JPH09219188A - Nonaqueous electrolyte secondary battery, and manufacture of it - Google Patents

Nonaqueous electrolyte secondary battery, and manufacture of it

Info

Publication number
JPH09219188A
JPH09219188A JP8048030A JP4803096A JPH09219188A JP H09219188 A JPH09219188 A JP H09219188A JP 8048030 A JP8048030 A JP 8048030A JP 4803096 A JP4803096 A JP 4803096A JP H09219188 A JPH09219188 A JP H09219188A
Authority
JP
Japan
Prior art keywords
negative electrode
powder
positive electrode
lithium
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8048030A
Other languages
Japanese (ja)
Inventor
Takayuki Yamahira
隆幸 山平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8048030A priority Critical patent/JPH09219188A/en
Publication of JPH09219188A publication Critical patent/JPH09219188A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the shelf life characteristic of electric discharge capacity, by coating respective powder surfaces of carbon material, capable of doping and dedoping the Li-containing composite oxide and Li ion of positive and negative electrode active material, by a resin protective coat, unsoluble for both the nonaqueous solvent of a nonaqueous electrolyte, and the binder resin dissolving solvent for an electrode fixture. SOLUTION: A negative electrode 1 is formed by using powder obtained by drying slurry, wherein PVDF and NMP are mixed in a negative electrode active material fine particle wherein a carbon material fine particle is dispersed in a water solution of PVA and then dried. A positive electrode active material fine particle can be obtained by dispersing a fine particle, obtained by powdering LiCo O2 wherein lithium carbonate and cobalt carbonate are mixed to be baked, and grapnite in the water solution of PVA to be dried. A positive electrode 2 is formed by using a positive electrode mixture powder, obtained by drying slurry wherein the PVDF and NMP are added to the fine particle. A separator 3 is interposed between the negative and positive electrodes 1 and 2, to be housed in a negative electrode battery can 4, into which an electrolyte is injected, and then to seal the battery can 4 by a sealing gasket 6. This can improve the shelf life characteristic of electric discharge capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム含有複合
酸化物を含有する正極と、リチウムイオンをドープ且つ
脱ドープし得る炭素材料を含有する負極と、リチウム塩
電解質を非水溶媒に溶解させてなる非水電解液とを備え
た非水電解液二次電池に関する。
TECHNICAL FIELD The present invention relates to a positive electrode containing a lithium-containing composite oxide, a negative electrode containing a carbon material capable of doping and dedoping lithium ions, and a lithium salt electrolyte dissolved in a non-aqueous solvent. Non-aqueous electrolyte secondary battery comprising the following non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により電子機器の
高性能化、小型化、ポータブル化が進み、これら携帯用
電子機器に使用される高エネルギー密度電池の要求が強
まっている。従来、これらの電子機器に使用される二次
電池としては、ニッケル・カドミウム電池や鉛電池等が
挙げられるが、これらの電池では放電電位(約1.2
V)が低く、電池重量および電池体積が大きく、エネル
ギー密度の高い電池の要求には十分には応えられていな
いのが実情である。
2. Description of the Related Art In recent years, due to advances in electronic technology, high performance, miniaturization, and portability of electronic devices have advanced, and the demand for high energy density batteries used in these portable electronic devices has increased. Conventionally, nickel-cadmium batteries and lead batteries have been used as secondary batteries used in these electronic devices.
In reality, the requirements for a battery having a low V), a large battery weight and a large battery volume, and a high energy density have not been met.

【0003】最近、これらの要求を満たす電池システム
として、金属リチウムやリチウム合金を負極とする非水
電解液二次電池が注目され、盛んに研究が行われてい
る。しかし、金属リチウムなどを負極とする非水電解液
二次電池の場合、金属リチウムの溶解、折出時のデンド
ライト生成や析出リチウムの微細化のために、サイクル
寿命や急速充電特性が実用上十分な特性を示さないとい
う問題がある。
Recently, as a battery system satisfying these requirements, a non-aqueous electrolyte secondary battery having a negative electrode made of metallic lithium or a lithium alloy has attracted attention and has been actively studied. However, in the case of non-aqueous electrolyte secondary batteries that use metallic lithium as the negative electrode, the cycle life and rapid charging characteristics are practically sufficient due to the dissolution of metallic lithium, the generation of dendrites at the time of cracking, and the miniaturization of precipitated lithium. There is a problem that it does not exhibit various characteristics.

【0004】そこで、これらの問題を解決するために、
リチウムイオンをドープ且つ脱ドープ可能な物質、例え
ば炭素材料を負極とするリチウムイオン非水電解液二次
電池の研究開発が活発化している。このような負極を使
用する非水電解液二次電池は、リチウムが金属状態で存
在しないため、金属リチウム負極に起因するサイクル特
性の低下や急速充電特性の低下等に関する問題はなく、
優れた電池特性を示す。また、ニッケル・カドミウム電
池と比較しても、二次電池として必要とされる低自己放
電性も改善されており、しかもメモリー効果もないとい
う利点を有する。更に、正極に酸化還元電位の高いリチ
ウム含有複合酸化物を用いることにより、電池の電圧
(約4.2V)が高くなるため、高エネルギー密度の電
池を実現できるという利点も有する。
[0004] In order to solve these problems,
Research and development of a lithium-ion non-aqueous electrolyte secondary battery in which a material capable of doping and de-doping with lithium ions, for example, a carbon material as a negative electrode is active. Non-aqueous electrolyte secondary battery using such a negative electrode, since lithium does not exist in the metal state, there is no problem related to deterioration of cycle characteristics and rapid charge characteristics due to the metal lithium negative electrode,
It exhibits excellent battery characteristics. Further, as compared with the nickel-cadmium battery, the low self-discharge property required for the secondary battery is improved, and there is an advantage that there is no memory effect. Furthermore, by using a lithium-containing composite oxide having a high redox potential for the positive electrode, the voltage of the battery (about 4.2 V) is increased, so that a battery having a high energy density can be realized.

【0005】ところで、このようなリチウムイオン非水
電解液二次電池の代表的な形態の一つとして、図1に示
すようなコイン型のものが知られている。このコイン型
の電池は、ディスク形状の負極1と正極2とを、例えば
プロピレンカーボネートとジメチルカーボネートとの混
合溶媒(1:1(体積比))にLiPF6を1mol/
1の割合で溶解させた電解液を含浸させたポリプロピレ
ン不織布からなるセパレータ3を介し、それぞれ負極電
池缶4と正極電池缶5とに収納し、それらを封口ガスケ
ット6を介してかしめた構造を有する。
By the way, as one of the typical forms of such a lithium ion non-aqueous electrolyte secondary battery, a coin type as shown in FIG. 1 is known. In this coin-type battery, a disk-shaped negative electrode 1 and a positive electrode 2 are mixed with, for example, 1 mol / mL of LiPF 6 in a mixed solvent of propylene carbonate and dimethyl carbonate (1: 1 (volume ratio)).
It has a structure in which it is housed in a negative electrode battery can 4 and a positive electrode battery can 5, respectively, via a separator 3 made of polypropylene nonwoven fabric impregnated with an electrolytic solution dissolved at a ratio of 1, and they are caulked via a sealing gasket 6. .

【0006】この場合、負極1は、前述したようなリチ
ウムイオンをドープ且つ脱ドープ可能な炭素材料の粉体
とバインダー樹脂であるポリフッ化ビニリデン(PVD
F)とを、PVDFを溶解することのできるN−メチル
ピロリドン中に投入して負極合剤スラリーを調製し、そ
れをバットに広げて220℃程度の熱風で乾燥したもの
を粉砕して得られた負極合剤粉体から加熱圧縮成形法に
より作製されている。また、正極2も、リチウム含有複
合酸化物の粉体と導電材料であるカーボンブラックとバ
インダー樹脂であるポリフッ化ビニリデン(PVDF)
とを、負極1の作製の場合と同様に、PVDFを溶解す
ることのできるN−メチルピロリドン中に投入して正極
合剤スラリーを調製し、それをバットに広げて乾燥した
ものを粉砕して得られた正極合剤粉体から加熱圧縮成形
法により作製されている。
In this case, the negative electrode 1 has a powder of carbon material capable of doping and dedoping lithium ions as described above and polyvinylidene fluoride (PVD) which is a binder resin.
F) and N-methylpyrrolidone capable of dissolving PVDF are added to prepare a negative electrode mixture slurry, which is spread on a vat and dried by hot air at about 220 ° C. It is produced from the negative electrode mixture powder by a heat compression molding method. The positive electrode 2 is also made of lithium-containing composite oxide powder, conductive material carbon black, and binder resin polyvinylidene fluoride (PVDF).
In the same manner as in the case of producing the negative electrode 1, is charged into N-methylpyrrolidone capable of dissolving PVDF to prepare a positive electrode mixture slurry, which is spread on a vat and dried to be crushed. It is produced from the obtained positive electrode mixture powder by a heat compression molding method.

【0007】また、渦巻き型非水電解液二次電池の場合
には、上述の正極合剤スラリー及び負極合剤スラリー
を、それぞれ集電体に塗布し乾燥したものを巻き回した
電極体を使用している。
In the case of a spiral type non-aqueous electrolyte secondary battery, an electrode body is used in which the positive electrode mixture slurry and the negative electrode mixture slurry described above are applied to a current collector and dried. doing.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
ように構成した非水電解液二次電池であっても、長期保
存した後の放電容量が低下し保存特性が劣化するという
問題があった。特に、正極活物質としてニッケルを含有
するリチウム含有複合酸化物を使用した場合にはこの傾
向が強い。
However, even the non-aqueous electrolyte secondary battery configured as described above has a problem that the discharge capacity after long-term storage is reduced and the storage characteristics are deteriorated. This tendency is particularly strong when a lithium-containing composite oxide containing nickel is used as the positive electrode active material.

【0009】本発明は、以上の従来の技術の課題を解決
しようとするものであり、正極活物質としてリチウム含
有複合酸化物を使用し、負極活物質としてリチウムイオ
ンをドープ且つ脱ドープし得る炭素材料を使用した非水
電解液二次電池の充放電効率に関する保存特性を向上さ
せることを目的とする。
The present invention is intended to solve the problems of the above-mentioned conventional techniques, and uses a lithium-containing composite oxide as a positive electrode active material, and carbon that can be doped and dedoped with lithium ions as a negative electrode active material. It is an object of the present invention to improve the storage characteristics of the non-aqueous electrolyte secondary battery using the material, regarding the charge / discharge efficiency.

【0010】[0010]

【課題を解決するための手段】本発明者は、非水電解液
二次電池の放電容量に関する保存特性の劣化の大きな原
因の一つが、充放電の際に非水溶媒が電極活物質表面で
酸化もしくは還元されるためであり、従って長期保存後
の放電容量を低下させるためには電極活物質の表面に、
リチウムイオン伝導性であるが非水電解液に溶解しない
保護膜を形成すれば保存特性の改善が期待でき、更に、
電極の作製の際に電極合剤をスラリー化することに鑑み
て、その保護膜が電極合剤スラリーを作製する際に使用
する溶媒に溶解しないようにすれば、電池を組み上げた
後でも確実に電極活物質表面に保護膜を残存させること
ができることを見出し、本発明を完成させるに至った。
The present inventor has found that one of the major causes of the deterioration of the storage characteristics related to the discharge capacity of a non-aqueous electrolyte secondary battery is that the non-aqueous solvent is the surface of the electrode active material during charging and discharging. This is because it is oxidized or reduced. Therefore, in order to reduce the discharge capacity after long-term storage, the surface of the electrode active material should be
If a protective film that is lithium ion conductive but does not dissolve in the non-aqueous electrolyte is formed, improvement of storage characteristics can be expected, and further,
Considering that the electrode mixture is slurried at the time of producing the electrode, if the protective film is not dissolved in the solvent used when producing the electrode mixture slurry, it can be surely performed even after the battery is assembled. They have found that a protective film can be left on the surface of an electrode active material, and have completed the present invention.

【0011】即ち、本発明は、リチウム含有複合酸化物
を含む正極と、リチウムイオンをドープ且つ脱ドープし
得る炭素材料を含む負極と、リチウム塩電解質を非水溶
媒に溶解してなる非水電解液とを備えた非水電解液二次
電池において、正極又は負極が、それぞれ保護膜で被覆
されたリチウム含有複合酸化物の粉体又は炭素材料の粉
体と、フッ素系バインダー樹脂とをバインダー樹脂溶解
用溶媒中で混合して得られる正極合剤スラリー又は負極
合剤スラリーから形成されるものであり、且つ該保護膜
が非水電解液の非水溶媒及びバインダー樹脂溶解用溶媒
の双方に溶解しない樹脂から形成されていることを特徴
とする非水電解液二次電池を提供する。
That is, the present invention provides a positive electrode containing a lithium-containing composite oxide, a negative electrode containing a carbon material capable of doping and dedoping lithium ions, and a non-aqueous electrolysis obtained by dissolving a lithium salt electrolyte in a non-aqueous solvent. In a non-aqueous electrolyte secondary battery including a liquid, a positive electrode or a negative electrode, a lithium-containing composite oxide powder or carbon material powder coated with a protective film, respectively, and a fluorine-based binder resin binder resin It is formed from a positive electrode mixture slurry or a negative electrode mixture slurry obtained by mixing in a dissolving solvent, and the protective film is dissolved in both the nonaqueous solvent of the nonaqueous electrolytic solution and the binder resin dissolving solvent. Provided is a non-aqueous electrolyte secondary battery, which is characterized by being formed from a non-resin.

【0012】また、本発明は、リチウム含有複合酸化物
を含む正極と、リチウムイオンをドープ且つ脱ドープし
得る炭素材料を含む負極と、リチウム塩電解質を非水溶
媒に溶解してなる非水電解液とを備えた非水電解液二次
電池の製造方法において: (a)リチウム含有複合酸化物の粉体又は炭素材料の粉
体を、非水電解液の非水溶媒及びバインダー樹脂溶解用
溶媒の双方に溶解しない保護膜で被覆する工程; (b)保護膜で被覆されたその粉体とフッ素系バインダ
ー樹脂とをバインダー樹脂溶解用溶媒中で混合して正極
合剤スラリー又は負極合剤スラリーを調製する工程;及
び (c)正極合剤スラリー又は負極合剤スラリーからそれ
ぞれ正極又は負極を形成する工程を含んでなることを特
徴とする製造方法を提供する。
The present invention also provides a positive electrode containing a lithium-containing composite oxide, a negative electrode containing a carbon material capable of doping and dedoping lithium ions, and a non-aqueous electrolysis obtained by dissolving a lithium salt electrolyte in a non-aqueous solvent. In a method for producing a non-aqueous electrolyte secondary battery including a liquid, (a) a lithium-containing composite oxide powder or a carbon material powder, a non-aqueous solvent of the non-aqueous electrolyte and a solvent for dissolving a binder resin. And (b) mixing the powder coated with the protective film and a fluorine-based binder resin in a solvent for dissolving the binder resin, the positive electrode mixture slurry or the negative electrode mixture slurry. And (c) forming a positive electrode or a negative electrode from the positive electrode mixture slurry or the negative electrode mixture slurry, respectively.

【0013】[0013]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0014】まず、本発明の非水電解液二次電池につい
て説明する。
First, the non-aqueous electrolyte secondary battery of the present invention will be described.

【0015】本発明の非水電解液二次電池は、正極活物
質としてリチウム含有複合酸化物を含む正極と、負極活
物質としてリチウムイオンをドープ且つ脱ドープし得る
炭素材料を含む負極と、リチウム塩電解質を非水溶媒に
溶解してなる非水電解液とを備えている。
The non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode containing a lithium-containing composite oxide as a positive electrode active material, a negative electrode containing a carbon material capable of doping and dedoping lithium ions as a negative electrode active material, and lithium. And a non-aqueous electrolytic solution obtained by dissolving a salt electrolyte in a non-aqueous solvent.

【0016】ここで、正極は、リチウム含有複合酸化物
の粉体とフッ素系バインダー樹脂とをバインダー樹脂溶
解用溶媒中で混合して得られる正極合剤スラリーから形
成されたものであり、負極は、リチウムイオンをドープ
且つ脱ドープし得る炭素材料の粉体と、フッ素系バイン
ダー樹脂とをバインダー樹脂溶解用溶媒中で混合して得
られる負極合剤スラリーから形成されるものである。そ
して、リチウム含有複合酸化物の粉体及び炭素材料の粉
体の少なくとも一方、好ましくは双方が、非水電解液の
非水溶媒及びバインダー樹脂溶解用溶媒の双方に溶解し
ない樹脂からなる保護膜で被覆されている。このような
保護膜を形成することにより、充放電の際に非水電解液
の非水溶媒が電極活物質に直接接触することを抑制もし
くは防止して、非水溶媒の分解反応等を抑制することが
できる。よって、放電容量に関する保存特性の劣化を大
きく抑制することができる。また、フッ素系バインダー
の使用量を低減させて電池の製造コストを低減させるこ
ともできる。
Here, the positive electrode is formed from a positive electrode mixture slurry obtained by mixing powder of lithium-containing composite oxide and a fluorine-based binder resin in a solvent for dissolving the binder resin, and the negative electrode is It is formed from a negative electrode mixture slurry obtained by mixing a powder of a carbon material capable of doping and dedoping lithium ions and a fluorine-based binder resin in a solvent for dissolving the binder resin. Then, at least one of the powder of the lithium-containing composite oxide and the powder of the carbon material, preferably both, is a protective film made of a resin that is insoluble in both the non-aqueous solvent of the non-aqueous electrolyte and the solvent for dissolving the binder resin. It is covered. By forming such a protective film, it is possible to suppress or prevent the non-aqueous solvent of the non-aqueous electrolyte from directly contacting the electrode active material during charge and discharge, and suppress the decomposition reaction of the non-aqueous solvent. be able to. Therefore, it is possible to greatly suppress the deterioration of the storage characteristics related to the discharge capacity. In addition, it is possible to reduce the manufacturing cost of the battery by reducing the amount of the fluorine-based binder used.

【0017】このような保護膜を構成する材料として
は、使用する非水電解液の非水溶媒及びバインダー溶解
用溶媒の種類により異なるが、例えば、ポリビニルアル
コール(PVA)、ポリテトラフルオロエチレン(PT
FE)、ポリエチレン(PE)、スチレンブタジエンラ
バー(SBR)、ポリフッ化ビニリデン(PVDF)等
を挙げることができる。中でも、PVA、PTFEを好
ましく使用することができる。
The material constituting such a protective film varies depending on the types of the non-aqueous solvent of the non-aqueous electrolyte used and the solvent for dissolving the binder, and examples thereof include polyvinyl alcohol (PVA) and polytetrafluoroethylene (PT).
FE), polyethylene (PE), styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), etc. can be mentioned. Among them, PVA and PTFE can be preferably used.

【0018】なお、ポリフッ化ビニリデン(PVDF)
を保護膜として機能させる場合には、電極活物質の表面
に付着させた後に加熱処理することにより結晶化(もし
くは繊維化)させて有機溶媒に溶解しないようにするこ
とが好ましい。
Polyvinylidene fluoride (PVDF)
In the case of functioning as a protective film, it is preferable that the compound is adhered to the surface of the electrode active material and then heat-treated to be crystallized (or fiberized) so as not to be dissolved in the organic solvent.

【0019】本発明において、電極活物質の粉体上への
保護膜の形成は、種々の公知の手法に従って行うことが
できるが、特に好ましくは、保護膜形成用の樹脂の溶液
中に電極活物質を分散させ、その分散液(スラリー)を
スプレードライ造粒する。これにより真球状の電極活物
質の粉体の表面を薄い保護膜で被覆することができる。
In the present invention, the formation of the protective film on the powder of the electrode active material can be carried out according to various known methods, but it is particularly preferable that the electrode active material is immersed in a solution of a resin for forming the protective film. The substance is dispersed, and the dispersion (slurry) is spray-dried and granulated. As a result, the surface of the powder of the spherical electrode active material can be covered with a thin protective film.

【0020】このようなスプレードライ造粒法は、公知
の種々の噴霧乾燥装置を使用して実施することができ、
例えば、ディスク式噴霧乾燥装置、並向流型加圧ノズル
式噴霧乾燥装置、並流型加圧ノズル式噴霧乾燥装置、あ
るいは向流型加圧ノズル式噴霧乾燥装置等を使用して実
施することができる。
Such a spray dry granulation method can be carried out by using various known spray dryers,
For example, use a disk type spray drying device, a parallel countercurrent pressure nozzle spray drying device, a cocurrent pressure nozzle spray drying device, or a countercurrent pressure nozzle spray drying device. You can

【0021】なお、このようなスプレードライ造粒によ
り保護膜が被覆された電極活物質の粉体の個々の真球状
の微粒子の平均粒径としては、取扱性や成形性等を考慮
すると、好ましくは50〜500μm、より好ましくは
50〜300μmである。
The average particle size of the individual spherical particles of the powder of the electrode active material coated with the protective film by such spray-dry granulation is preferably in consideration of handleability and moldability. Is 50 to 500 μm, more preferably 50 to 300 μm.

【0022】保護膜形成用の樹脂の電極合剤スラリー
(固形分)中の含有量は、少なすぎると十分な添加効果
が得られず、多すぎると凝集し過ぎて電極作製時にスラ
リーの流動性が低下するので、好ましくは0.1〜5重
量%、より好ましくは0.1〜3重量%である。
If the content of the resin for forming the protective film in the electrode mixture slurry (solid content) is too small, a sufficient addition effect cannot be obtained. Of 0.1 to 5% by weight, and more preferably 0.1 to 3% by weight.

【0023】正極活物質であるリチウム含有複合酸化物
としては、従来よりリチウムイオン二次電池の正極活物
質として用いられているものを使用することができ、特
に式(1)
As the lithium-containing composite oxide which is the positive electrode active material, those which have been conventionally used as the positive electrode active material of the lithium ion secondary battery can be used.

【0024】[0024]

【化1】LixMO2 (1) (式中、Mは遷移金属、好ましくはCo、Ni及びMn
の少なくとも一種であり、xは0.05≦x≦1.10
を満足させる数である。)で表される化合物を好ましく
使用することができる。ここで、式中xの値は、充放電
状態により0.05≦x≦1.10の範囲内で変化す
る。このような式(1)の化合物の具体例としては、L
iCoO2、LiNiO2、LiNiyCo(1-y)2(こ
こで、O<y<1)を挙げることができる。また、遷移
金属MがMnである場合、LixMn24、LixMnO
2のいずれも使用することができる。
Embedded image Li x MO 2 (1) (where M is a transition metal, preferably Co, Ni and Mn
X is 0.05 ≦ x ≦ 1.10
Is a number that satisfies. )) Can be preferably used. Here, the value of x in the formula changes within the range of 0.05 ≦ x ≦ 1.10 depending on the charge / discharge state. Specific examples of such a compound of formula (1) include L
Examples thereof include iCoO 2 , LiNiO 2 , and LiNi y Co (1-y) O 2 (where O <y <1). When the transition metal M is Mn, Li x Mn 2 O 4 and Li x MnO
Any of the two can be used.

【0025】このようなリチウム含有複合酸化物は、例
えばリチウム及び遷移金属Mのそれぞれの塩、例えば、
炭酸塩、硝酸塩、硫酸塩、酸化物、水酸化物、ハロゲン
化物等を原料として製造することができる。例えば、所
望の組成に応じてリチウム塩原料及び遷移金属M塩原料
をそれぞれ計量し、十分に混合した後に酸素存在雰囲気
下600℃〜1000℃の温度範囲で加熱焼成すること
により製造することができる。この場合、各成分の混合
方法は、特に限定されるものでなく、粉体状の塩類をそ
のまま乾式の状態で混合してもよく、あるいは粉体状の
塩類を水に溶解して水溶液の状態で混合してもよい。
Such a lithium-containing composite oxide is, for example, a salt of each of lithium and transition metal M, for example,
Carbonates, nitrates, sulfates, oxides, hydroxides, halides and the like can be used as raw materials for production. For example, the lithium salt raw material and the transition metal M salt raw material may be weighed according to a desired composition, sufficiently mixed, and then heated and baked in a temperature range of 600 ° C. to 1000 ° C. in an oxygen-existing atmosphere. . In this case, the method of mixing each component is not particularly limited, and the powdery salts may be mixed in a dry state as they are, or the powdery salts may be dissolved in water to prepare an aqueous solution. May be mixed.

【0026】負極活物質としての炭素材料としては、リ
チウムイオンをドープ且つ脱ドープ可能なものを使用す
る。このような炭素材料としては2000℃以下の比較
的低い温度で焼成して得られる低結晶性炭素材料や、結
晶化しやすい原料を3000℃近くの高温で処理した高
結晶性炭素材料等を使用することができる。例えば、熱
分解炭素類、コークス類(ピッチコークス、ニードルコ
ークス、石油コークス等)、人造黒鉛類、天然黒鉛類、
ガラス状炭素類、有機高分子化合物焼成体(フラン樹脂
等を適当な温度で焼成し炭素化したもの)、炭素繊維、
活性炭などを使用することができる。中でも、(00
2)面の面間隔が3.70オングストローム以上、真密
度が1.70g/cc未満、且つ空気気流中における示
差熱分析で700℃以上に発熱ピークを持たない低結晶
性炭素材料や、負極合剤充填性の高い真比重が2.10
g/cc以上の高結晶性炭素材料を好ましく使用するこ
とができる。
As the carbon material as the negative electrode active material, one that can be doped with lithium ions and dedoped is used. As such a carbon material, a low crystalline carbon material obtained by firing at a relatively low temperature of 2000 ° C. or less, a highly crystalline carbon material obtained by treating a raw material that is easily crystallized at a high temperature near 3000 ° C., and the like are used. be able to. For example, pyrolytic carbons, cokes (pitch cokes, needle cokes, petroleum cokes, etc.), artificial graphites, natural graphites,
Glassy carbons, organic polymer compound fired bodies (furan resin etc. fired at appropriate temperature and carbonized), carbon fiber,
Activated carbon or the like can be used. Above all, (00
2) A low crystalline carbon material having a surface spacing of 3.70 angstroms or more, a true density of less than 1.70 g / cc, and having no exothermic peak at 700 ° C. or more in a differential thermal analysis in an air stream, or a negative electrode mixture. The true specific gravity with high agent filling is 2.10
A highly crystalline carbon material having g / cc or more can be preferably used.

【0027】負極合剤又は正極合剤に配合するフッ素系
バインダー樹脂としては、充放電時に分解せず安定であ
って、負極合剤又は正極合剤をスラリー化するための溶
剤に溶解するものを使用することができる。このような
フッ素系バインダー樹脂としては、前述したPVDFの
他に、ポリ六フッ化プロピレン、ポリ三フッ化塩化エチ
レン、ポリ五フッ化プロピレン等を使用することができ
る。中でも、PVDFを使用することが好ましい。
As the fluorine-based binder resin to be added to the negative electrode mixture or the positive electrode mixture, those which are stable without being decomposed during charging and discharging and which are soluble in a solvent for making the negative electrode mixture or the positive electrode mixture into a slurry are used. Can be used. As such a fluorine-based binder resin, in addition to PVDF described above, polyhexafluoropropylene, polytrifluoroethylene chloride, polypentafluoropropylene, etc. can be used. Above all, it is preferable to use PVDF.

【0028】なお、正極合剤には、導電材料としてカー
ボンブラック、グラファイトなどの公知の材料を配合す
ることが好ましい。
The positive electrode mixture preferably contains a known material such as carbon black or graphite as a conductive material.

【0029】バインダー樹脂溶解用溶剤としては、上述
したようなフッ素系バインダー樹脂を溶解することので
きる種々の極性溶媒を使用することができ、例えばジメ
チルホルムアミド、ジメチルアセトアミド、メチルホル
ムアミド、N−メチルピロリドン等を使用することがで
きる、特に、フッ素系バインダー樹脂としてPVDFを
使用した場合には、N−メチルピロリドンを好ましく使
用することができる。
As the solvent for dissolving the binder resin, various polar solvents capable of dissolving the above-mentioned fluorine-based binder resin can be used. For example, dimethylformamide, dimethylacetamide, methylformamide, N-methylpyrrolidone. Etc. can be used, and particularly when PVDF is used as the fluorine-based binder resin, N-methylpyrrolidone can be preferably used.

【0030】正極合剤スラリー(固形分)中におけるフ
ッ素系バインダー樹脂の含有量としては、少な過ぎると
成形性が低下し、多過ぎると相対的に電極活物質の含有
量が低下して電池特性が低下することが懸念されるの
で、0.3〜7重量%、好ましくは0.5〜5重量%、
より好ましくは0.5〜4重量%である。
When the content of the fluorine-based binder resin in the positive electrode mixture slurry (solid content) is too small, the moldability is lowered, and when it is too large, the content of the electrode active material is relatively lowered and the battery characteristics are lowered. Therefore, 0.3 to 7% by weight, preferably 0.5 to 5% by weight,
It is more preferably 0.5 to 4% by weight.

【0031】また、負極合剤スラリー(固形分)中にお
けるフッ素系バインダー樹脂の含有量としては、少な過
ぎると成形性が低下し、多過ぎると相対的に電極活物質
の含有量が低下して電池特性が低下することが懸念され
るので、1.0〜20重量%、好ましくは1.5〜15
重量%、より好ましくは1.5〜12重量%である。
When the content of the fluorine-based binder resin in the negative electrode mixture slurry (solid content) is too small, the moldability is lowered, and when it is too large, the content of the electrode active material is relatively lowered. Since it is feared that the battery characteristics may deteriorate, 1.0 to 20% by weight, preferably 1.5 to 15%
%, More preferably 1.5 to 12% by weight.

【0032】本発明において使用する非水溶媒として
は、従来よりリチウムイオン二次電池において用いられ
ている非水溶媒を使用することができ、例えば高誘電率
溶媒である炭酸プロピレン、炭酸エチレン、炭酸ブチレ
ン、γ−ブチロラクトン等の環状炭酸エステルや、低粘
度溶媒である1,2−ジメトキシエタン、2−メチルテ
トラヒドロフラン、炭酸ジメチル、炭酸メチルエチル、
炭酸ジエチル等を挙げることができる。中でも、炭酸プ
ロピレンと炭酸ジエチルとの混合溶媒を好ましく使用す
ることができる。
As the non-aqueous solvent used in the present invention, a non-aqueous solvent conventionally used in lithium ion secondary batteries can be used. For example, propylene carbonate, ethylene carbonate, carbonic acid which are high dielectric constant solvents. Cyclic carbonates such as butylene and γ-butyrolactone, low-viscosity solvents such as 1,2-dimethoxyethane, 2-methyltetrahydrofuran, dimethyl carbonate, methyl ethyl carbonate,
Diethyl carbonate etc. can be mentioned. Above all, a mixed solvent of propylene carbonate and diethyl carbonate can be preferably used.

【0033】また、以上のような非水溶媒に溶解させて
非水電解液を調製する際に使用するリチウム塩電解質と
しては、一般に、リチウム電池用として使用されるLi
ClO4、LiAsF6、LiPF6、LiBF4、LiC
l、LiBr、CH3SO3Li、CF3SO3Li等を挙
げることができる。これらは単独でも2種類以上を混合
して用いることができる。
The lithium salt electrolyte used in preparing the non-aqueous electrolyte by dissolving it in the non-aqueous solvent as described above is generally Li used for lithium batteries.
ClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiC
1, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li and the like can be mentioned. These can be used alone or in combination of two or more.

【0034】なお、本発明の非水電解液二次電池のセパ
レータ、電池缶等の他の構成については、従来のリチウ
ムイオン非水電解液二次電池と同様とすることができ
る。
The other configurations of the separator, the battery can and the like of the non-aqueous electrolyte secondary battery of the present invention can be the same as those of the conventional lithium ion non-aqueous electrolyte secondary battery.

【0035】また、本発明の非水電解液二次電池は、正
極又は負極を以下に示すように作製する工程を経る以外
は従来と同様の工程により製造することができる。
Further, the non-aqueous electrolyte secondary battery of the present invention can be manufactured by the same process as the conventional one except that the process for manufacturing the positive electrode or the negative electrode is carried out as follows.

【0036】(正極又は負極の作製工程) (a)リチウム含有複合酸化物の粉体又は炭素材料の粉
体を、非水電解液の非水溶媒及びバインダー樹脂溶解用
溶媒の双方に溶解しない樹脂からなる保護膜で被覆す
る。具体的には、非水電解液の非水溶媒及びバインダー
樹脂溶解用溶媒の双方に溶解しない樹脂の溶液中にそれ
ぞれリチウム含有複合酸化物の粉体又は炭素材料の粉体
を添加し、均一に分散させる。その分散液(スラリー)
をスプレードライ造粒することにより、リチウム含有複
合酸化物の粉体又は炭素材料の粉体の表面を保護膜で被
覆することができる。
(Process for Producing Positive Electrode or Negative Electrode) (a) Resin that does not dissolve the lithium-containing composite oxide powder or the carbon material powder in both the non-aqueous solvent of the non-aqueous electrolyte and the solvent for dissolving the binder resin It is covered with a protective film consisting of. Specifically, the powder of the lithium-containing composite oxide or the powder of the carbon material is added to the solution of the resin that is insoluble in both the non-aqueous solvent of the non-aqueous electrolytic solution and the solvent for dissolving the binder resin, and the mixture is uniformly added. Disperse. The dispersion (slurry)
By spray-drying granulation with, the surface of the powder of the lithium-containing composite oxide or the powder of the carbon material can be coated with the protective film.

【0037】(b)次に、保護膜で被覆されたその粉体
とフッ素系バインダー樹脂とをバインダー樹脂溶解用溶
媒中で常法に従って混合して正極合剤スラリー又は負極
合剤スラリーを調製する。
(B) Next, the powder coated with the protective film and the fluorine-based binder resin are mixed in a solvent for dissolving the binder resin by a conventional method to prepare a positive electrode mixture slurry or a negative electrode mixture slurry. .

【0038】(c)そして、渦巻き型電極を作製する場
合には、正極合剤スラリー又は負極合剤スラリーをそれ
ぞれ集電体にコーターにより塗布し乾燥し、セパレータ
ーを介して巻き回すことにより電極を作製することがで
きる。また、コイン型のペレット電極を作製する場合に
は、正極合剤スラリー又は負極合剤スラリーを平型バッ
トなどに注ぎ入れて熱風乾燥して粉末化し、それをプレ
ス成形すればよい。
(C) In the case of producing a spiral electrode, the positive electrode mixture slurry or the negative electrode mixture slurry is applied to the current collector by a coater, dried, and wound by a separator to form the electrode. Can be made. Further, in the case of producing a coin-type pellet electrode, the positive electrode mixture slurry or the negative electrode mixture slurry may be poured into a flat bat or the like, dried with hot air to be powdered, and press-molded.

【0039】以上説明した本発明の非水電解液二次電池
の電池形状については特に限定されず、必要に応じて円
筒型形状、角型形状、コイン型形状、ボタン型形状等の
種々の形状とすることができる。
The shape of the non-aqueous electrolyte secondary battery of the present invention described above is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a button shape may be used as necessary. Can be

【0040】[0040]

【実施例】以下、本発明を実施例により具体的に説明す
る。
The present invention will be described below in more detail with reference to examples.

【0041】実施例1 (負極の作製)ピッチコークスを直径12.7mmのス
テンレス球と共に振動ミル中で15分間粉砕して平均粒
径33μmの炭素材料を調製した。この炭素材料の真密
度は2.03g/cm3であり、X線回折による002
面の面間隔は3.46オングストロームであり、C軸方
向の結晶厚Lcは40オングストロームであった。
Example 1 (Preparation of Negative Electrode) Pitch coke was ground with a stainless ball having a diameter of 12.7 mm in a vibration mill for 15 minutes to prepare a carbon material having an average particle size of 33 μm. The true density of this carbon material was 2.03 g / cm 3 , and the true density was 002 by X-ray diffraction.
The interplanar spacing was 3.46 Å, and the crystal thickness Lc in the C-axis direction was 40 Å.

【0042】得られた平均粒径33μmの炭素材料粉体
90重量部を、保護膜形成用樹脂としてPVA(分子量
10000)0.1重量部を溶解している水溶液中に分
散し、得られた分散液を温風温度120℃のスプレード
ライヤー(坂本技研製)に投入して乾燥し、平均粒径1
00μmのほぼ真球状の負極活物質粉体を得た。
90 parts by weight of the obtained carbon material powder having an average particle diameter of 33 μm was dispersed in an aqueous solution in which 0.1 part by weight of PVA (molecular weight 10000) as a protective film forming resin was dispersed to obtain a powder. The dispersion is put into a spray dryer (manufactured by Sakamoto Giken) having a hot air temperature of 120 ° C. and dried to have an average particle size of 1
A nearly spherical spherical negative electrode active material powder having a size of 00 μm was obtained.

【0043】次に、得られた負極活物質粉体90重量部
に対し、PVDF10重量部を混合し、更にN−メチル
ピロリドン(NMP)を加えて負極合剤スラリーを調製
し、このスラリーを平坦なバットにあけて120℃の温
風を送風することにより乾燥して負極合剤粉末を得た。
この負極合剤粉末を5トン/cm2の圧力で16mm直
径のペレット形状の負極1に成形した。得られた負極1
の体積密度(d)は1.25g/mlであった。
Next, 10 parts by weight of PVDF was mixed with 90 parts by weight of the obtained negative electrode active material powder, and N-methylpyrrolidone (NMP) was further added to prepare a negative electrode mixture slurry. A negative electrode mixture powder was obtained by opening in a vat and drying by blowing hot air at 120 ° C.
This negative electrode mixture powder was molded into a pellet-shaped negative electrode 1 having a diameter of 16 mm at a pressure of 5 ton / cm 2 . The obtained negative electrode 1
Had a volume density (d) of 1.25 g / ml.

【0044】(正極の作製)炭酸リチウム0.5モルと
炭酸コバルト1モルとを混合し、900℃の空気中で5
時間焼成することによりLiCoO2を得た。このLi
CoO2をボウルミルで粉砕して平均粒径10μmのL
iCoO2粉体を得た。
(Preparation of Positive Electrode) 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate were mixed, and the mixture was mixed in air at 900 ° C.
LiCoO 2 was obtained by firing for a time. This Li
CoO 2 is crushed with a bowl mill to obtain L with an average particle size of 10 μm.
iCoO 2 powder was obtained.

【0045】得られた平均粒径10μmのLiCoO2
粉体93.9重量部と、導電材としてのグラファイト6
重量部とを、保護膜形成用樹脂としてPVA(分子量1
0000)0.1重量部を溶解している水溶液中に分散
し、得られた分散液を温風温度120℃のスプレードラ
イヤー(坂本技研製)に投入して乾燥し、平均粒径10
0μmのほぼ真球状の正極活物質粉体を得た。
The obtained LiCoO 2 having an average particle size of 10 μm
93.9 parts by weight of powder and graphite 6 as a conductive material
Parts by weight as a resin for forming a protective film (PVA (molecular weight 1
0000) 0.1 part by weight is dispersed in a dissolved aqueous solution, and the resulting dispersion is put into a spray dryer (manufactured by Sakamoto Giken) having a hot air temperature of 120 ° C. and dried to obtain an average particle size of 10
A substantially spherical positive electrode active material powder of 0 μm was obtained.

【0046】次に、得られた正極活物質粉体に対し、P
VDF3重量部を混合し、更にN−メチルピロリドンを
加えて正極合剤スラリーを調製し、このスラリーを平坦
なバットにあけて120℃の温風を送風することにより
乾燥して正極合剤粉末を得た。この正極合剤粉末を5ト
ン/cm2の圧力で15.5mm直径のペレット形状の
正極2に成形した。得られた正極2の体積密度(d)は
3.5g/mlであった。
Next, P is added to the obtained positive electrode active material powder.
VDF (3 parts by weight) was mixed, and N-methylpyrrolidone was further added to prepare a positive electrode mixture slurry, which was dried by blowing hot air at 120 ° C. into a flat vat to obtain a positive electrode mixture powder. Obtained. This positive electrode material mixture powder was molded into a pellet-shaped positive electrode 2 having a diameter of 15.5 mm at a pressure of 5 ton / cm 2 . The volume density (d) of the obtained positive electrode 2 was 3.5 g / ml.

【0047】(コイン型リチウムイオン非水電解液二次
電池の作製)得られた負極1と正極2とをポリプロピレ
ン不織布からなるセパレータ3を介して負極電池缶4に
収納し、次に負極電池缶4内にプロピレンカーボネート
とジメチルカーボネートとの混合溶媒(1:1(体積
比))にLiPF6を1mol/1の割合で溶解させた
電解液を注入した後に、封口ガスケット6を介して正極
電池缶5をかしめることにより、図1に示すようなコイ
ン型リチウムイオン非水電解液二次電池(直径25m
m、厚さ2.5mm)を作製した。
(Preparation of coin type lithium ion non-aqueous electrolyte secondary battery) The obtained negative electrode 1 and positive electrode 2 were placed in a negative electrode battery can 4 via a separator 3 made of polypropylene nonwoven fabric, and then the negative electrode battery can. After injecting an electrolyte solution in which LiPF 6 was dissolved at a ratio of 1 mol / 1 in a mixed solvent of propylene carbonate and dimethyl carbonate (1: 1 (volume ratio)) in 4, a positive electrode battery can was inserted through a sealing gasket 6. By crimping No. 5, coin type lithium ion non-aqueous electrolyte secondary battery (diameter 25 m as shown in FIG. 1
m, thickness 2.5 mm).

【0048】実施例2〜7 表1に示した量のPVAを使用する以外は実施例1と同
様にしてコイン型リチウムイオン非水電解液二次電池を
作製した。
Examples 2 to 7 Coin type lithium ion non-aqueous electrolyte secondary batteries were prepared in the same manner as in Example 1 except that the amount of PVA shown in Table 1 was used.

【0049】実施例8 PVA水溶液に代えて、PTFEを1.0重量部含有す
るエマルジョン(T−30J、三井フルオロケミカル社
製)を使用する以外は実施例1と同様にしてコイン型リ
チウムイオン非水電解液二次電池を作製した。
Example 8 In the same manner as in Example 1 except that an emulsion containing 1.0 part by weight of PTFE (T-30J, manufactured by Mitsui Fluorochemicals Co., Ltd.) was used in place of the aqueous solution of PVA, coin type lithium ion non-ion was used. A water electrolyte secondary battery was produced.

【0050】実施例9 PVA水溶液に代えて分子量10000のポリエチレン
(PE)を1.0重量部含有するトルエン溶液を使用す
る以外は、実施例1と同様にしてコイン型リチウムイオ
ン非水電解液二次電池を作製した。
Example 9 A coin type lithium ion non-aqueous electrolyte solution 2 was prepared in the same manner as in Example 1 except that a toluene solution containing 1.0 part by weight of polyethylene (PE) having a molecular weight of 10,000 was used in place of the PVA aqueous solution. A secondary battery was produced.

【0051】実施例10 PVA水溶液に代えて分子量10000のスチレンブタ
ジエンラバー(SBR)を1.0重量部含有するトルエ
ン溶液を使用する以外は、実施例1と同様にしてコイン
型リチウムイオン非水電解液二次電池を作製した。
Example 10 Coin-type lithium ion non-aqueous electrolysis was carried out in the same manner as in Example 1 except that a toluene solution containing 1.0 part by weight of styrene-butadiene rubber (SBR) having a molecular weight of 10,000 was used in place of the PVA aqueous solution. A liquid secondary battery was produced.

【0052】比較例1 以下に示すように作製された正極と負極とを使用する以
外は、実施例1と同様にコイン型リチウムイオン非水電
解液二次電池を作製した。
Comparative Example 1 A coin type lithium ion non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that the positive electrode and the negative electrode manufactured as described below were used.

【0053】(正極の作製)実施例1のような保護膜で
被覆されていない平均粒径10μmのLiCoO21重
量部(保護膜なし)と、導電材としてのグラファイト6
重量部と、バインダーとしてポリフッ化ビニリデン(P
VDF)3重量部とを混合し、更にN−メチルピロリド
ンを分散剤として加えて混合して正極合剤スラリーを調
製した。
(Preparation of Positive Electrode) 1 part by weight of LiCoO 2 having an average particle size of 10 μm (without protective film) not covered with a protective film as in Example 1 and graphite 6 as a conductive material
Parts by weight and polyvinylidene fluoride (P
VDF) (3 parts by weight), and then N-methylpyrrolidone was added as a dispersant and mixed to prepare a positive electrode mixture slurry.

【0054】このスラリーを、平坦なバットにあけて1
20℃の温風を送風することにより乾燥させた。得られ
た正極合剤を粉砕し、実施例1と同様にしてペレット形
状の正極(体積密度(d)=3.5g/ml)を作製し
た。
This slurry was placed in a flat vat and
It was dried by blowing warm air of 20 ° C. The obtained positive electrode mixture was pulverized to prepare a pellet-shaped positive electrode (volume density (d) = 3.5 g / ml) in the same manner as in Example 1.

【0055】(負極の作製)実施例1のような保護膜で
被覆されていない平均粒径33μmのピッチコークス粉
体(真密度=2.03g/cm3,(002)面間隔=
3.46オングストローム,C軸方向結晶厚Lc=40
オングストローム)90重量部と、バインダーとしてポ
リフッ化ビニリデン(PVDF)9重量部とを混合し、
更にN−メチルピロリドンを分散剤として加えて混合し
て負極合剤スラリーを調製した。
(Preparation of Negative Electrode) Pitch coke powder having an average particle size of 33 μm and not covered with a protective film as in Example 1 (true density = 2.03 g / cm 3 , (002) surface spacing =
3.46 Å, C-axis direction crystal thickness Lc = 40
90 parts by weight) and 9 parts by weight of polyvinylidene fluoride (PVDF) as a binder,
Further, N-methylpyrrolidone was added as a dispersant and mixed to prepare a negative electrode mixture slurry.

【0056】このスラリーを、平坦なバットにあけて1
50℃の温風を送風することにより乾燥させた。得られ
た負極合剤を粉砕し、実施例1と同様にしてペレット形
状の負極(体積密度(d)=1.25g/ml)を作製
した。
This slurry is placed in a flat vat to
It was dried by blowing warm air of 50 ° C. The obtained negative electrode mixture was pulverized and a pellet-shaped negative electrode (volume density (d) = 1.25 g / ml) was produced in the same manner as in Example 1.

【0057】比較例2 PVA水溶液に代えて分子量10000のブチルラバー
(BR)を1.0重量部含有するトルエン溶液を使用す
る以外は、実施例1と同様にしてコイン型リチウムイオ
ン非水電解液二次電池を作製した。
Comparative Example 2 A coin type lithium ion non-aqueous electrolyte solution was prepared in the same manner as in Example 1 except that a toluene solution containing 1.0 part by weight of butyl rubber (BR) having a molecular weight of 10,000 was used in place of the PVA aqueous solution. A secondary battery was produced.

【0058】(評価)各実施例及び比較例の非水電解液
二次電池に対し、温度23℃において充電終止電圧4.
20V及び充電電流1mAで充電を行い、続いて放電電
流1mA又は5mAで終止電圧3.0Vまでの定電流放
電を行い、この時の放電容量(初期放電容量(mA
h))を測定した。その結果を表1に示す。
(Evaluation) With respect to the non-aqueous electrolyte secondary batteries of Examples and Comparative Examples, the charge end voltage was 4.
Charging is performed at 20 V and a charging current of 1 mA, and then constant current discharging is performed at a discharging current of 1 mA or 5 mA up to an end voltage of 3.0 V. At this time, the discharging capacity (initial discharging capacity (mA
h)) was measured. Table 1 shows the results.

【0059】次に、同様に充電した後、常温で1か月放
置した後の放電容量(保存後放電容量(mAh))を測
定し、初期放電容量を100%としたときの保存後の容
量保持率を求めた。それらの結果を表1に示す。
Next, after the same charge, the discharge capacity (discharge capacity after storage (mAh)) after standing for one month at room temperature was measured, and the capacity after storage when the initial discharge capacity was 100%. The retention rate was calculated. Table 1 shows the results.

【0060】[0060]

【表1】 保護膜 対NMP及び 保護膜 放電容量(mAh) 容量保実施例 用樹脂 電解液溶解性 使用量(wt%) 初期 保存後 持率(%) 1 PVA なし 0.1 60.0 54.0 90 2 PVA なし 0.2 59.9 54.5 91 3 PVA なし 0.5 59.7 54.9 92 4 PVA なし 1.0 59.4 56.4 95 5 PVA なし 2.0 58.8 56.4 96 6 PVA なし 3.0 58.2 55.9 96 7 PVA なし 5.0 57.0 54.2 95 8 PTFE なし 1.0 59.4 56.4 95 9 PE 膨潤 1.0 59.4 56.4 95 10 SBR 膨潤 1.0 59.4 56.4 95 比較例 1 − − − 60.0 51.0 85 2 BR 溶解 1.0 59.4 51.0 85 [Table 1] Protective film vs. NMP and protective film Discharge capacity (mAh) Capacity retention Example resin Resin solubility Soluble usage (wt%) Retention rate after initial storage (%) 1 PVA None 0.1 60.0 54.0 90 2 PVA None 0. 2 59.9 54.5 9 1 3 PVA None 0.5 59.7 54.9 9 2 4 PVA None 1.0 59.4 56.4 95 5 PVA None 2.0 58.8 56.4 96 6 PVA None 3.0 58.2 55.9 967 PVA None 5.0 57.0 54.2 95 8 No PTFE 1.0 59.4 56.4 959 9 PE swell 1.0 59.4 56.4 95 10 SBR swell 1.0 59.4 56.4 95 Comparative Example 1 − − − 60.0 51.0 85 2 BR dissolved 1.0 59.4 51.0 85

【0061】表1の結果から、実施例1〜7の非水電解
液二次電池の場合、正極活物質及び負極活物質の双方
が、電解液の非水溶媒並びにバインダー溶解用樹脂であ
るNMPに不溶のPVAで被覆されているので、被覆さ
れていない従来の非水電解液二次電池である比較例1の
電池に比べ、容量保持率が著しく改善されていることが
わかる。
From the results shown in Table 1, in the case of the non-aqueous electrolyte secondary batteries of Examples 1 to 7, both the positive electrode active material and the negative electrode active material were NMP which was the non-aqueous solvent of the electrolytic solution and the binder dissolving resin. It can be seen that the capacity retention rate is significantly improved as compared with the battery of Comparative Example 1 which is a conventional non-aqueous electrolyte secondary battery which is not covered with PVA because it is coated with PVA insoluble in.

【0062】PVAに代えてPTFEと使用した実施例
8の非水電解液二次電池の場合も同様に、被覆されてい
ない従来の非水電解液二次電池である比較例1の電池に
比べ、容量保持率が著しく改善されていることがわか
る。
Similarly, in the case of the non-aqueous electrolyte secondary battery of Example 8 in which PTFE was used instead of PVA, the non-aqueous electrolyte secondary battery of Comparative Example 1 which was an uncoated conventional non-aqueous electrolyte secondary battery was also compared. It can be seen that the capacity retention rate is remarkably improved.

【0063】また、電解液の非水溶媒並びにバインダー
溶解用樹脂であるNMPに対し膨潤するPE又はSBR
で保護膜を形成した実施例9及び10の非水電解液二次
電池の場合、PEやSBRが電解液の非水溶媒並びにバ
インダー溶解用樹脂であるNMPに対し溶解しないため
に、容量保持率が著しく改善されていることがわかる。
PE or SBR swelling in the non-aqueous solvent of the electrolytic solution and NMP which is a binder dissolving resin.
In the case of the non-aqueous electrolyte secondary batteries of Examples 9 and 10 in which the protective film was formed with, PE and SBR do not dissolve in the non-aqueous solvent of the electrolyte and NMP which is a binder-dissolving resin, and therefore the capacity retention ratio It can be seen that is significantly improved.

【0064】一方、電解液の非水溶媒並びにバインダー
溶解用樹脂であるNMPに対し溶解してしまうBRで保
護膜を形成した比較例2の非水電解液二次電池の場合、
保護膜を形成した効果が得られていないことがわかる。
On the other hand, in the case of the non-aqueous electrolyte secondary battery of Comparative Example 2 in which the protective film is formed of BR which dissolves in the non-aqueous solvent of the electrolytic solution and NMP which is the binder dissolving resin,
It can be seen that the effect of forming the protective film is not obtained.

【0065】[0065]

【発明の効果】本発明によれば、正極活物質としてリチ
ウム含有複合酸化物を使用し、負極活物質としてリチウ
ムイオンをドープ且つ脱ドープし得る炭素材料を使用し
た非水電解液二次電池の放電容量に関する保存特性を向
上させることができる。
According to the present invention, a non-aqueous electrolyte secondary battery using a lithium-containing composite oxide as a positive electrode active material and a carbon material capable of doping and dedoping lithium ions as a negative electrode active material. The storage characteristics relating to the discharge capacity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水電解液二次電池の断面図である。FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 負極、 2 正極、 3 セパレータ、 4 負極
電池缶、5 正極電池缶、 6 封口ガスケット
1 negative electrode, 2 positive electrode, 3 separator, 4 negative electrode battery can, 5 positive electrode battery can, 6 sealing gasket

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物を含む正極と、
リチウムイオンをドープ且つ脱ドープし得る炭素材料を
含む負極と、リチウム塩電解質を非水溶媒に溶解してな
る非水電解液とを備えた非水電解質二次電池において、
正極又は負極が、それぞれ保護膜で被覆されたリチウム
含有複合酸化物の粉体又は炭素材料の粉体と、フッ素系
バインダー樹脂とをバインダー樹脂溶解用溶媒中で混合
して得られる正極合剤スラリー又は負極合剤スラリーか
ら形成されるものであり、且つ該保護膜が非水電解液の
非水溶媒及びバインダー樹脂溶解用溶媒の双方に溶解し
ない樹脂から形成されていることを特徴とする非水電解
液二次電池。
1. A positive electrode containing a lithium-containing composite oxide,
In a non-aqueous electrolyte secondary battery comprising a negative electrode containing a carbon material capable of doping and de-doping lithium ions, and a non-aqueous electrolyte solution obtained by dissolving a lithium salt electrolyte in a non-aqueous solvent,
The positive electrode or the negative electrode is a positive electrode mixture slurry obtained by mixing a powder of a lithium-containing composite oxide or a powder of a carbon material, each of which is coated with a protective film, and a fluorine-based binder resin in a solvent for dissolving a binder resin. Alternatively, the non-aqueous liquid is formed from a negative electrode mixture slurry, and the protective film is formed from a resin that is insoluble in both the non-aqueous solvent of the non-aqueous electrolytic solution and the solvent for dissolving the binder resin. Electrolyte secondary battery.
【請求項2】 正極及び負極の双方が、それぞれ保護膜
で被覆されたリチウム含有複合酸化物の粉体及び炭素材
料の粉体とを含有する請求項1記載の非水電解液二次電
池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein both the positive electrode and the negative electrode each contain a powder of a lithium-containing composite oxide and a powder of a carbon material which are coated with a protective film.
【請求項3】 保護膜がポリビニルアルコール又はポリ
テトラフルオロエチレンである請求項1又は2記載の非
水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the protective film is polyvinyl alcohol or polytetrafluoroethylene.
【請求項4】 フッ素系バインダー樹脂がポリフッ化ビ
ニリデンである請求項3記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 3, wherein the fluorine-based binder resin is polyvinylidene fluoride.
【請求項5】 非水電解液の非水溶媒が環状カーボネー
トとジアルキルカーボネートとの混合溶媒であり、バイ
ンダー樹脂溶解用溶媒がN−メチルピロリドンである請
求項3又は4記載の非水電解液二次電池。
5. The non-aqueous electrolyte solution according to claim 3, wherein the non-aqueous solvent of the non-aqueous electrolyte solution is a mixed solvent of cyclic carbonate and dialkyl carbonate, and the solvent for dissolving the binder resin is N-methylpyrrolidone. Next battery.
【請求項6】 リチウム含有複合酸化物を含む正極と、
リチウムイオンをドープ且つ脱ドープし得る炭素材料を
含む負極と、リチウム塩電解液を非水溶媒に溶解してな
る非水電解液とを備えた非水電解液二次電池の製造方法
において: (a)リチウム含有複合酸化物の粉体又は炭素材料の粉
体を、非水電解液の非水溶媒及びバインダー樹脂溶解用
溶媒の双方に溶解しない樹脂からなる保護膜で被覆する
工程; (b)保護膜で被覆されたその粉体とフッ素系バインダ
ー樹脂とをバインダー樹脂溶解用溶媒中で混合して正極
合剤スラリー又は負極合剤スラリーを調製する工程;及
び (c)正極合剤スラリー又は負極合剤スラリーからそれ
ぞれ正極又は負極を形成する工程を含んでなることを特
徴とする製造方法。
6. A positive electrode containing a lithium-containing composite oxide,
In a method for producing a non-aqueous electrolyte secondary battery comprising a negative electrode containing a carbon material capable of doping and dedoping lithium ions, and a non-aqueous electrolyte solution obtained by dissolving a lithium salt electrolyte solution in a non-aqueous solvent: ( a) a step of coating the lithium-containing composite oxide powder or the carbon material powder with a protective film made of a resin that is insoluble in both the non-aqueous solvent of the non-aqueous electrolyte and the solvent for dissolving the binder resin; (b) A step of preparing a positive electrode mixture slurry or a negative electrode mixture slurry by mixing the powder coated with a protective film and a fluorine-based binder resin in a solvent for dissolving the binder resin; and (c) positive electrode mixture slurry or negative electrode A method of manufacturing, comprising a step of forming a positive electrode or a negative electrode from a mixture slurry.
【請求項7】 工程(a)において、保護膜形成用の樹
脂を含有する溶液中にリチウム含有複合酸化物の粉体又
は炭素材料の粉体を分散させ、得られた分散液をスプレ
ードライ造粒することにより、リチウム含有複合酸化物
の粉体又は炭素材料の粉体を保護膜で被覆する請求項6
記載の製造方法。
7. In step (a), a lithium-containing composite oxide powder or a carbon material powder is dispersed in a solution containing a resin for forming a protective film, and the resulting dispersion is spray-dried. The powder containing a lithium-containing composite oxide or the powder containing a carbon material is coated with a protective film by granulating.
The manufacturing method as described.
JP8048030A 1996-02-08 1996-02-08 Nonaqueous electrolyte secondary battery, and manufacture of it Pending JPH09219188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8048030A JPH09219188A (en) 1996-02-08 1996-02-08 Nonaqueous electrolyte secondary battery, and manufacture of it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8048030A JPH09219188A (en) 1996-02-08 1996-02-08 Nonaqueous electrolyte secondary battery, and manufacture of it

Publications (1)

Publication Number Publication Date
JPH09219188A true JPH09219188A (en) 1997-08-19

Family

ID=12791925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8048030A Pending JPH09219188A (en) 1996-02-08 1996-02-08 Nonaqueous electrolyte secondary battery, and manufacture of it

Country Status (1)

Country Link
JP (1) JPH09219188A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140157A (en) * 1997-07-23 1999-02-12 Ricoh Co Ltd Electrode and nonaqueous electrolyte battery using it
JP2002083585A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
WO2006008930A1 (en) * 2004-07-20 2006-01-26 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
JP2006032325A (en) * 2004-06-17 2006-02-02 Toyota Motor Corp Lithium secondary battery, positive electrode used in lithium secondary battery, and its manufacturing method
JP2007080827A (en) * 2005-09-13 2007-03-29 Samsung Sdi Co Ltd Anode and lithium cell adopting above
JP2007234277A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
CN100344015C (en) * 2004-11-06 2007-10-17 比亚迪股份有限公司 Method for preparing lithium secondary battery anode tab and lithium ion secondary battery
US7288339B2 (en) 2002-05-18 2007-10-30 Samsung Sdi Co., Ltd. Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
JP2017123345A (en) * 2014-01-31 2017-07-13 株式会社豊田自動織機 Negative electrode for nonaqueous secondary battery, nonaqueous secondary battery, negative electrode active material and manufacturing method therefor, composite including nano silicon, carbon layer and cationic polymer layer, and method for manufacturing composite including nano silicon and carbon layer
CN115483504A (en) * 2022-10-13 2022-12-16 吉林师范大学 Vermiculite coating diaphragm for lithium ion battery and preparation method thereof
WO2023157670A1 (en) * 2022-02-16 2023-08-24 三菱ケミカル株式会社 Organic compound-coated carbon material, method for producing same, negative electrode, and secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140157A (en) * 1997-07-23 1999-02-12 Ricoh Co Ltd Electrode and nonaqueous electrolyte battery using it
JP2002083585A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
US7288339B2 (en) 2002-05-18 2007-10-30 Samsung Sdi Co., Ltd. Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
US7883554B2 (en) 2002-05-18 2011-02-08 Samsung Sdi Co., Ltd. Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
JP2006032325A (en) * 2004-06-17 2006-02-02 Toyota Motor Corp Lithium secondary battery, positive electrode used in lithium secondary battery, and its manufacturing method
KR100863167B1 (en) * 2004-07-20 2008-10-13 미쓰비시 가가꾸 가부시키가이샤 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
WO2006008930A1 (en) * 2004-07-20 2006-01-26 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
CN100344015C (en) * 2004-11-06 2007-10-17 比亚迪股份有限公司 Method for preparing lithium secondary battery anode tab and lithium ion secondary battery
JP2007080827A (en) * 2005-09-13 2007-03-29 Samsung Sdi Co Ltd Anode and lithium cell adopting above
US8455138B2 (en) 2005-09-13 2013-06-04 Samsung Sdi Co., Ltd. Anode and lithium battery including the anode
JP2007234277A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2017123345A (en) * 2014-01-31 2017-07-13 株式会社豊田自動織機 Negative electrode for nonaqueous secondary battery, nonaqueous secondary battery, negative electrode active material and manufacturing method therefor, composite including nano silicon, carbon layer and cationic polymer layer, and method for manufacturing composite including nano silicon and carbon layer
WO2023157670A1 (en) * 2022-02-16 2023-08-24 三菱ケミカル株式会社 Organic compound-coated carbon material, method for producing same, negative electrode, and secondary battery
CN115483504A (en) * 2022-10-13 2022-12-16 吉林师范大学 Vermiculite coating diaphragm for lithium ion battery and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4644895B2 (en) Lithium secondary battery
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
JP4696557B2 (en) Active material for lithium secondary battery, production method thereof, raw material used therefor, and lithium secondary battery
US20130266868A1 (en) Method of preparing positive active material for rechargeable lithium battery, positive active material for rechargeable lithium battery prepared by using the method, and rechargeable lithium battery including the same
CN107112533B (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR20140101640A (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
KR102176341B1 (en) Negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JPH0982325A (en) Manufacture of positive active material
JP4250886B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2001126733A (en) Nonaqueous electrolytic material
CN115911327A (en) Sodium ion positive electrode material, preparation method thereof and secondary battery
JP2002298846A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
KR20130085323A (en) Composite anode active material, preparation method thereof, anode and lithium battery comprising the material
JP2001076727A (en) Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP3518137B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4656349B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery, its production method and lithium secondary battery using the same
JPH09219188A (en) Nonaqueous electrolyte secondary battery, and manufacture of it
JP2003017055A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and manufacturing method thereof
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
US9570743B2 (en) Positive active material precursor for rechargeable lithium battery, method of preparing positive active material for rechargeable lithium battery using the same, and rechargeable lithium battery including the prepared positive active material for rechargeable lithium battery
JP2000260479A (en) Lithium ion secondary battery
JPH09199112A (en) Nonaqueous electrolyte secondary cell
KR101553389B1 (en) Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same