JPH09218384A - Optical control element and directions for use thereof - Google Patents

Optical control element and directions for use thereof

Info

Publication number
JPH09218384A
JPH09218384A JP2707896A JP2707896A JPH09218384A JP H09218384 A JPH09218384 A JP H09218384A JP 2707896 A JP2707896 A JP 2707896A JP 2707896 A JP2707896 A JP 2707896A JP H09218384 A JPH09218384 A JP H09218384A
Authority
JP
Japan
Prior art keywords
electrode
optical
control element
signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2707896A
Other languages
Japanese (ja)
Inventor
Kazuto Noguchi
一人 野口
Hiroshi Miyazawa
弘 宮澤
Osamu Mitomi
修 三冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2707896A priority Critical patent/JPH09218384A/en
Publication of JPH09218384A publication Critical patent/JPH09218384A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PROBLEM TO BE SOLVED: To make cross talk due to the electric coupling of an input/output part very small, to make the element small and suitable for integration and to enable high-speed operation by shifting input/output terminals of each traveling-wave electrode and arranging them. SOLUTION: In an optical control element arranging terminals for inputting or outputting an electric signal to two traveling-wave electrodes composed of signal electrodes 103, 104 and a grounded electrode 105 on both sides of an optical waveguide 102, the input/output part of the signal electrode 103 and the input/output part of the signal electrode 104 are arranged by 4mm apart from their opposed position in the traveling direction of light. Since the grounded electrode 105 is arranged in the opposed part of the input part of the signal electrode 103, coupling to the signal electrode 104 is least. Since the signal electrode 103 is arranged in the opposed part of the input part of the signal electrode 104 and its width and gap are narrow, the coupling of both electrodes is very weak. In the output part, quite reverse phenomenon holds. Consequently, cross talk between two signal electrodes is very small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光波の変調、光路
切り替え等を行う光制御素子、特に動作速度が極めて速
い光制御素子及びその使用方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical control element for modulating a light wave, switching an optical path, etc., and more particularly to an optical control element having an extremely high operating speed and a method of using the same.

【0002】[0002]

【従来の技術】近年、光ファイバやレーザ光源の進歩・
発達に伴い、光通信を初め光技術を応用した各種のシス
テム、デバイスが実用化され広く利用されるようになる
一方、益々、その高度技術開発への要請が強まってき
た。特に、最近の光通信システムの高速化の要求から、
光信号を送信する光送信器においても、高速・低電圧で
光を変調する光素子の開発が求められている。そのよう
な素子として、ニオブ酸リチウム(LiNbO3)等の
電気光学効果を有する基板上に分岐光導波路を設け、2
つの進行波電極を用い、位相2値強度変調動作、あるい
はプッシュプル駆動するマッハツエンダ型光変調器が有
力視されている。
2. Description of the Related Art In recent years, advances in optical fibers and laser light sources have been advanced.
With the development, various systems and devices applying optical technology such as optical communication have been put into practical use and widely used, and more and more, there has been an increasing demand for the development of advanced technology. In particular, due to the recent demand for high-speed optical communication systems,
Also in an optical transmitter that transmits an optical signal, development of an optical element that modulates light at high speed and low voltage is required. As such an element, a branched optical waveguide is provided on a substrate having an electro-optical effect such as lithium niobate (LiNbO 3 ).
A Mach-Zehnder type optical modulator, which uses two traveling wave electrodes and performs a phase binary intensity modulation operation or push-pull drive, is considered promising.

【0003】従来のプッシュプル駆動型光変調器として
は、進行波電極としてコプレナーストリップライン(C
PS)を2つ備えた光変調器(T.Namiki等,IOOC'89,19D
4-2)や、あるいは進行波電極としてコプナーウェーブ
ガイド(CPW)電極を2つ備えた光変調器(S.K.Koro
tky等:IPR'91,TuG2)がある。ここで、複数の電極を同
一基板上に形成した場合、電極間のクロストークが問題
になる。CPW電極は、2つの信号電極の間に接地電極
を配置しているので、CPS電極と比べて電極間のクロ
ストークを大幅に低減できる。2つのCPW電極を用い
たプッシュプル駆動型光変調器の従来例を図5及び図6
に示す。図5は平面図、図6はそのAA’線に沿う横断
面図である。
In a conventional push-pull drive type optical modulator, a coplanar strip line (C
Optical modulator equipped with two PS (T.Namiki et al., IOOC'89, 19D
4-2) Alternatively, or an optical modulator (SKKoro) equipped with two Coppner waveguide (CPW) electrodes as traveling wave electrodes.
tky et al .: IPR'91, TuG2). Here, when a plurality of electrodes are formed on the same substrate, crosstalk between the electrodes becomes a problem. Since the ground electrode is disposed between the two signal electrodes in the CPW electrode, crosstalk between the electrodes can be significantly reduced as compared with the CPS electrode. A conventional example of a push-pull drive type optical modulator using two CPW electrodes is shown in FIGS.
Shown in 5 is a plan view, and FIG. 6 is a cross-sectional view taken along the line AA '.

【0004】この例では、電気光学効果を有するzカッ
トLiNbO3基板101にTi熱拡散によりマッハツ
エンダ形光導波路102が形成されている。その基板1
01の上にはSiO2バッファ層108が形成され、さ
らにそのバッファ層108の上に信号電極103及びア
ース電極105から構成されたCPW形の第一の進行波
電極と、信号電極104及びアース電極105から構成
された第二の進行波電極が形成されている。106はC
PW進行波電極の信号電極とアース電極との間に接続さ
れた終端抵抗、107は電極103及び104に接続さ
れ、変調用マイクロ波信号をこれら信号電極103及び
104に供給する変調用マイクロ波信号給電線(給電用
同軸線)である。
In this example, a Mach-Zehnder type optical waveguide 102 is formed on a z-cut LiNbO 3 substrate 101 having an electro-optical effect by Ti thermal diffusion. Its substrate 1
01, a SiO 2 buffer layer 108 is formed, and a CPW-type first traveling wave electrode composed of a signal electrode 103 and a ground electrode 105, and a signal electrode 104 and a ground electrode. A second traveling wave electrode composed of 105 is formed. 106 is C
A terminating resistor connected between the signal electrode of the PW traveling wave electrode and the ground electrode, 107 is connected to the electrodes 103 and 104, and supplies a modulation microwave signal to these signal electrodes 103 and 104. It is a power supply line (coaxial line for power supply).

【0005】この光変調器に、信号源109から増幅器
110、及び変調用マイクロ波給電線107を介して駆
動電力が供給されると、第一の信号電極103とアース
電極105との間、及び第二の信号電極104とアース
電極105との間に電界が加わる。LiNbO3基板1
01は電気光学効果を有するので、この電界による屈折
率変化を生じる。その結果、2本の光導波路102を伝
搬する光の位相にずれが生じる。このずれが2mπ(m
は整数)ラジアンになった場合、マッハツエンダ形光導
波路102の合波部で導波モードが励振され、光はON
状態となる。一方、位相ずれが(2m+1)πラジアン
になった場合、マッハツエンダ形光導波路102の合波
部で高次モードを励振し、光はOFF状態となる。この
光変調器の場合、進行波電極として信号電極103及び
104の両側にそれぞれアース電極105を有するCP
W電極を用いており、かつ相互作用部は中心導体幅8μ
m程度、ギャップが15μm程度で、2つの信号電極の
間隔をギャップの約15倍(250μm)としているの
で、このCPW電極103を伝搬する変調用マイクロ波
信号とCPW電極104を伝搬する変調用マイクロ波信
号との結合はほとんどない。
When drive power is supplied to the optical modulator from the signal source 109 via the amplifier 110 and the modulating microwave power feed line 107, between the first signal electrode 103 and the ground electrode 105, and An electric field is applied between the second signal electrode 104 and the ground electrode 105. LiNbO 3 substrate 1
Since 01 has an electro-optical effect, the refractive index changes due to this electric field. As a result, the phase of the light propagating through the two optical waveguides 102 is deviated. This deviation is 2mπ (m
Is a whole number) radians, the guided mode is excited at the combining portion of the Mach-Zehnder type optical waveguide 102, and the light is turned on.
State. On the other hand, when the phase shift becomes (2m + 1) π radians, the higher-order mode is excited in the combining portion of the Mach-Zehnder type optical waveguide 102, and the light is turned off. In the case of this optical modulator, a CP having ground electrodes 105 on both sides of the signal electrodes 103 and 104 as traveling wave electrodes
The W electrode is used, and the interaction part has a central conductor width of 8μ.
m, the gap is about 15 μm, and the distance between the two signal electrodes is about 15 times the gap (250 μm). Therefore, the microwave signal for modulation propagating through the CPW electrode 103 and the modulation microwave signal propagating through the CPW electrode 104. There is almost no coupling with the wave signal.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、進行波
電極と同軸線路や同軸型の終端抵抗と接続する場合、通
常、同軸型のコネクタを介して接続し、マイクロ波電界
のモードを同軸線路のモードからCPW電極のモードに
変換する。基板上、電極の入出力部分では、同軸型のコ
ネクタの大きさに合わせるため、図5に示したように、
テーパー部を設けて信号電極の幅を300μm程度、ギ
ャップを700μm程度に広げている。この部分では、
ギャップが広がり、しかも入力端同士、及び出力端同士
が対向して配置されているため、同軸モード−CPWモ
ード変換の際に放射される電界が電気的結合を起こしや
すい。この結合を一定レベル以下に抑圧するため、従来
例において2つの進行波電極の入力端同士間、及び出力
端同士間の距離を十分大きくとらねばならなかった。
However, when the traveling wave electrode is connected to the coaxial line or the coaxial type terminating resistor, the microwave electric field mode is usually connected via a coaxial type connector. To CPW electrode mode. As shown in FIG. 5, in order to match the size of the coaxial connector at the input / output portion of the electrode on the substrate,
By providing a taper portion, the width of the signal electrode is expanded to about 300 μm and the gap is expanded to about 700 μm. In this part,
Since the gap is widened and the input ends and the output ends are arranged to face each other, the electric field radiated at the time of the coaxial mode-CPW mode conversion easily causes electrical coupling. In order to suppress this coupling below a certain level, in the conventional example, the distance between the input ends of the two traveling wave electrodes and the distance between the output ends of the two traveling wave electrodes had to be made sufficiently large.

【0007】本発明の目的は、従来の多電極素子で問題
になる電気信号の入出力部分における電気的結合による
クロストークを抑圧し、小型で集積化に適した広帯域の
光制御素子及びその使用方法を提供することにある。
An object of the present invention is to suppress a crosstalk due to electric coupling at an input / output portion of an electric signal, which is a problem in a conventional multi-electrode element, and is a small-sized wide band optical control element suitable for integration and its use. To provide a method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明の請求項1では、電気光学効果を有する基板
と、該基板の一方の主面に形成された光導波路と、該主
面上に形成されたバッファー層と、該バッファー層上に
形成された複数の進行波電極を有し、該進行波電極への
電気信号の入力または出力のための端子が、該光導波路
の両側に配置された光制御素子において、該端子が、そ
れぞれの光の導波方向に沿って異なる位置に配置される
ようにした。また請求項2では、請求項1記載の光制御
素子において、前記光導波路を、前記基板の平坦な表面
上に形成された光導波路、またはリッジを有する前記基
板に形成された光導波路とした。また請求項3では、請
求項1または2記載の光制御素子において、前記光制御
素子を、マッハツエンダ型光変調器または方向性結合器
からなる光スイッチとした。また請求項4では、請求項
1乃至3記載の光制御素子において、前記端子の位置
を、それぞれ光の導波方向に沿って250μm以上離れ
るようにした。また請求項5では、光制御素子が、請求
項3に記載のマッハツエンダ型光変調器からなる光スイ
ッチにおいて、分岐された2本の光導波路にそれぞれ進
行波電極が配置され、該進行波電極にそれぞれ極性が異
なり強度の等しい電気信号を印加するようにした。
In order to solve the above problems, according to claim 1 of the present invention, a substrate having an electro-optical effect, an optical waveguide formed on one main surface of the substrate, and the main surface are provided. A buffer layer formed above and a plurality of traveling wave electrodes formed on the buffer layer, and terminals for inputting or outputting electric signals to the traveling wave electrodes are provided on both sides of the optical waveguide. In the arranged light control element, the terminals are arranged at different positions along the light guide direction. According to a second aspect, in the light control element according to the first aspect, the optical waveguide is an optical waveguide formed on a flat surface of the substrate or an optical waveguide formed on the substrate having a ridge. According to a third aspect of the present invention, in the light control element according to the first or second aspect, the light control element is an optical switch including a Mach-Zehnder type optical modulator or a directional coupler. According to a fourth aspect of the present invention, in the light control element according to the first to third aspects, the positions of the terminals are separated from each other by 250 μm or more along the light guiding direction. According to a fifth aspect of the invention, the optical control element is the optical switch including the Mach-Zehnder type optical modulator according to the third aspect, wherein traveling wave electrodes are respectively arranged in the two branched optical waveguides, and the traveling wave electrodes are disposed in the traveling wave electrodes. An electric signal having a different polarity and an equal intensity was applied.

【0009】本発明によれば、それぞれの進行波電極の
入力、及び出力のための端子をずらして配置しているた
め、従来例のような入出力部分の電気的結合によるクロ
ストークを非常に小さくでき、小型で集積化に適した広
帯域の光制御素子及びその使用方法を提供することがで
きる。
According to the present invention, since the terminals for input and output of each traveling wave electrode are arranged in a staggered manner, crosstalk due to electrical coupling between the input and output portions as in the conventional example is extremely reduced. It is possible to provide a small-sized, small-sized, wide-band optical control element suitable for integration and a method of using the same.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】本発明の第1の実施の形態であるマッハツ
エンダ形光変調素子の平面図を図1に示す。この実施の
形態において、図5及び図6に示した従来例と同様に第
一の信号電極103及び第二の信号電極104、及び接
地電極105から構成される2つの進行波電極を有する
が、その従来例の構造と異なって、第一の信号電極10
3の入出力部と第二の信号電極104の入出力部とを対
向する位置から、光の進行方向に4mmずらして配置し
ている。第一の信号電極103の入力部の対向部分には
接地電極105が配置されているので、第二の信号電極
104への結合は極めて小さい。第二の信号電極104
の入力部の対向部分には第一の信号電極103が配置さ
れているが、その幅及びギャップが狭いので、両者の結
合は極めて小さい。出力部分においては、全く逆の現象
が成り立つ。そのため、従来例のような2つの信号電極
間のクロストークが極めて小さい。その他の構成は従来
例と同一である。
FIG. 1 shows a plan view of a Mach-Zehnder type optical modulator according to the first embodiment of the present invention. In this embodiment, as in the conventional example shown in FIG. 5 and FIG. 6, two traveling wave electrodes composed of the first signal electrode 103, the second signal electrode 104, and the ground electrode 105 are provided, Unlike the structure of the conventional example, the first signal electrode 10
The input / output unit 3 and the input / output unit of the second signal electrode 104 are arranged so as to be displaced by 4 mm in the traveling direction of the light from the position facing each other. Since the ground electrode 105 is arranged in the facing portion of the input portion of the first signal electrode 103, the coupling to the second signal electrode 104 is extremely small. Second signal electrode 104
The first signal electrode 103 is arranged at the opposite portion of the input part of the above, but the width and gap are narrow, so the coupling between the two is extremely small. In the output part, the exact opposite phenomenon holds. Therefore, the crosstalk between the two signal electrodes as in the conventional example is extremely small. Other configurations are the same as the conventional example.

【0012】図2は第1の実施の形態の変調素子のクロ
ストーク特性を示す図である。
FIG. 2 is a diagram showing the crosstalk characteristics of the modulation element of the first embodiment.

【0013】図2では、第一の進行波電極の入力部にマ
イクロ波信号を印加し、第二の進行波電極の出力部へ結
合する電力をネットワークアナライザで測定した。45
MHzから50GHzにわたって測定限界(−30d
B)以下に抑圧できているのがわかる。
In FIG. 2, a microwave signal was applied to the input section of the first traveling wave electrode, and the power coupled to the output section of the second traveling wave electrode was measured with a network analyzer. 45
Measurement limit (-30d from MHz to 50 GHz
B) It can be seen that it is suppressed below.

【0014】図3は本発明の第2の実施の形態を示す図
である。
FIG. 3 is a diagram showing a second embodiment of the present invention.

【0015】この実施形態では、電気光学効果を有する
zカットLiNbO3基板101にTi熱拡散により、
4本の光導波路114,115,116,117が形成
され、方向性結合器を形成している。その基板101の
上にはSiO2バッファ層が形成され(図では省略)、
さらにそのバッファ層の上に信号電極103及びアース
電極105から構成されたCPW形の第一の進行波電極
と、信号電極104及びアース電極105から構成され
たCPW形の第二の進行波電極と、信号電極118及び
アース電極105から構成された第三の進行波電極が形
成されている。106はCPW進行波電極の信号電極と
アース電極との間に接続された終端抵抗、107はマイ
クロ波信号給電線(給電用同軸線)、109は信号源、
110は増幅器である。
In this embodiment, Ti thermal diffusion is performed on the z-cut LiNbO 3 substrate 101 having an electro-optical effect,
Four optical waveguides 114, 115, 116 and 117 are formed to form a directional coupler. A SiO 2 buffer layer is formed on the substrate 101 (not shown),
Further, on the buffer layer, a CPW-type first traveling wave electrode composed of the signal electrode 103 and the earth electrode 105, and a CPW-type second traveling wave electrode composed of the signal electrode 104 and the earth electrode 105. A third traveling wave electrode composed of the signal electrode 118 and the ground electrode 105 is formed. 106 is a terminating resistor connected between the signal electrode of the CPW traveling wave electrode and the ground electrode, 107 is a microwave signal feed line (feeding coaxial line), 109 is a signal source,
110 is an amplifier.

【0016】この光制御素子に駆動電力を供給しない場
合、光導波路115に入射した光は方向性結合器部で光
導波路116に結合し、さらに光導波路117に結合す
る。ここで、第一の信号電極103に、信号源109か
ら増幅器110、及び変調用マイクロ波給電線107を
介して駆動電力が供給されると、信号電極103とアー
ス電極105との間に電界が加わる。LiNbO3基板
101は電気光学効果を有するので、この電界により屈
折率変化を生じる。その結果、光導波路115を伝搬す
る光の位相にずれが生じる。このずれが31/2・πラジ
アンになった場合、光は光導波路115をそのまま伝搬
する。そして次の方向性結合器部で光導波路114に結
合し、出射する。同様に、各信号電極に加える電力を変
えることにより、1入力、4出力の1×4光スイッチと
して動作する。
When no drive power is supplied to this light control element, the light incident on the optical waveguide 115 is coupled to the optical waveguide 116 by the directional coupler section and further coupled to the optical waveguide 117. Here, when drive power is supplied to the first signal electrode 103 from the signal source 109 via the amplifier 110 and the modulation microwave feed line 107, an electric field is generated between the signal electrode 103 and the ground electrode 105. Join. Since the LiNbO 3 substrate 101 has an electro-optic effect, this electric field causes a change in the refractive index. As a result, the phase of the light propagating through the optical waveguide 115 shifts. When this shift becomes 3 1/2 · π radians, the light propagates through the optical waveguide 115 as it is. Then, it is coupled to the optical waveguide 114 at the next directional coupler section and emitted. Similarly, by changing the power applied to each signal electrode, it operates as a 1-input / 4-output 1 × 4 optical switch.

【0017】この光スイッチの場合、第1の実施形態の
場合と同様に、信号電極間の結合はほとんどなく、対向
する第二の信号電極104と第三の信号電極118の入
出力部分の結合はほとんどなく、対向する第二の信号電
極104と第三の信号電極119の入出力部分の結合が
問題となるが、第二の信号電極104の入出力部と第三
の信号電極118の入出力部とを対向する位置から、光
の進行方向にずらして配置している。第二の信号電極1
04の入力部の対向部分には接地電極105が配置され
ているので、第三の信号電極118への結合は極めて小
さい。第三の信号電極118の入力部の対向部分には第
二の信号電極104が配置されているが、その幅及びギ
ャップが狭いので、両者の結合は極めて小さい。出力部
分においては、全く逆の現象が成り立つ。そのため、2
つの信号電極間のクロストークが極めて小さい。
In the case of this optical switch, as in the case of the first embodiment, there is almost no coupling between the signal electrodes, and the coupling of the input / output portions of the opposing second signal electrode 104 and third signal electrode 118. The connection between the input / output portions of the second signal electrode 104 and the third signal electrode 119 facing each other becomes a problem, but the input / output portion of the second signal electrode 104 and the input / output portion of the third signal electrode 118 are not present. It is arranged so as to be displaced from the position facing the output portion in the light traveling direction. Second signal electrode 1
Since the ground electrode 105 is arranged in the facing portion of the input portion 04, the coupling to the third signal electrode 118 is extremely small. The second signal electrode 104 is arranged at a portion facing the input portion of the third signal electrode 118. However, since the width and the gap are narrow, the coupling between the two is extremely small. In the output part, the exact opposite phenomenon holds. Therefore, 2
Crosstalk between two signal electrodes is extremely small.

【0018】図4は本発明の第3の実施の形態を示す図
である。
FIG. 4 is a diagram showing a third embodiment of the present invention.

【0019】変調素子の構造は第1の実施形態と同じで
ある。図においては、112,113は信号用ケーブル
で一方の端はそれぞれ第一の信号電極103及び第二の
信号電極104の入力端に接続され、信号用ケーブル1
12の他方の端は、例えば、位相及び振幅の調整手段1
11、増幅器110を経由して電気信号源109に接続
されている。106は終端抵抗である。
The structure of the modulator is the same as that of the first embodiment. In the figure, 112 and 113 are signal cables, one end of which is connected to the input ends of the first signal electrode 103 and the second signal electrode 104, respectively.
The other end of 12 is, for example, the phase and amplitude adjusting means 1
11, connected to an electric signal source 109 via an amplifier 110. 106 is a terminating resistor.

【0020】ここで、電気信号の分岐点Dと第二の進行
波電極の先頭点Cの間の伝達時間が、電気信号の分岐点
Dと第一の進行波電極の先頭点Bとの間の伝達時間より
も、前記先頭点BおよびCの間を光が走行するのに要す
る時間だけ遅延し、同時にそれぞれの電極に印加される
電気信号の極性が反転するように位相及び振幅の調整手
段111の調整と、信号ケーブル113の長さの設定を
行う。分岐光導波路上で光に作用する実効的な電界の大
きさは、第一の進行波電極103より作用する成分と、
第二の進行波電極104より作用する成分とは大きさが
等しく、かつ、方向が逆向きであるため、変調器の駆動
電圧を低減することができる。
Here, the transmission time between the branch point D of the electric signal and the leading point C of the second traveling wave electrode is the time between the branch point D of the electrical signal and the leading point B of the first traveling wave electrode. The transmission time is delayed by the time required for light to travel between the leading points B and C, and at the same time, the phase and amplitude adjusting means are arranged so that the polarities of the electric signals applied to the respective electrodes are inverted. The adjustment of 111 and the setting of the length of the signal cable 113 are performed. The magnitude of the effective electric field that acts on the light on the branched optical waveguide depends on the component acting from the first traveling wave electrode 103,
Since the magnitude of the component acting from the second traveling wave electrode 104 is equal and the direction is opposite, the drive voltage of the modulator can be reduced.

【0021】以上の実施の形態ではzカットLiNbO
3基板を用いたがxカットやyカット等、他の面方位の
LiNbO3基板を用いてもよいし、LiTaO3等、電
気光学効果を有するその他の基板を用いてもよい。さら
に、以上の実施形態では2つの進行波電極を有する光変
調器に適用したが、素子の集積度を向上させ、電極を3
つ以上備えた光マトリクススイッチ等へ適用してもよ
い。また、光導波路として平面導波路についてのみ実施
形態を記載したが、リッジ導波路であっても当然本発明
は実施できる。
In the above embodiment, z-cut LiNbO is used.
Although three substrates are used, a LiNbO 3 substrate having another plane orientation such as x-cut or y-cut may be used, or another substrate having an electro-optical effect such as LiTaO 3 may be used. Further, in the above embodiment, the present invention is applied to the optical modulator having two traveling wave electrodes, but the degree of integration of the device is improved and three electrodes are used.
It may be applied to an optical matrix switch or the like having three or more. Further, although the embodiment has been described only for the planar waveguide as the optical waveguide, the present invention can of course be implemented even if it is a ridge waveguide.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、そ
れぞれの進行波電極の入力、及び出力のための端子をず
らして配置しているため、従来例のような入出力部分の
電気的結合によるクロストークを非常に小さくでき、高
速動作が可能で、小型で集積化に適した広帯域の光制御
素子及びその使用方法を提供することができる。
As described above, according to the present invention, since the input and output terminals of each traveling wave electrode are arranged so as to be displaced from each other, it is possible to electrically connect the input and output portions as in the conventional example. A cross-talk due to coupling can be extremely reduced, high-speed operation is possible, and a small-sized broadband optical control element suitable for integration and a method of using the same can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態を示す平面図FIG. 1 is a plan view showing a first embodiment of the present invention.

【図2】本発明の第1の実施形態のクロストーク特性を
示す図
FIG. 2 is a diagram showing crosstalk characteristics according to the first embodiment of the present invention.

【図3】本発明の第2の実施形態を示す平面図FIG. 3 is a plan view showing a second embodiment of the present invention.

【図4】本発明の第3の実施形態を示す平面図FIG. 4 is a plan view showing a third embodiment of the present invention.

【図5】従来の光変調素子の平面図FIG. 5 is a plan view of a conventional light modulator.

【図6】従来の光変調素子の横断面図FIG. 6 is a cross-sectional view of a conventional light modulation element.

【符号の説明】[Explanation of symbols]

101…zカットLiNbO3基板、102…Ti熱拡
散マッハツエンダ形の光導波路、103…第一の信号電
極、104…第二の信号電極、105…アース電極、1
06…終端抵抗、107,112,113…変調用マイ
クロ波信号給電線、108…SiO2バッファ層、10
9…信号源、110…増幅器、111…位相及び振幅の
調整手段、114,115,116,117…Ti熱拡
散方向性結合器型の光導波路、118…第三の信号電
極。
101 ... Z-cut LiNbO 3 substrate, 102 ... Ti thermal diffusion Mach-Zehnder type optical waveguide, 103 ... First signal electrode, 104 ... Second signal electrode, 105 ... Ground electrode, 1
06 ... Termination resistance, 107, 112, 113 ... Microwave signal feed line for modulation, 108 ... SiO 2 buffer layer, 10
9 ... Signal source, 110 ... Amplifier, 111 ... Phase and amplitude adjusting means, 114, 115, 116, 117 ... Ti thermal diffusion directional coupler type optical waveguide, 118 ... Third signal electrode.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電気光学効果を有する基板と、該基板の
一方の主面に形成された光導波路と、該主面上に形成さ
れたバッファー層と、該バッファー層上に形成された複
数の進行波電極を有し、 該進行波電極への電気信号の入力または出力のための端
子が、該光導波路の両側に配置された光制御素子におい
て、 該端子が、それぞれの光の導波方向に沿って異なる位置
に配置されたことを特徴とする光制御素子。
1. A substrate having an electro-optical effect, an optical waveguide formed on one main surface of the substrate, a buffer layer formed on the main surface, and a plurality of buffer layers formed on the buffer layer. In a light control element having a traveling wave electrode, wherein terminals for inputting or outputting an electric signal to the traveling wave electrode are arranged on both sides of the optical waveguide, and the terminals are arranged in respective waveguide directions. A light control element, which is arranged at different positions along a line.
【請求項2】 前記光導波路が、前記基板の平坦な表面
上に形成された光導波路、またはリッジを有する前記基
板に形成された光導波路であることを特徴とする請求項
1に記載の光制御素子。
2. The optical waveguide according to claim 1, wherein the optical waveguide is an optical waveguide formed on a flat surface of the substrate or an optical waveguide formed on the substrate having a ridge. Control element.
【請求項3】 前記光制御素子が、マッハツエンダ型光
変調器または方向性結合器からなる光スイッチであるこ
とを特徴とする請求項1または2に記載の光制御素子。
3. The light control element according to claim 1, wherein the light control element is an optical switch including a Mach-Zehnder type optical modulator or a directional coupler.
【請求項4】 前記端子の位置が、それぞれ光の導波方
向に沿って250μm以上離れていることを特徴とする
請求項1乃至3のいずれか1項に記載の光制御素子。
4. The light control element according to claim 1, wherein the positions of the terminals are separated from each other by 250 μm or more along the light guiding direction.
【請求項5】 光制御素子が、請求項3に記載のマッハ
ツエンダ型光変調器からなる光スイッチにおいて、分岐
された2本の光導波路にそれぞれ進行波電極が配置さ
れ、該進行波電極にそれぞれ極性が異なり強度の等しい
電気信号を印加することを特徴とする光制御素子の使用
方法。
5. The optical switch comprising the Mach-Zehnder type optical modulator according to claim 3, wherein the optical control element has traveling-wave electrodes disposed on each of the two branched optical waveguides, and each traveling-wave electrode is disposed on the traveling-wave electrode. A method of using a light control element, which comprises applying electric signals having different polarities and equal in intensity.
JP2707896A 1996-02-14 1996-02-14 Optical control element and directions for use thereof Pending JPH09218384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2707896A JPH09218384A (en) 1996-02-14 1996-02-14 Optical control element and directions for use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2707896A JPH09218384A (en) 1996-02-14 1996-02-14 Optical control element and directions for use thereof

Publications (1)

Publication Number Publication Date
JPH09218384A true JPH09218384A (en) 1997-08-19

Family

ID=12211049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2707896A Pending JPH09218384A (en) 1996-02-14 1996-02-14 Optical control element and directions for use thereof

Country Status (1)

Country Link
JP (1) JPH09218384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177490B2 (en) 2003-03-20 2007-02-13 Fujitsu Limited Optical waveguide, optical device, and method of manufacturing optical waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177490B2 (en) 2003-03-20 2007-02-13 Fujitsu Limited Optical waveguide, optical device, and method of manufacturing optical waveguide

Similar Documents

Publication Publication Date Title
JP2603437B2 (en) Periodic domain inversion electro-optic modulator
US7058241B2 (en) Optical modulator
CN101669061B (en) Light control element
KR950000406B1 (en) Electro-optic modulator and optical signal modulating method
US6483953B1 (en) External optical modulation using non-co-linear compensation networks
JP2002350796A (en) Mach-zehnder electrooptic modulator
US6973238B2 (en) Optical switch and optical communication system
CN211426971U (en) Distributed light intensity modulator
EP1369741B1 (en) Resonant electro-optical modulator for optical short pulse generation
JP4587762B2 (en) Light modulation element module
CN110824731A (en) Distributed light intensity modulator
JP2848454B2 (en) Waveguide type optical device
JP2000028979A (en) Optical control element independent of polarization
WO2021103294A1 (en) Distributed light intensity modulator
JPH04172316A (en) Wave guide type light control device
JP2007033894A (en) Optical modulator
JPH09218384A (en) Optical control element and directions for use thereof
JP4105054B2 (en) Optical switch, directional coupler type modulator with non-crossing electrode, and optical communication system
JPH0593891A (en) Waveguide type optical modulator and its driving method
JPH05264937A (en) Light control device
JP3615108B2 (en) Optical modulation method and optical modulator
JPH02170142A (en) Waveguide type optical control device and driving method thereof
JP4197316B2 (en) Light modulator
JP2692715B2 (en) Light switch
JP3057750B2 (en) Light control element and light control method