磁性材料の基本
成分を構成するZnO は、上述のk1およびキュリー温度
c を調整する役割を担い、その含有量は25超〜34 mol
%、より好ましくは27〜31 mol%とする。この数値に限
定される理由は、ZnO の含有量が25 mol%以下では、残
留損失およびヒステリシス損失を低減することができ
ず、一方、34 mol%超では、キュリー点が低下するため
に、100 ℃での残留損失が著しく増大するからである。
ZnO, which is a basic component of the soft oxide magnetic material according to the present invention, plays a role of adjusting the above-mentioned k 1 and Curie temperature T c , and the content thereof is more than 25 to 34 mol.
%, More preferably 27 to 31 mol%. The reason for being limited to this value is that when the ZnO content is 25 mol% or less, the residual loss and the hysteresis loss cannot be reduced, while when it exceeds 34 mol%, the Curie point is lowered, and therefore, it is 100%. This is because the residual loss at ° C significantly increases.

【0016】本発明にかかる酸化物軟質磁性材料の基本
成分を構成するNiO は、k1 およびTc を調整する役割
を担い、その含有量は15〜27 mol%、より好ましくは19
〜24.5 mol%とする。この数値に限定される理由は、Ni
O の含有量が15 mol%未満では、キュリー点が低下する
ために、100 ℃での残留損失が著しく増大するからであ
る。一方、27mol%超では、コアロス極小温度が100 ℃
より高くなり、100 ℃で低損失を得ることができなくな
るからである。
NiO, which is a basic component of the soft oxide magnetic material according to the present invention, plays a role of adjusting k 1 and T c , and its content is 15 to 27 mol%, more preferably 19 mol%.
~ 24.5 mol%. The reason for being limited to this value is Ni
This is because if the O 2 content is less than 15 mol%, the Curie point is lowered and the residual loss at 100 ° C. is significantly increased. On the other hand, if it exceeds 27 mol%, the minimum core loss temperature is 100 ° C.
This is because it becomes higher and it becomes impossible to obtain low loss at 100 ° C.

【0017】本発明においては、焼成温度の低減(焼結
促進)と原料コストの削減をするために、上記NiO 成分
の一部をCuO 成分で置換してもよい。その置換量は、k
1 およびTc の変動幅を許容範囲内に抑え、かつMoO3
加効果を十分に引き出すために、3 mol%未満、より好
ましくは2 mol%以下とする。NiO 成分のCuO 成分によ
る置換量を3 mol%未満とする理由は、3 mol%以上の
CuO で置換すると結晶粒内の結晶磁気異方性定数および
磁歪定数が大きく変化するからである。また、後述する
ように、MoO3添加による粒界応力緩和効果が得られなく
なり、高周波磁気損失が著しく劣化するからである。
In the present invention, in order to reduce the firing temperature (accelerate the sintering) and reduce the raw material cost, a part of the NiO component may be replaced with the CuO component. The replacement amount is k
In order to keep the fluctuation range of 1 and T c within the allowable range and to bring out the effect of adding MoO 3 sufficiently, it is set to less than 3 mol%, more preferably 2 mol% or less. The reason why the substitution amount of NiO component by CuO component is less than 3 mol% is because
This is because the substitution of CuO greatly changes the magnetocrystalline anisotropy constant and magnetostriction constant in the crystal grains. Further, as described later, the grain boundary stress relaxation effect due to the addition of MoO 3 cannot be obtained, and the high frequency magnetic loss is significantly deteriorated.

【0018】本発明においては、低損失の酸化物軟質磁
性材料を得るために、上述したNi-Zn 系フェライトの基
本成分に加えてさらに、副成分としてMo酸化物を添加す
る。このMo酸化物は、MoO3換算で 100〜10000ppmを添加
し、より好ましくはMoO3換算で1000〜6000ppm 、さらに
好ましくはMoO3換算で2000〜5000ppm を添加する。この
理由は、Mo酸化物の含有量が10000ppmを超えると、結晶
粒の異常粒成長を起こしやすくなり、損失低減効果が得
られなくなるからである。また、100ppm未満では、顕著
な添加効果が得られないからである。
In the present invention, in order to obtain a low loss oxide soft magnetic material, in addition to the basic component of the above Ni-Zn ferrite, Mo oxide is added as a subcomponent. As for this Mo oxide, 100 to 10,000 ppm in terms of MoO 3 is added, more preferably 1000 to 6000 ppm in terms of MoO 3 , and more preferably 2000 to 5000 ppm in terms of MoO 3 . The reason for this is that if the Mo oxide content exceeds 10,000 ppm, abnormal grain growth of crystal grains is likely to occur, and the loss reduction effect cannot be obtained. On the other hand, if it is less than 100 ppm, a remarkable addition effect cannot be obtained.

【0019】次に、発明者らは、低損失材料を得るため
に、上記のMo酸化物を添加する意義について更に実験を
進めた。即ち、MoO3添加の有無による、 Ni-Zn系フェラ
イトのコアロスと焼結密度ρS ,多結晶粒径,粒界応力
との関係についても検討したのである。なお、この実験
に用いた Ni-Zn系フェライトの基本成分組成は、Fe2O3:
NiO:ZnO=49.5:20.5:30 mol%である。この実験結果によ
れば、コアロスと焼結密度ρS の関係については、図1
に示すように、MoO3を添加しない Ni-Zn系フェライトで
は、97%程度まではρS の増加に伴い実効的な磁性体占
有率増加を反映してコアロスが改善される。しかし、35
00ppm のMoO3を添加した Ni-Zn系フェライトでは、ρS
が高くなっても必ずしもコアロスは改善されないことが
わかった。また、多結晶粒径の依存性についても、上記
コアロスと焼結密度ρS の関係と同様の傾向が見られ
た。さらに、上記 Ni-Zn系フェライトの残留応力を3点
曲げ強度を測定して評価したところ、同じρS での圧縮
残留応力は、MoO3を添加した Ni-Zn系フェライトでより
低減されることを示唆する結果が得られた。また、破断
面をSEM 観察すると、無添加材では粒内破壊するが、Mo
O3を添加すると、粒界破壊することが判る。
Next, the inventors further conducted experiments on the significance of adding the above Mo oxide in order to obtain a low loss material. That is, the relationship between the core loss of Ni-Zn ferrite and the sintering density ρ S , the grain size of the polycrystalline grains, and the grain boundary stress was also examined depending on whether MoO 3 was added or not. The basic composition of the Ni-Zn ferrite used in this experiment is Fe 2 O 3 :
NiO: ZnO = 49.5: 20.5: 30 mol%. According to this experimental result, the relationship between the core loss and the sintered density ρ S is shown in FIG.
As shown in Fig. 5 , in Ni-Zn ferrite without addition of MoO3, the core loss is improved up to about 97% by increasing the effective magnetic material occupancy rate as ρ S increases. But 35
For Ni-Zn ferrites with 00ppm MoO 3 , ρ S
It has been found that the core loss is not necessarily improved even when the value becomes higher. Also, regarding the dependency of the polycrystalline grain size, the same tendency as the relationship between the core loss and the sintered density ρ S was observed. Furthermore, when the residual stress of the above Ni-Zn system ferrite was evaluated by measuring the three-point bending strength, the compressive residual stress at the same ρ S was further reduced by the NiO-Zn system ferrite containing MoO 3. The results suggesting Also, SEM observation of the fracture surface shows that intra-grain fracture occurs with the additive-free material,
It is found that grain boundary destruction occurs when O 3 is added.

【0020】以上の実験事実から、発明者らは、MoO3
加によって低損失化する過程について以下の判断をする
に到った。例えば、コアロスの改善機構としては、酸化
物軟質磁性材料の焼成温度域に沸点をもつMoO3を添加す
ることにより、焼成中にMoO3の一部が粒界から蒸発し、
粒界に残留する圧縮応力が緩和され、その結果、ヒステ
リシス損失および残留損失が低減される。なぜなら、Mo
O3は、低沸点酸化物(単体での沸点;1260℃)であり、
酸化物軟質磁性材料の焼成温度域で一部粒界から昇華す
ることで粒界応力を緩和し、粒界に残留する圧縮応力に
起因する磁気損失劣化を抑制することができるからであ
る。このことは、1200℃程度で約3時間焼成した後の、
MoO3のコア内残存率が60〜90%であることが、元素分析
の結果から確認されたことからも明らかである。このよ
うにコアロスが改善され低損失化するのである。なお、
CuO, Bi2O3, V2O5のような Ni-Zn系フェライトの焼結温
度を低下させる成分(いわゆる焼結促進成分)がMoO3
共に多量に存在すると、焼成後のMoO3のコア内残存率が
90〜100 %となり、粒界応力緩和効果が得られず、逆に
コアロス改善効果は制限されることがわかった。
From the above experimental facts, the inventors have made the following judgment on the process of reducing the loss by adding MoO 3 . For example, as a mechanism for improving core loss, by adding MoO 3 having a boiling point in the firing temperature range of the oxide soft magnetic material, a part of MoO 3 is evaporated from the grain boundaries during firing,
The compressive stress remaining at the grain boundaries is relaxed, and as a result, hysteresis loss and residual loss are reduced. Because Mo
O 3 is a low-boiling oxide (boiling point as a simple substance; 1260 ° C.),
This is because sublimation from some grain boundaries in the firing temperature range of the soft oxide magnetic material alleviates the grain boundary stress and suppresses magnetic loss deterioration due to compressive stress remaining at the grain boundaries. This means that after firing at 1200 ℃ for about 3 hours,
It is also clear from the result of elemental analysis that the residual rate of MoO 3 in the core is 60 to 90%. In this way, the core loss is improved and the loss is reduced. In addition,
If a large amount of MoO 3 and a component that lowers the sintering temperature of Ni-Zn ferrites such as CuO, Bi 2 O 3 and V 2 O 5 exist together with MoO 3 , the core of MoO 3 after firing The residual rate is
It became 90 to 100%, and it was found that the grain boundary stress relaxation effect was not obtained and conversely the core loss improvement effect was limited.

【0021】次に、本発明においては、上述したMoO3
加による損失改善効果をより効果的に引き出すために、
磁性材料の焼結密度ρS を、理論密度の83〜97%、より
好ましくは85〜95%、更に好ましくは88〜93とする。こ
の数値に限定される理由は、前記焼結密度ρS が83%未
満では、実効的な磁性体占有率が低いためにコアロスを
低減させることができず、一方、97%を超える高密度と
すると、粒界の残留圧縮応力が高くなるためにコアロス
を低減させることができなくなるからである。
Next, in the present invention, in order to more effectively bring out the above-described loss improving effect by adding MoO 3 ,
The sintered density ρ S of the magnetic material is 83 to 97% of the theoretical density, more preferably 85 to 95%, and further preferably 88 to 93. The reason for being limited to this value is that when the sintering density ρ S is less than 83%, the core loss cannot be reduced because the effective occupation ratio of the magnetic material is low, while the density is more than 97%. Then, since the residual compressive stress at the grain boundary becomes high, the core loss cannot be reduced.

【0022】以上説明したような構成になる本発明の酸
化物軟質磁性材料によれば、高周波,高磁場印加下でも
高抵抗でかつ低損失特性を示す Ni-Zn系フェライトを得
ることができる。より具体的には、比抵抗≧106 Ωcm,
コアロス値≦120mW/cm3 (1MHz,20mT,100℃)を同時
に実現できる Ni-Zn系フェライトを得ることができる。
ここで、コアロス値の測定条件を1MHz,20mT,100℃とす
る理由は、本発明の用途であるスイッチング電源用メイ
ントランスの高周波での代表的使用条件だからである。
従って、本発明の酸化物軟質磁性材料は、高周波,高磁
場印加下でも高抵抗でかつ低損失特性を示すので、1M
Hz以上の高周波帯域,0.1 Oe以上の高磁場下で使われる
スイッチング電源用メイントランス,バックライトトラ
ンス,電源用チョークコイル,TV用フライバックトラン
スなどの用途として好適である。
According to the oxide soft magnetic material of the present invention having the above-described structure, it is possible to obtain a Ni-Zn ferrite exhibiting high resistance and low loss characteristics even under application of high frequency and high magnetic field. More specifically, the specific resistance ≧ 10 6 Ωcm,
It is possible to obtain a Ni-Zn ferrite that can simultaneously achieve a core loss value ≤ 120 mW / cm 3 (1 MHz, 20 mT, 100 ° C).
Here, the reason for setting the core loss value measurement conditions to 1 MHz, 20 mT, and 100 ° C. is that the main transformer for the switching power supply, which is the application of the present invention, is a typical use condition at high frequencies.
Therefore, the oxide soft magnetic material of the present invention exhibits high resistance and low loss characteristics even under the application of high frequency and high magnetic field.
It is suitable for applications such as main transformers for switching power supplies, backlight transformers, choke coils for power supplies, and flyback transformers for TVs that are used in high frequency bands above Hz and high magnetic fields above 0.1 Oe.

【0023】[0023]

【実施例】【Example】

(実施例1)表1に示す成分組成比となるように、主要
酸化物原料であるFe2O3, ZnO, NiO,CuOを秤量し、湿式
混合し、850 ℃で3時間仮焼して Ni-Zn系フェライト仮
焼粉を得た。次に、上記仮焼粉にMoO3を3000ppm 添加し
た後、湿式粉砕し、乾燥後、バインダーとしてPVAを
添加して造粒し、その後、成形圧力1ton/cm2 で成形し
て外径36mm, 内径24mm, 高さ8mmのトロイダル形状の成
形体を得た。そして、得られた成形体を、大気中,100
0,1050,1100,1150,1200℃で3時間焼成してMo含有 Ni-Z
n系フェライトコアを得た。
(Example 1) Fe 2 O 3 , ZnO, NiO, and CuO, which are main oxide raw materials, were weighed out so as to have the compositional ratios shown in Table 1, wet-mixed, and calcined at 850 ° C. for 3 hours. Ni-Zn ferrite ferrite calcined powder was obtained. Next, after adding 3000 ppm of MoO 3 to the above calcined powder, wet pulverizing, drying, and adding PVA as a binder to granulate, and then molding at a molding pressure of 1 ton / cm 2 , and an outer diameter of 36 mm, A toroidal shaped body having an inner diameter of 24 mm and a height of 8 mm was obtained. Then, the obtained molded body is placed in the atmosphere for 100
Ni-Z containing Mo after firing at 0,1050,1100,1150,1200 ℃ for 3 hours
An n-type ferrite core was obtained.

【0024】このようにして得られたコアのうち、焼結
密度ρS 85〜90%のMo含有 Ni-Zn系フェライトコアにつ
いて、コアロスを1MHz,20mT,100℃の条件下で、比抵抗
を室温,10V印加の条件下で測定した。比較例として、
本発明の範囲外の組成を用いて同様の方法でコアを作製
し、コアロスおよび比抵抗を測定した。その結果を表1
に示す。この表に示された結果から明らかなように、本
発明の成分組成範囲内で低損失になることがわかる。
Of the cores thus obtained, a Mo-containing Ni-Zn ferrite core having a sintered density ρ S of 85 to 90% has a specific resistance of 1 MHz, 20 mT, and 100 ° C. The measurement was performed at room temperature under the condition of 10 V applied. As a comparative example,
A core was produced by a similar method using a composition outside the range of the present invention, and the core loss and the specific resistance were measured. The results are shown in Table 1.
Shown in. As is clear from the results shown in this table, it can be seen that the loss is low within the component composition range of the present invention.

【0025】[0025]

【表1】 [Table 1]

【0026】(実施例2)Fe2O3=49.5 mol%, ZnO=28.0
mol%, NiO=21.5 mol%, CuO=1.0mol%となるように、
主要酸化物原料を秤量し、湿式混合し、850 ℃で3時間
仮焼して Ni-Zn系フェライト仮焼粉を得た。次に、上記
仮焼粉に、表2に示す量;0〜15000ppm(外枠量)のMoO3
を添加したのち湿式粉砕し、次いで乾燥後、バインダー
としてPVAを添加して造粒し、その後、成形圧力1to
n/cm2 で成形して外径36mm, 内径24mm, 高さ8mmのトロ
イダル形状の成形体を得た。そして、得られた成形体
を、大気中, 950〜1150℃の温度で3時間焼成してMo含
有 Ni-Zn系フェライトコアを得た。
Example 2 Fe 2 O 3 = 49.5 mol%, ZnO = 28.0
mol%, NiO = 21.5 mol%, CuO = 1.0 mol%
The main oxide raw materials were weighed, wet-mixed, and calcined at 850 ° C. for 3 hours to obtain a calcined powder of Ni-Zn ferrite. Next, in the above calcined powder, the amount shown in Table 2; 0 to 15000 ppm (outer frame amount) of MoO 3
Was added, followed by wet pulverization, and then drying, and then PVA was added as a binder for granulation, and then the molding pressure was 1 to
Molding was performed at n / cm 2 to obtain a toroidal shaped body having an outer diameter of 36 mm, an inner diameter of 24 mm and a height of 8 mm. Then, the obtained molded body was fired in the air at a temperature of 950 to 1150 ° C. for 3 hours to obtain a Mo-containing Ni—Zn ferrite core.

【0027】このようにして得られたMo含有 Ni-Zn系フ
ェライトコアについて、コアロスを1MHz,20mT,100℃の
条件下で、比抵抗を室温,10V印加の条件下で測定し
た。その結果を表2に示す。この表に示された結果から
明らかなように、コアロスの低減効果は、MoO3添加量が
100〜10000ppmの範囲で得られ、特に1000〜6000ppm の
範囲で顕著であることがわかる。なお、表2に記載のコ
アは全て、ρS =90〜95%,比抵抗≧108 Ωcmの範囲に
あった。
With respect to the Mo-containing Ni-Zn ferrite core thus obtained, the core loss was measured under the conditions of 1 MHz, 20 mT and 100 ° C., and the specific resistance was measured under the conditions of room temperature and 10 V application. The results are shown in Table 2. As is clear from the results shown in this table, the effect of reducing core loss depends on the amount of MoO 3 added.
It can be seen that it is obtained in the range of 100 to 10,000 ppm, and is particularly remarkable in the range of 1000 to 6000 ppm. All the cores shown in Table 2 were in the range of ρ S = 90 to 95% and specific resistance ≧ 10 8 Ωcm.

【0028】[0028]

【表2】 [Table 2]

【0029】(実施例3)Fe2O3=49.0 mol%, ZnO=30.0
mol%, NiO=20.5 mol%, CuO=0.5mol%となるように、
主要酸化物原料を秤量し、湿式混合し、875 ℃で3時間
仮焼して Ni-Zn系フェライト仮焼粉を得た。次に、上記
仮焼粉に、3500ppm のMoO3を添加したのち湿式粉砕し、
次いで乾燥後、バインダーとしてPVAを添加して造粒
し、その後、成形圧力1ton/cm2 で成形して外径36mm,
内径24mm, 高さ8mmのトロイダル形状の成形体を得た。
そして、得られた成形体を、大気中, 1050 ℃の温度で
1〜20時間焼成してρS 80〜98%のMo含有 Ni-Zn系フェ
ライトコアを得た。
(Example 3) Fe 2 O 3 = 49.0 mol%, ZnO = 30.0
mol%, NiO = 20.5 mol%, CuO = 0.5 mol%
The main oxide raw materials were weighed, wet-mixed, and calcined at 875 ° C for 3 hours to obtain a calcined powder of Ni-Zn ferrite. Next, the calcined powder was added with 3500 ppm of MoO 3 and then wet-milled,
Then, after drying, PVA is added as a binder to granulate, and thereafter, molded at a molding pressure of 1 ton / cm 2 to form an outer diameter of 36 mm,
A toroidal shaped body having an inner diameter of 24 mm and a height of 8 mm was obtained.
Then, the obtained molded body was fired in the atmosphere at a temperature of 1050 ° C. for 1 to 20 hours to obtain a Ni-Zn ferrite core containing Mo of ρ S 80 to 98%.

【0030】このようにして得られたMo含有 Ni-Zn系フ
ェライトコアについて、コアロスを1MHz,20mT,100℃の
条件下で、比抵抗を室温,10V印加の条件下で測定し
た。その結果を図1に示す。この図に示された結果から
明らかなように、ρS =83〜97%の範囲でのみ低損失特
性が得られることがわかった。なお、図に記載のコアは
全て、比抵抗≧106 Ωcmの範囲にあった。
With respect to the Mo-containing Ni-Zn ferrite core thus obtained, the core loss was measured under the conditions of 1 MHz, 20 mT and 100 ° C., and the specific resistance was measured under the conditions of room temperature and 10 V application. The result is shown in FIG. As is clear from the results shown in this figure, it was found that the low loss characteristic was obtained only in the range of ρ S = 83 to 97%. All cores shown in the figure were in the range of specific resistance ≧ 10 6 Ωcm.

【0031】なお、上述した各実施例では、MoO3の添加
は粉砕前に行ったが、仮焼温度が1000℃以下の温度範囲
であれば他の成分とともに仮焼前に入れても同様の効果
が得られる。
In each of the above-described examples, MoO 3 was added before pulverization, but if the calcination temperature is in the temperature range of 1000 ° C. or less, it may be added with other components before calcination. The effect is obtained.

【0032】[0032]

【発明の効果】以上説明したように本発明の酸化物軟質
磁性材料によれば、1MHz以上の高周波帯域,0.1 Oe以
上の高磁場下でも、比抵抗≧106 Ωcmで、かつ低損失特
性を示す Ni-Zn系フェライトを得ることができる。した
がって、本発明の酸化物軟質磁性材料は、特に、1MH
z以上の高周波帯域,0.1 Oe以上の高磁場下で使用され
るスイッチング電源用トランスのような用途に対し優れ
た特性を発揮する。
As described above, according to the oxide soft magnetic material of the present invention, the specific resistance ≧ 10 6 Ωcm and the low loss characteristics are exhibited even in the high frequency band of 1 MHz or more and the high magnetic field of 0.1 Oe or more. The Ni-Zn ferrite shown can be obtained. Therefore, the oxide soft magnetic material of the present invention is
It exhibits excellent characteristics for applications such as switching power supply transformers used in high frequency bands of z or higher and high magnetic fields of 0.1 Oe or higher.

【図面の簡単な説明】[Brief description of drawings]

【図1】コアロスの相対焼結密度依存性に関し、MoO3
加とMoO3無添加について比較したグラフである。
[1] relates to the relative sintered density dependence of the core loss is a graph comparing the MoO 3 added and MoO 3 without addition.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Fe2O3:48〜51 mol%、ZnO:25超〜34 mol
%、NiO:15〜27 mol%および残部不可避的不純物からな
るものに、さらに、MoO3換算で 100〜10000ppm のMo酸
化物を添加してなる基本成分組成を有し、かつ、その焼
結密度が、理論密度の83〜97%であることを特徴とする
低損失酸化物軟質磁性材料。
1. Fe 2 O 3 : 48-51 mol%, ZnO: over 25-34 mol
%, NiO: 15-27 mol% and the balance of unavoidable impurities, and has the basic composition of 100 to 10,000 ppm of Mo oxide in terms of MoO 3 and the sintered density. Of 83 to 97% of the theoretical density is a low loss oxide soft magnetic material.
【請求項2】 Fe2O3:48〜51 mol%、ZnO:25超〜34 mol
%、CuO:3 mol%未満、NiO:15〜27 mol%および残部不
可避的不純物からなるものに、さらに、MoO3換算で 100
〜10000ppmのMo酸化物を添加してなる基本成分組成を有
し、かつ、その焼結密度が、理論密度の83〜97%である
ことを特徴とする低損失酸化物軟質磁性材料。
2. Fe 2 O 3 : 48-51 mol%, ZnO: 25-34 mol
%, CuO: less than 3 mol%, NiO: 15-27 mol% and the balance unavoidable impurities, and further 100 in terms of MoO 3.
A low-loss soft oxide magnetic material having a basic component composition obtained by adding ˜10000 ppm of Mo oxide and having a sintered density of 83 to 97% of the theoretical density.
【請求項3】 上記請求項1または2に記載の酸化物軟
質磁性材料であって、この材料の比抵抗が106 Ωcm以
上、1MHz,20mT,100℃でのコアロス値が120mW/cm3
下であることを特徴とする低損失酸化物軟質磁性材料。
3. The soft oxide magnetic material according to claim 1 or 2, wherein the specific resistance of the material is 10 6 Ωcm or more, and the core loss value at 1 MHz, 20 mT, 100 ° C. is 120 mW / cm 3 or less. A low-loss oxide soft magnetic material characterized by:
JP06126394A 1994-03-30 1994-03-30 Low loss oxide soft magnetic material Expired - Fee Related JP3300522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06126394A JP3300522B2 (en) 1994-03-30 1994-03-30 Low loss oxide soft magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06126394A JP3300522B2 (en) 1994-03-30 1994-03-30 Low loss oxide soft magnetic material

Publications (2)

Publication Number Publication Date
JPH07272917A true JPH07272917A (en) 1995-10-20
JP3300522B2 JP3300522B2 (en) 2002-07-08

Family

ID=13166180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06126394A Expired - Fee Related JP3300522B2 (en) 1994-03-30 1994-03-30 Low loss oxide soft magnetic material

Country Status (1)

Country Link
JP (1) JP3300522B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096961A (en) * 2010-11-02 2012-05-24 Tdk Corp Ferrite composition, ferrite core, and electronic component
JP2015023275A (en) * 2013-07-19 2015-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Ferrite and inductor including the same
US10236104B2 (en) 2013-07-19 2019-03-19 Samsung Electro-Mechanics Co., Ltd. Ferrite and inductor including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096961A (en) * 2010-11-02 2012-05-24 Tdk Corp Ferrite composition, ferrite core, and electronic component
JP2015023275A (en) * 2013-07-19 2015-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Ferrite and inductor including the same
US10236104B2 (en) 2013-07-19 2019-03-19 Samsung Electro-Mechanics Co., Ltd. Ferrite and inductor including the same

Also Published As

Publication number Publication date
JP3300522B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
JP5546135B2 (en) MnZn-based ferrite core and manufacturing method thereof
EP0931779B1 (en) Ferrite, and transformer and method for driving it
JP5578766B2 (en) MnZn ferrite and transformer core
JP4694973B2 (en) MnCoZn ferrite and transformer core
JP5089970B2 (en) MnCoZn ferrite and transformer core
WO2007032338A1 (en) Ferrite material
JP4711897B2 (en) MnCoZn ferrite and transformer core
WO2022085281A1 (en) MnZn-BASED FERRITE
JP3108804B2 (en) Mn-Zn ferrite
JP3418827B2 (en) Mn-Zn ferrite and method for producing the same
JP3247930B2 (en) Mn-Zn soft ferrite
JP4750563B2 (en) MnCoZn ferrite and transformer core
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP2004247370A (en) MnZn FERRITE
JP3300522B2 (en) Low loss oxide soft magnetic material
JP5089923B2 (en) MnCoZn ferrite and transformer core
WO2022070634A1 (en) MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME
JPH10256024A (en) Oxide magnetic material and its manufacturing method
JP2004247371A (en) MnZn FERRITE
JPH09219306A (en) Low loss oxide magnetic material and method for manufacturing the same
JP2004247602A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP3597665B2 (en) Mn-Ni ferrite material
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JPH10270231A (en) Mn-ni ferrite material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees