JP3057750B2 - Light control element and light control method - Google Patents

Light control element and light control method

Info

Publication number
JP3057750B2
JP3057750B2 JP2307646A JP30764690A JP3057750B2 JP 3057750 B2 JP3057750 B2 JP 3057750B2 JP 2307646 A JP2307646 A JP 2307646A JP 30764690 A JP30764690 A JP 30764690A JP 3057750 B2 JP3057750 B2 JP 3057750B2
Authority
JP
Japan
Prior art keywords
optical
mach
optical waveguide
electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2307646A
Other languages
Japanese (ja)
Other versions
JPH04178615A (en
Inventor
哲行 洲崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2307646A priority Critical patent/JP3057750B2/en
Publication of JPH04178615A publication Critical patent/JPH04178615A/en
Application granted granted Critical
Publication of JP3057750B2 publication Critical patent/JP3057750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高速デジタル光通信システム、光交換シス
テムにおける、光多重装置、及び光分離装置に用いられ
る光制御素子の構造及び制御方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure and a control method of an optical control element used for an optical multiplexing device and an optical demultiplexing device in a high-speed digital optical communication system and an optical switching system. It is.

〔従来の技術〕[Conventional technology]

光通信システム、光交換システムの実用化が進むにつ
れ、さらに大容量・多機能なシステムが求められてお
り、より高度の光信号の発生や光電送路の切り替えが必
要とされている。これを実現する手段として開発が進め
られているものは光導波路を用いた導波型の光スイッチ
であり、高速,高集積化,高信頼性等の特徴がある。特
にニオブ酸リチウム(LiNbO3)結晶等の強誘電体材料を
用いたものは、光吸収が小さく低損失であること、大き
な電気光学効果を有しているため高効率である等の特徴
があり、従来から第6図に示すような方向性結合器型光
スイッチを用いた光制御素子が幾つか報告されている
(例えば、谷澤らによる”低電圧、低損失偏向無依存Ti
拡散LiNbO光導波路形スイッチ”、昭和62年電子情報通
信学会半導体・材料部門全国大会354)。
With the practical use of optical communication systems and optical switching systems, there is a demand for larger capacity and multifunctional systems, and it is necessary to generate higher-level optical signals and switch optical transmission paths. What is being developed as a means for achieving this is a waveguide type optical switch using an optical waveguide, which has features such as high speed, high integration, and high reliability. In particular, those using a ferroelectric material such as lithium niobate (LiNbO 3 ) have characteristics such as low light absorption and low loss, and high efficiency due to a large electro-optic effect. Conventionally, several light control elements using a directional coupler type optical switch as shown in FIG. 6 have been reported (for example, see Tanizawa et al., “Low Voltage, Low Loss Deflection Independent Ti”).
"Diffusion LiNbO optical waveguide switch", 1987 National Institute of Electronics, Information and Communication Engineers Semiconductor and Materials Division National Convention 354).

この方向性結合器型光スイッチは電極3,4に電圧を印
加することにより光入力信号PinをPoutl,Pout2のどちら
かに出力するこような方向性結合器形スイッチにおいて
は挿入3dB以下、光出力信号間クロストーク−15dB以
下、そして変調動作10GHZのものが既に報告されてい
る。
Insert 3dB in the directional coupler form switch as come outputs an optical input signal P in P outl, either P out2 by the directional coupler type optical switch which applies a voltage to the electrodes 3 and 4 hereinafter, the optical output signal crosstalk between -15dB or less, and those of the modulation operation 10GH Z has already been reported.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した様に、従来より開発されている方向性結合器
形光スイッチは低損失等数々の利点を有する。一方、マ
ッハツェンダ形光変調器は変調に必要な光路長差がπで
あって、方向性結合器形光スイッチの に比べて、同一の変調電圧で比較した場合、動作速度を だけ早くできる。更に、マッハツェンダ形光変調器で
は、光の波長依存性が極めて小さい事が報告されてい
る。しかしながら、1入力1出力構成のマッハツェンダ
形光変調器では、方向性結合器で可能な1入力2出力構
成にはしにくく、従って光制御素子としての応用は限ら
れていた。
As described above, the directional coupler type optical switch that has been conventionally developed has many advantages such as low loss. On the other hand, in the Mach-Zehnder type optical modulator, the optical path length difference required for modulation is π, Operating speed when compared at the same modulation voltage I can do it just as fast. Furthermore, it has been reported that the Mach-Zehnder optical modulator has extremely small wavelength dependence of light. However, in a Mach-Zehnder optical modulator having a one-input one-output configuration, it is difficult to achieve a one-input two-output configuration that is possible with a directional coupler, and therefore, its application as an optical control element has been limited.

本発明の目的は、高速性、波長無依存性に優れるマッ
ハツェンダ型光変調器を用いた汎用性の高い光制御素子
及び光制御方法を提供することにある。
An object of the present invention is to provide a highly versatile light control element and a light control method using a Mach-Zehnder type optical modulator which is excellent in high speed and wavelength independence.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の第1の光制御素子は、第1の光導波路と、前
記第1光導波路を第2,第3の光導波路に二分岐する光合
分波回路と、第2,第3の光導波路の各々に接続され、共
に等しい半波長電圧をもつ第1,第2のマッハツェンダ形
光変調器と、第1のマッハツェンダ形光変調器の一方の
光導波路に電圧を印加する第1の電極と、第1のマッハ
ツェンダ形光変調器の他方の光導波路、及び第2のマッ
ハツェンダ形光変調器の一方の光導波路の双方に電圧を
印加する第2の電極と、第2のマッハツェンダ型光変調
器他方の光導波路に電圧を印加する第3の電極とよりな
る事を特徴とする。
A first optical control element according to the present invention includes a first optical waveguide, an optical multiplexing / demultiplexing circuit that bifurcates the first optical waveguide into second and third optical waveguides, and second and third optical waveguides. A first and a second Mach-Zehnder optical modulator having the same half-wavelength voltage, and a first electrode for applying a voltage to one of the optical waveguides of the first Mach-Zehnder optical modulator; A second electrode for applying a voltage to both the other optical waveguide of the first Mach-Zehnder optical modulator and one optical waveguide of the second Mach-Zehnder optical modulator; and a second Mach-Zehnder optical modulator. And a third electrode for applying a voltage to the optical waveguide.

本発明の第1の光制御方法は、本発明の第1の光制御
素子の制御方法であって、前記第1,第3の電極に印加さ
れる電圧の電位差を、前記第1,第2のマッハツェンダ型
光変調器の半波長電圧程度とし、前記第2の電極に第1
の電極の電位と第3の電極の電位の間で変化する電圧を
印可することにより光のスイッチングを行うことを特徴
とする。
The first light control method of the present invention is the first light control element control method of the present invention, wherein the potential difference between the voltages applied to the first and third electrodes is reduced by the first and second electrodes. Of the Mach-Zehnder type optical modulator, and the first electrode is connected to the second electrode.
Switching of light is performed by applying a voltage that changes between the potential of the third electrode and the potential of the third electrode.

本発明の第2の光制御素子は、第1の光導波路と、前
期第1の光導波路を第2、第3の光導波路に二分岐する
光合分波回路と、前期第2の光導波路に接続され、その
内部の2つの光導波路における光の位相差が2Nπ(Nは
0または整数)である第1のマッハツェンダ形光変調器
と、前記第3の光導波路に接続され、その半波長電圧が
第1のマッハツェンダ形光変調器と等しく、その内部の
2つの光導波路における光の位相差が(2N+1)π(N
は0または整数)である第2のマッハツェンダ形光変調
器と、第1のマッハツェンダ形光変調器の一方の光導波
路、及び第2のマッハツェンダ形光変調器の一方の光導
波路の双方に電圧を印加する電極1と、第1のマッハツ
ェンダ形光変調器の他方の光導波路及び第2のマッハツ
ェンダ形光変調器の他方の光導波路の双方に電圧を印可
する第2の電極とからなる事を特徴とする。
A second optical control element according to the present invention includes a first optical waveguide, an optical multiplexing / demultiplexing circuit that branches the first optical waveguide into a second optical waveguide and a third optical waveguide, and a second optical waveguide. A first Mach-Zehnder optical modulator connected to the two optical waveguides and having a phase difference of 2Nπ (N is 0 or an integer) inside the two optical waveguides; a half-wavelength voltage connected to the third optical waveguide; Is equal to that of the first Mach-Zehnder optical modulator, and the phase difference of light in the two optical waveguides inside the modulator is (2N + 1) π (N
Is 0 or an integer.) A voltage is applied to both the second Mach-Zehnder optical modulator, one optical waveguide of the first Mach-Zehnder optical modulator and one optical waveguide of the second Mach-Zehnder optical modulator. It comprises an electrode 1 to be applied and a second electrode for applying a voltage to both the other optical waveguide of the first Mach-Zehnder optical modulator and the other optical waveguide of the second Mach-Zehnder optical modulator. And

本発明の第2の光制御方法は、本発明の第2の光制御
素子の制御方法であって、前記第1の電極に、第2の電
極の電位に対し0ボルトから前記第1、第2のマッハツ
ェンダ形光変調器の半波長電圧程度の間で変化する電圧
を印可することにより光のスイッチングを行うことを特
徴とする。
A second light control method according to the present invention is the second light control element control method according to the present invention, wherein the first electrode has a potential of 0 volt with respect to the potential of the second electrode. Switching of light is performed by applying a voltage that changes between about a half wavelength voltage of the Mach-Zehnder type optical modulator of No. 2 above.

本発明の第3の光制御素子は、第1の光導波路と、前
記第1の光導波路を第2、第3の光導波路に二分岐する
光合分波回路と、第2、第3の光導波路の各々に接続さ
れ、共に等しい半波長電圧をもつ第1、第2のマッハツ
ェンダ形光変調器と、第1のマッハツェンダ形光変調器
の一方の光導波路に電圧を印可する第1の電極と、第1
のマッハツェンダ形光変調器の他方の光導波路、及び第
2のマッハツェンダ形光変調器の一方の光導波路の双方
に電圧を印可する第2の電極と、第2のマッハツェンダ
形光変調器の他方の光導波路に電圧を印可する第3の電
極と、前記第1の電極と前記第3の電極との間に前記半
波長電圧を印可する手段と、前記第2の電極に前記第1
の電極に印可される電圧または前記第3の電極に印可さ
れる電圧を印可する手段よりなる事を特徴とする。
A third optical control element according to the present invention includes a first optical waveguide, an optical multiplexing / demultiplexing circuit that branches the first optical waveguide into a second optical waveguide and a third optical waveguide, and a second optical waveguide and a third optical waveguide. A first and a second Mach-Zehnder optical modulator connected to each of the waveguides and having the same half-wavelength voltage; a first electrode for applying a voltage to one of the optical waveguides of the first Mach-Zehnder optical modulator; , First
A second electrode for applying a voltage to both the other optical waveguide of the Mach-Zehnder optical modulator and one optical waveguide of the second Mach-Zehnder optical modulator; and the other electrode of the second Mach-Zehnder optical modulator A third electrode for applying a voltage to the optical waveguide, means for applying the half-wavelength voltage between the first electrode and the third electrode, and a first electrode for the second electrode;
Means for applying a voltage applied to the third electrode or a voltage applied to the third electrode.

〔作用〕[Action]

以下に第4図、第5図を用いて本発明の第1の光制御
素子の作用を説明する。第4図は本発明の第1の光制御
素子の一部を模式的に表したものである。本図中のマッ
ハツェンダ型光変調器1は内部の光導波路31,32上に設
けられた電極3,4に半波長電圧Vπが印加された時に、
光導波路31,32での光の位相差がπとなり、また、マッ
ハツェンダ型光変調器2は内部の光導波路33,34上に設
けられた電極4,5に半波長電圧Vπが印加された時に、
光導波路33,34での位相差がπとなるものとする。ここ
で、第4図中の電極3に電圧Vπ+V0(V0=N×Vπ,N
は0または整数)を印加し、電極5に電圧V0を印加す
る。このとき、電極4に第5図(a)に示すようなVπ
+V0と電位との間で変化するような電圧を印加すること
により、光導波路31,32における位相差は第5図(b)
に示すように変化し、マッハツェンダ型光変調器1によ
る光の透過率は図中(d)の様になる。一方、光導波路
33,34における位相差は第5図(c)の様になり、第2
のマッハツェンダ型光変調器2による光の透過率は図中
(e)の様に変化し、マッハツェンダ型光変調器1に対
し逆相として動作する。
Hereinafter, the operation of the first light control element of the present invention will be described with reference to FIGS. FIG. 4 schematically shows a part of the first light control element of the present invention. The Mach-Zehnder type optical modulator 1 in the figure shows that when a half-wavelength voltage Vπ is applied to the electrodes 3, 4 provided on the internal optical waveguides 31, 32,
When the phase difference of light in the optical waveguides 31 and 32 becomes π, and the Mach-Zehnder optical modulator 2 receives a half-wavelength voltage Vπ applied to the electrodes 4 and 5 provided on the internal optical waveguides 33 and 34, respectively. ,
It is assumed that the phase difference between the optical waveguides 33 and 34 is π. Here, the voltage Vπ + V 0 (V 0 = N × Vπ, N) is applied to the electrode 3 in FIG.
Is 0 or an integer), and a voltage V 0 is applied to the electrode 5. At this time, Vπ as shown in FIG.
By applying a voltage that changes between + V 0 and the potential, the phase difference in the optical waveguides 31 and 32 is reduced as shown in FIG.
And the light transmittance of the Mach-Zehnder optical modulator 1 becomes as shown in FIG. Meanwhile, the optical waveguide
The phase difference at 33 and 34 is as shown in FIG.
The light transmittance of the Mach-Zehnder type optical modulator 2 changes as shown in (e) in FIG.

このように、マッハツェンダ型光変調器1,2は電極4
に印加される電圧信号の周期に応じて交互にオン・オフ
をくりかえすことになり、これを用いて光信号の時間多
重・時間分離が可能な光制御素子が実現できる。
Thus, the Mach-Zehnder type optical modulators 1 and 2
On and off are alternately performed in accordance with the cycle of the voltage signal applied to the optical control element, and an optical control element capable of time multiplexing and time separation of the optical signal can be realized by using this.

次に本発明の第2の光制御素子の作用について、第4
図,第5図を用いて説明する。ここで、本光制御素子に
おけるマッハツェンダ型光変調器1については、電極3
と電極4の電位が等しいときにその内部の光導波路31,3
2における位相差が−πになるものとする。ここで、第
4図中の電極3,電極5に、共に電圧V0を印加し、電極4
に第5図(a)の様な電圧を印加することにより、光導
波路31,32における位相差、及び光導波路33,34における
位相差は、第5図(b),(c)の様に変化する。よっ
て、マッハツェンダ形光変調器1,2における光透過率は
第5図(d),(e)の様に電極4に印加される周期に
応じて変化する。これにより、第2の光制御素子におい
ても、第1の光制御素子と同様に、光信号の時間多重、
時間分離が可能な光制御素子が実現できる。
Next, regarding the operation of the second light control element of the present invention,
This will be described with reference to FIGS. Here, regarding the Mach-Zehnder optical modulator 1 in the present light control element, the electrode 3
When the potential of the electrode 4 is equal to that of the electrode 4,
It is assumed that the phase difference at 2 becomes -π. Here, the fourth figure of the electrode 3, the electrode 5, the voltage V 0 is applied both electrode 4
5 (a), the phase difference in the optical waveguides 31 and 32 and the phase difference in the optical waveguides 33 and 34 are changed as shown in FIGS. 5 (b) and (c). Change. Therefore, the light transmittance in the Mach-Zehnder optical modulators 1 and 2 changes according to the period applied to the electrode 4 as shown in FIGS. 5 (d) and 5 (e). Thus, in the second light control element, similarly to the first light control element, time multiplexing of the optical signal,
A light control element capable of time separation can be realized.

〔実施例〕〔Example〕

以下、実施例を示して本発明を詳しく説明する。第1
図に、本発明の第1の実施例の構成図を示す。本実施例
は、LiNbO3基板上にTi拡散を施することにより光導波路
を形成して行った。
Hereinafter, the present invention will be described in detail with reference to examples. First
FIG. 2 shows a configuration diagram of the first embodiment of the present invention. In this example, an optical waveguide was formed by performing Ti diffusion on a LiNbO 3 substrate.

光導波路10は光合分波回路13により二分岐し、光導波
路11、光導波路12に接続する。光導波路11の他端にはマ
ッハツェンダ型光変調器1を接続し、光導波路12の他端
にはマッハツェンダ型光変調器2を接続する。マッハツ
ェンダ形光変調器1は内部に光導波路31,32を含み、無
バイアス時の各光導波路間の位相差を0、各光導波路間
の光の位相差をπ変化させる半波長電圧をVπとする。
マッハツェンダ形光変調器2も同様に内部に光導波路3
3,34を含み、無バイアス時の各光導波路間の位相差を
0、各光導波路間の光の位相差をπ変化させる半波長電
圧をVπとする。また、マッハツェンダ型光変調器1の
他端には光導波路14を接続し、マッハツェンダ型光変調
器2の他端には光導波路15を接続する。ここで光導波路
32,33の双方に電圧を印加するような進行波形電極20を
設置し、光導波路31の上には電極3、光導波路34の上に
は電極5を設置する。ここで、進行波形電極20の形状を
調整することにより、その特性インピーダンスを50Ωと
した。また、電極3は電源V1に、電極5はグランドに接
続する。進行波形電極20の一方の端子は変調電源Vin
接続し、他方の端子は50Ωの抵抗100を介してグランド
に接続する。
The optical waveguide 10 is branched into two by an optical multiplexing / demultiplexing circuit 13 and connected to the optical waveguide 11 and the optical waveguide 12. The Mach-Zehnder optical modulator 1 is connected to the other end of the optical waveguide 11, and the Mach-Zehnder optical modulator 2 is connected to the other end of the optical waveguide 12. The Mach-Zehnder type optical modulator 1 includes optical waveguides 31 and 32 therein, and a half-wavelength voltage for changing the phase difference between the optical waveguides at no bias of 0 and a phase difference of light between the optical waveguides by π is Vπ. I do.
The Mach-Zehnder optical modulator 2 also has an optical waveguide 3 inside.
3, 34, the phase difference between the optical waveguides when no bias is applied is 0, and the half-wavelength voltage that changes the phase difference of light between the optical waveguides by π is Vπ. An optical waveguide 14 is connected to the other end of the Mach-Zehnder optical modulator 1, and an optical waveguide 15 is connected to the other end of the Mach-Zehnder optical modulator 2. Where the optical waveguide
The traveling waveform electrode 20 for applying a voltage to both 32 and 33 is provided, and the electrode 3 is provided on the optical waveguide 31 and the electrode 5 is provided on the optical waveguide 34. Here, by adjusting the shape of the traveling waveform electrode 20, its characteristic impedance was set to 50Ω. The electrode 3 is in the power supply V 1, electrode 5 is connected to ground. One terminal of the traveling-wave electrode 20 is connected a modulation power supply V in, and the other terminal connected to ground through a 50Ω resistor 100.

本光制御素子において、電源V1の電源をVπとし、変
調電源Vinが0VからVπの間で変化するよう設定した。
ここで、その伝送速度がfである光入力信号を光導波路
10に入力し、Vinの変調周波数をfにすることにより、
光導波路14,15より、共にf/2の時間分離された光出力信
号Pout1,Pout2が得られる。
In the light control element, the power supply V 1 and V [pi, modulation power V in is set to vary between V [pi from 0V.
Here, an optical input signal whose transmission speed is f is converted into an optical waveguide.
Type 10, by the modulation frequency of V in the f,
From the optical waveguides 14 and 15, optical output signals P out1 and P out2 that are both time-separated by f / 2 are obtained.

本実施例の光制御素子の周波数特性を測定したとこ
ろ、3dB遮断周波数は約18GHzであり、従来の方向性結合
器形光スイッチと比べ1.5倍以上の広帯域化が図れた。
本実施例を用いて、16Gb/sの光入力信号を、2系統の8G
b/sの光出力信号に分離する光分離実験を行ったとこ
ろ、消光比15dB以上、光出力信号間のクロストーク−30
dB以上が得られ、符号誤りのない良好な分離特性が得ら
れた。また光入力信号の波長を1.55μmを中心に30nmの
範囲で変化させた場合においても、その分離特性の変動
は観測されなかった。
When the frequency characteristics of the light control element of the present embodiment were measured, the 3 dB cutoff frequency was about 18 GHz, and the band was 1.5 times or more wider than that of the conventional directional coupler type optical switch.
Using this embodiment, a 16 Gb / s optical input signal is
When an optical separation experiment was performed to separate the optical output signal into b / s, the extinction ratio was 15 dB or more, and the crosstalk between the optical output signals was -30.
dB or more was obtained, and good separation characteristics without code errors were obtained. Also, when the wavelength of the optical input signal was changed within a range of 30 nm centered on 1.55 μm, no change in the separation characteristics was observed.

次に、本発明の2の実施例の構成を第2図に示す。本
実施例において、マッハツェンダ形光変調器1,2、及び
光導波路10,11,12,15、光合分波回路13の構成は上述の
実施例と同様である。但し、本実施例においては、マッ
ハツェンダ形光変調器1内の光導波路32のクラッド層の
一部の屈折率を変化させた位相シフト領域21を設け、無
バイアス時における光導波路31,32の位相差が−πとな
るようにした。ここで、光導波路32,33の双方に電圧を
印加するような進行波形電極20を設け、また光導波路3
1,34の双方に電圧を印加するような電極3を設けた。ま
た、進行波形電極20の形状を調整することにより、その
特性インピーダンスを50Ωとした。このとき、電極3は
グランドに接続し、進行波形電極20の一方の端子は変調
電源Vinを、他方の端子は50Ωの抵抗100を介してグラン
ドに接続する。
Next, the configuration of a second embodiment of the present invention is shown in FIG. In this embodiment, the configurations of the Mach-Zehnder optical modulators 1 and 2, the optical waveguides 10, 11, 12, and 15, and the optical multiplexing / demultiplexing circuit 13 are the same as those in the above-described embodiment. However, in the present embodiment, the phase shift region 21 in which the refractive index of a part of the cladding layer of the optical waveguide 32 in the Mach-Zehnder optical modulator 1 is changed is provided, and the positions of the optical waveguides 31 and 32 at the time of no bias are provided. The phase difference was set to -π. Here, a traveling waveform electrode 20 for applying a voltage to both of the optical waveguides 32 and 33 is provided.
An electrode 3 for applying a voltage to both of the electrodes 1 and 34 was provided. Further, by adjusting the shape of the traveling waveform electrode 20, its characteristic impedance was set to 50Ω. In this case, the electrode 3 is connected to ground, one terminal of the traveling-wave electrodes 20 a modulated supply V in, and the other terminal connected to ground through a 50Ω resistor 100.

本光制御素子において、変調電源Vinが0VからVπの
間で変化するよう設定する。情報速度がfである光入力
信号を光導波路10に入力し、Vinの変調周波数をfにす
ることにより、光導波路14,15より、共にf/2b/sの時間
分離された光出力信号Pout1,Pout2が得られる。
In the light control element, the modulation power supply V in is set to vary between Vπ from 0V. Enter the optical input signal information rate is f the optical waveguide 10, by the modulation frequency of V in the f, from the optical waveguide 14 and 15, the time demultiplexed optical output signal of both f / 2b / s P out1 and P out2 are obtained.

本実施例では、電極3の電位が安定であるため、高周
波領域においても進行波形電極20のインピーダンス整合
が行え、光制御素子の3dB遮断周波数は約20GHzに向上し
た。本実施例を用いて、16Gb/sの光入力信号を、2系統
の8Gb/sの高出力信号に分離する光分離実験を行ったと
ころ、前述の実施例と同様の良好な分離特性が得られ
た。また光入力信号の波長を1.55μmを中心に30nmの範
囲で変化させた場合においても、その分離特性の変動は
観測されなかった。
In the present embodiment, since the potential of the electrode 3 is stable, the impedance of the traveling waveform electrode 20 can be matched even in a high frequency region, and the 3 dB cutoff frequency of the light control element has been improved to about 20 GHz. Using this embodiment, a light separation experiment was performed to separate a 16 Gb / s optical input signal into two 8 Gb / s high-output signals. As a result, good separation characteristics similar to those of the above-described embodiment were obtained. Was done. Also, when the wavelength of the optical input signal was changed within a range of 30 nm centered on 1.55 μm, no change in the separation characteristics was observed.

次に、本発明の3の実施例の構成を第3図に示す。本
実施例において、各光学素子の構成は上述の2の実施例
と同様である。但し、本実施例においては、マッハツェ
ンダ形光変調器1の光導波路31上に調整用電極22をもう
け、それに調整用電源V2を接続する。ここで調整用電源
V2を調整することにより、調整用電極22の下の導波路の
等価誘電率を変化させて、光導波路31,32における零バ
イアス時の位相差が−πであるように調整する。
Next, the configuration of a third embodiment of the present invention is shown in FIG. In this embodiment, the configuration of each optical element is the same as that of the above-described second embodiment. However, in the present embodiment, providing an adjustment electrode 22 on the optical waveguide 31 of the Mach-Zehnder optical modulator 1, to connect the adjusting power V 2 thereto. Power supply for adjustment here
By adjusting V 2 , the equivalent dielectric constant of the waveguide below the adjustment electrode 22 is changed, and the optical waveguides 31 and 32 are adjusted so that the phase difference at zero bias is −π.

本実施例の動特性は前述の第2の実施例と同様であっ
たが、調整用電圧V2を制御することによって、長時間動
作時においてもドリフトの影響ない 光分離動作が可能
となった。
Dynamic characteristics of this example was the same as in the second embodiment described above, but by controlling the adjustment voltage V 2, became possible effects no light separating operation of drift for a long time during operation .

以上、本発明を、いくつかの実施例を挙げて説明した
が、本発明はそれ以外にも様々な態様で実現できる。例
えば、本発明の実施例として、光分離装置を用いて説明
したが、これは光多重動作、光路切り替え動作など、如
何なる光スイッチング動作にも応用できる。また、マッ
ハツェンダ形光変調器の内部の2つの光導波路間の位相
を(2N+1)Vπずらす方法として、位相シフト領域を
設ける方法、制御電極を設ける方法を用いて説明した
が、これはそれ以外にも、光導波路の長さを変える方
法、光導波路の一部の幅、深さを変える方法によっても
実現できる。また、実施例においては、進行波形電極の
特性インピーダンスとして50Ωを用いたが、これはどの
様なインピーダンスでも可能である。更に、本発明にお
いては、実施例に用いた以外でも、作用で説明した範囲
での如何なる印加電圧でも可能であることは言うまでも
ない。
As described above, the present invention has been described with reference to some embodiments, but the present invention can be realized in various other modes. For example, although the embodiments of the present invention have been described using the optical demultiplexing device, the present invention can be applied to any optical switching operation such as an optical multiplexing operation and an optical path switching operation. Also, as a method of shifting the phase between two optical waveguides inside the Mach-Zehnder optical modulator by (2N + 1) Vπ, a method of providing a phase shift region and a method of providing a control electrode have been described. However, it can also be realized by changing the length of the optical waveguide, or changing the width and depth of a part of the optical waveguide. Further, in the embodiment, 50Ω is used as the characteristic impedance of the traveling waveform electrode. However, any impedance can be used. Further, in the present invention, it goes without saying that any applied voltage within the range described in the operation can be used other than the one used in the embodiment.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、従来の方向性
結合器型光スイッチと比較し、約1.7倍の高速化が可能
となり、従来の方向性結合器型光スイッチで問題となっ
ていた、光波長依存性の問題が解決できた。
As described above, according to the present invention, the speed can be increased by about 1.7 times as compared with the conventional directional coupler type optical switch, which has been a problem in the conventional directional coupler type optical switch. Thus, the problem of the dependence on the light wavelength was solved.

また、本発明は、従来より用いられていた光素子の製
造技術を用いて、容易に実現可能である。
Further, the present invention can be easily realized by using an optical element manufacturing technique conventionally used.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例を表した図、第2図は本
発明の第2の実施例を表した図、第3図は第3の実施例
を表した図、第4図は本発明の作用を説明する為の模式
図、第5図は本発明の作用を説明するための概念図、第
6図は従来例を示す図、である。 図中、 1,2……マッハツェンダ形光変調器、2,3,5……電極、1
0,11,12,14,15,31,32,33,34……光導波路、13……光合
分波回路、20……進行波形電極、21……位相シフト領
域、22……調整用電極、100……抵抗、Pin……光入力信
号、Pout1,Pout2……光出力信号、V1……電源、V2……
調整用電源、Vin……変調電源、 である。
FIG. 1 is a diagram showing a first embodiment of the present invention, FIG. 2 is a diagram showing a second embodiment of the present invention, FIG. 3 is a diagram showing a third embodiment, FIG. FIG. 5 is a schematic diagram for explaining the operation of the present invention, FIG. 5 is a conceptual diagram for explaining the operation of the present invention, and FIG. 6 is a diagram showing a conventional example. In the figure, 1,2 …… Mach-Zehnder optical modulator, 2,3,5 …… electrodes, 1
0,11,12,14,15,31,32,33,34 …… Optical waveguide, 13… Optical multiplexing / demultiplexing circuit, 20… Progressing waveform electrode, 21… Phase shift region, 22… Adjustment electrode , 100... Resistance, P in … optical input signal, P out1 , P out2 … optical output signal, V 1 … power supply, V 2
Adjustment power supply, V in …… Modulation power supply.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02F 1/00 - 1/035 G02F 1/29 - 1/313 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) G02F 1/00-1/035 G02F 1/29-1/313

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の光導波路と、前記第1の光導波路を
第2、第3の光導波路に二分岐する光合分波回路と、第
2、第3の光導波路の各々に接続され、共に等しい半波
長電圧をもつ第1、第2のマッハツェンダ形光変調器
と、第1のマッハツェンダ形光変調器の一方の光導波路
に電圧を印加する第1の電極と、第1のマッハツェンダ
形光変調器の他方の光導波路、及び第2のマッハツェン
ダ形光変調器の一方の光導波路の双方に電圧を印加する
第2の電極と、第2のマッハツェンダ形光変調器の他方
の光導波路に電圧を印加する第3の電極とよりなる光制
御素子の前記第1、第3の電極に印加される電圧の電位
差を、前記第1、第2のマッハツェンダ形光変調器の半
波長電圧程度とし、前記第2の電極に第1の電極の電位
と第3の電極の電位の間で変化する電圧を印加すること
を特徴とする光制御方法。
1. A first optical waveguide, an optical multiplexer / demultiplexer for bifurcating the first optical waveguide into a second optical waveguide and a third optical waveguide, and a second optical waveguide and a third optical waveguide. First and second Mach-Zehnder optical modulators having the same half-wavelength voltage, a first electrode for applying a voltage to one optical waveguide of the first Mach-Zehnder optical modulator, and a first Mach-Zehnder type A second electrode that applies a voltage to both the other optical waveguide of the optical modulator and one optical waveguide of the second Mach-Zehnder optical modulator, and a second electrode that applies a voltage to the other optical waveguide of the second Mach-Zehnder optical modulator The potential difference between the voltages applied to the first and third electrodes of the light control element including the third electrode to which a voltage is applied is set to be about half-wavelength voltage of the first and second Mach-Zehnder optical modulators. And a potential of the first electrode and a potential of the third electrode on the second electrode. Light control method characterized by applying a voltage that varies between.
【請求項2】第1の光導波路と、前記第1の光導波路を
第2、第3の光導波路に二分岐する光合分波回路と、前
記第2の光導波路に接続され、その内部の2つの光導波
路における光の位相差が2Nπ(Nは0または整数)であ
る第1のマッハツェンダ形光変調器と、前記第3の光導
波路に接続され、その半波長電圧が第1のマッハツェン
ダ形光変調器と等しく、その内部の2つの光導波路にお
ける光の位相差が(2N+1)π(Nは0または整数)で
ある第2のマッハツェンダ形光変調器と、第1のマッハ
ツェンダ形光変調器の一方の光導波路、及び第2のマッ
ハツェンダ形光変調器の一方の光導波路の双方に電圧を
印加する第1の電極と、第1のマッハツェンダ形光変調
器の他方の光導波路及び第2のマッハツェンダ形光変調
器の他方の光導波路の双方に電圧を印加する第2の電極
と、前記第1の電極に、第2の電極の電位に対し0ボル
トから前記第1、第2のマッハツェンダ形光変調器の半
波長電圧程度の間で変化する電圧を印加する手段とから
なることを特徴とする光制御素子。
2. A first optical waveguide, an optical multiplexing / demultiplexing circuit for branching the first optical waveguide into a second optical waveguide and a third optical waveguide, and connected to the second optical waveguide. A first Mach-Zehnder optical modulator in which the phase difference of light in the two optical waveguides is 2Nπ (N is 0 or an integer); and a half-wave voltage connected to the third optical waveguide, the half-wave voltage of which is the first Mach-Zehnder type. A second Mach-Zehnder optical modulator equal to the optical modulator and having a phase difference of (2N + 1) π (N is 0 or an integer) in two optical waveguides inside the first and second Mach-Zehnder optical modulators A first electrode for applying a voltage to both one optical waveguide of the first Mach-Zehnder optical modulator and the other optical waveguide of the first Mach-Zehnder optical modulator; The other optical waveguide of the Mach-Zehnder optical modulator A second electrode for applying a voltage to both the first and second Mach-Zehnder optical modulators, with a potential between 0 volts and a half-wavelength voltage of the first and second Mach-Zehnder optical modulators applied to the first electrode; And a means for applying a changing voltage.
【請求項3】第1の光導波路と、前記第1の光導波路を
第2、第3の光導波路に二分岐する光合分波回路と、前
記第2の光導波路に接続され、その内部の2つの光導波
路における光の位相差が2Nπ(Nは0または整数)であ
る第1のマッハツェンダ形光変調器と、前記第3の光導
波路に接続され、その半波長電圧が第1のマッハツェン
ダ形光変調器と等しく、その内部の2つの光導波路にお
ける光の位相差が(2N+1)π(Nは0または整数)で
ある第2のマッハツェンダ形光変調器と、第1のマッハ
ツェンダ形光変調器の一方の光導波路、及び第2のマッ
ハツェンダ形光変調器の一方の光導波路の双方に電圧を
印加する第1の電極と、第1のマッハツェンダ形光変調
器の他方の光導波路及び第2のマッハツェンダ形光変調
器の他方の光導波路の双方に電圧を印加する第2の電極
とからなる光制御素子の前記第1の電極に、第2の電極
の電位に対し0ボルトから前記第1、第2のマッハツェ
ンダ形光変調器の半波長電圧程度の間で変化する電圧を
印加することを特徴とする光制御方法。
3. A first optical waveguide, an optical multiplexing / demultiplexing circuit for branching the first optical waveguide into a second optical waveguide and a third optical waveguide, and a second optical waveguide connected to the second optical waveguide. A first Mach-Zehnder optical modulator in which the phase difference of light in the two optical waveguides is 2Nπ (N is 0 or an integer); and a half-wave voltage connected to the third optical waveguide, the half-wave voltage of which is the first Mach-Zehnder type. A second Mach-Zehnder optical modulator equal to the optical modulator and having a phase difference of (2N + 1) π (N is 0 or an integer) in two optical waveguides inside the first and second Mach-Zehnder optical modulators A first electrode for applying a voltage to both one optical waveguide of the first Mach-Zehnder optical modulator and the other optical waveguide of the first Mach-Zehnder optical modulator; The other optical waveguide of the Mach-Zehnder optical modulator The first electrode of the light control element comprising a second electrode for applying a voltage to both the first and second Mach-Zehnder optical modulators is driven from 0 volt with respect to the potential of the second electrode. A light control method characterized by applying a voltage that changes between about a voltage.
【請求項4】第1の光導波路と、前記第1の光導波路を
第2、第3の光導波路に二分岐する光合分波回路と、第
2、第3の光導波路の各々に接続され、共に等しい半波
長電圧をもつ第1、第2のマッハツェンダ形光変調器
と、第1のマッハツェンダ形光変調器の一方の光導波路
に電圧を印加する第1の電極と、第1のマッハツェンダ
形光変調器の他方の光導波路、及び第2のマッハツェン
ダ形光変調器の一方の光導波路の双方に電圧を印加する
第2の電極と、第2のマッハツェンダ形光変調器の他方
の光導波路に電圧を印加する第3の電極と、前記第1の
電極と前記第3の電極との間に前記半波長電圧を印加す
る手段と、前記第2の電極に前記第1の電極に印加され
る電圧または前記第3の電極に印加される電圧を印加す
る手段よりなる事を特徴とする光制御素子。
4. A first optical waveguide, an optical multiplexing / demultiplexing circuit that branches the first optical waveguide into a second optical waveguide and a third optical waveguide, and a second optical waveguide and a third optical waveguide. First and second Mach-Zehnder optical modulators having the same half-wavelength voltage, a first electrode for applying a voltage to one optical waveguide of the first Mach-Zehnder optical modulator, and a first Mach-Zehnder type A second electrode that applies a voltage to both the other optical waveguide of the optical modulator and one optical waveguide of the second Mach-Zehnder optical modulator, and a second electrode that applies a voltage to the other optical waveguide of the second Mach-Zehnder optical modulator A third electrode for applying a voltage, means for applying the half-wavelength voltage between the first electrode and the third electrode, and a second electrode applied to the first electrode A means for applying a voltage or a voltage applied to the third electrode. Light control element according to symptoms.
JP2307646A 1990-11-14 1990-11-14 Light control element and light control method Expired - Lifetime JP3057750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2307646A JP3057750B2 (en) 1990-11-14 1990-11-14 Light control element and light control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2307646A JP3057750B2 (en) 1990-11-14 1990-11-14 Light control element and light control method

Publications (2)

Publication Number Publication Date
JPH04178615A JPH04178615A (en) 1992-06-25
JP3057750B2 true JP3057750B2 (en) 2000-07-04

Family

ID=17971547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2307646A Expired - Lifetime JP3057750B2 (en) 1990-11-14 1990-11-14 Light control element and light control method

Country Status (1)

Country Link
JP (1) JP3057750B2 (en)

Also Published As

Publication number Publication date
JPH04178615A (en) 1992-06-25

Similar Documents

Publication Publication Date Title
JP4696264B2 (en) Optical FSK / SSB modulator with intensity balance function
US8149492B2 (en) Optical modulator
US5408544A (en) Optical modulator for producing a controllable chirp
US4070094A (en) Optical waveguide interferometer modulator-switch
JP2867995B2 (en) Semiconductor Mach-Zehnder modulator and manufacturing method thereof
US20060120655A1 (en) Optical modulator with pre-determined frequency chirp
US6501867B2 (en) Chirp compensated Mach-Zehnder electro-optic modulator
EP0950167A1 (en) Variable chirp optical modulator using single modulation source
CN114114531B (en) Silicon-based single-sideband modulator chip with high rejection ratio
US4842367A (en) Optoelectronic directional coupler for a bias-free control signal
CN108681111B (en) Lithium niobate electro-optical modulator
EP0153312A1 (en) Electro-optical Filter Device.
JP2658387B2 (en) Optical modulator, driving method thereof, and optical modulator driving device
US20030128415A1 (en) Mach-zehnder modulator with individually optimized couplers for optical splitting at the input and optical combining at the output
JP3057750B2 (en) Light control element and light control method
JP2823872B2 (en) Optical transmitter
JP2000187191A (en) Mach-zehnder type modulating device having extremely high extinction ratio
Haga et al. An integrated 1× 4 high-speed optical switch and its applications to a time demultiplexer
JPH0764031A (en) Optical modulator
WO2021075047A1 (en) 1×n optical switch
CN114089551A (en) Working point self-stabilizing type thin film lithium niobate Mach-Zehnder electro-optic modulator
JPH0593891A (en) Waveguide type optical modulator and its driving method
US4969701A (en) Integrated electro-optical modulator/commutator with pass-band response
JP4197316B2 (en) Light modulator
JPH02170142A (en) Waveguide type optical control device and driving method thereof