JPH09217200A - Anodic oxidation treating device for aluminum or aluminum alloy - Google Patents

Anodic oxidation treating device for aluminum or aluminum alloy

Info

Publication number
JPH09217200A
JPH09217200A JP32155496A JP32155496A JPH09217200A JP H09217200 A JPH09217200 A JP H09217200A JP 32155496 A JP32155496 A JP 32155496A JP 32155496 A JP32155496 A JP 32155496A JP H09217200 A JPH09217200 A JP H09217200A
Authority
JP
Japan
Prior art keywords
current
electrolytic
aluminum
aluminum alloy
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32155496A
Other languages
Japanese (ja)
Other versions
JP2837397B2 (en
Inventor
Hideo Senoue
秀夫 瀬ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO KOGYO KK
Original Assignee
TECHNO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO KOGYO KK filed Critical TECHNO KOGYO KK
Priority to JP8321554A priority Critical patent/JP2837397B2/en
Publication of JPH09217200A publication Critical patent/JPH09217200A/en
Application granted granted Critical
Publication of JP2837397B2 publication Critical patent/JP2837397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-speed anodic oxidation device for aluminum or aluminum alloy which does not produce the occurrence of burning. SOLUTION: This device has a function generator D which generates the change quantity of an electrolytic current with lapse of time as an electric signal of voltage or current, etc., to an electricity supplying circuit for connecting an anode 5 connected to a work 4 consisting of the aluminum or aluminum alloy and a cathode 3 existing in the liquid to a power source, a current detector C and an automatic current controller B which regulates the electrolytic current in such a manner as to equal the signals passing a current feedback circuit from the current detector. In such a case, the anode circuit is provided with a current distributing resistor to uniformly distribute the flow rates of the electrolyte so that the electrolyte is uniformly injected onto the surface of the work, which is the anode, from the slit discharge ports 7 of a rotary injection panel 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウムまた
はアルミニウム合金からなる被処理物表面に、80μm
以上の厚さの陽極酸化皮膜を高速に形成させ、電解処理
時間を大幅に短縮できるアルミニウまたはアルミニウム
合金の陽極酸化処理装置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, comprising:
The present invention relates to an aluminum or aluminum alloy anodic oxidation apparatus capable of forming an anodic oxide film having the above-mentioned thickness at a high speed and greatly reducing an electrolytic treatment time.

【0002】[0002]

【従来の技術】近年、アルミニウムまたはアルミニウム
合金からなる内燃機関のピストンや半導体装置などの陽
極酸化皮膜の厚さを、従来の20〜50μmから80μ
m以上にするように強く要求されるようになってきてい
る。硫酸、シュウ酸、クロム酸などを含有する酸性水性
電解液を用いて、アルミニウムまたはアルミニウム合金
からなる被処理物の表面陽極酸化処理する装置は様々な
ものが知られているが、ディーゼルエンジンの高出力化
に伴なうピストン頂部の熱亀裂の防止やNOx 対策とし
て、厚膜化の必要性が確認されているもののまだ達成さ
れていない。
2. Description of the Related Art In recent years, the thickness of anodic oxide coatings made of aluminum or aluminum alloys on internal combustion engine pistons and semiconductor devices has been reduced from the conventional 20 to 50 μm to 80 μm.
m or more. Various devices are known for anodizing the surface of an object to be treated made of aluminum or an aluminum alloy using an acidic aqueous electrolyte containing sulfuric acid, oxalic acid, chromic acid, and the like. The need to increase the film thickness has been confirmed as a measure to prevent thermal cracks at the top of the piston due to the output and to prevent NOx, but this has not yet been achieved.

【0003】被処理物の材質にもよるが電解陽極酸化処
理には非常に長い時間、例えば80分以上かからなけれ
ば厚膜化は得られなかった。特に、陽極酸化処理に要す
る時間は、例えば、内燃機関中のピストンの材料として
適したAC8Aクラスの耐熱シリコン含有アルミニウム
合金製被処理物の処理ではさらに長いため、陽極酸化処
理過程での生産効率の悪さが指摘されている。
[0003] Depending on the material of the object to be processed, the electrolytic anodic oxidation treatment does not take a very long time, for example, 80 minutes or more, to obtain a thick film. In particular, since the time required for the anodizing treatment is longer in the case of processing an AC8A class heat-resistant silicon-containing aluminum alloy workpiece suitable as a material for a piston in an internal combustion engine, for example, the production efficiency in the anodizing process is reduced. Evil is pointed out.

【0004】生産効率を改善しかつ陽極酸化処理の時間
を短縮するため、電解陽極酸化処理中の電流密度を、例
えば10〜30A/dm2 またはそれ以上まで増加させ
ることが良い。この方法は、生産ラインの自動化はもち
ろん、陽極酸化処理表面皮膜の特性および製造設備の省
スペース化という点においての利点も期待できる。
[0004] In order to improve production efficiency and reduce the time of anodizing, the current density during the electrolytic anodizing may be increased, for example, to 10 to 30 A / dm 2 or more. This method can be expected to have advantages not only in automation of the production line but also in characteristics of the anodized surface coating and space saving of manufacturing equipment.

【0005】しかし、陽極酸化処理が10〜30A/d
2 またはそれ以上の密度で行われる場合、ジュール熱
や最終的にバーニング現象として表れる酸化熱の発生に
より処理中の表面に局部的電流集中が起こり、その結
果、外観が損なわれ、許容範囲の表面陽極酸化処理製品
の生産量が大幅に減少する。
However, when the anodic oxidation treatment is performed at 10 to 30 A / d
When performed at densities of m 2 or more, local current concentration occurs on the surface being processed due to the generation of Joule heat and oxidative heat which eventually appears as a burning phenomenon, resulting in impaired appearance and unacceptable The production volume of surface anodized products is greatly reduced.

【0006】アルミニウム被処理物の表面陽極酸化処理
における上記課題を解決するため、武蔵工業大学・星野
教授は、電解電流の制御手段によってバーニング現象を
防止するというユニークな理論を確立し、特公昭60−
23196号公報において前記処理の改良方法を提案し
た。この理論によれば、電解電流とバーニング現象が起
こる前記陽極酸化処理表面皮膜の最小厚さとの間には次
の等式(1) が成り立つ。 ab=B/√i・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1) (上記式中、abは陽極表面皮膜の厚さ、iは電解電流
密度、Bは処理中の材料、電解浴組成および電解条件で
定まる定数である。)。以下の式(2) および(3): もし 0<t≦t0 ,i=i0 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2) かつ もし t≧t0 ,i=i0 /〔1+β (t−t0)〕2/3 ・・・・・・(3) (上記式中、β=3Ki0 3/2/SB、tは電解時間、t
0 は初期電解時間、i0は初期電解電流密度、iは時間
tにおける電解電流密度、Kは陽極処理表面皮膜の生成
定数、Bは焼け定数、Sは安全係数である。)が成り立
つとき、高速陽極酸化処理中でさえバーニング現象は避
けられる。前記特許公報は、電解電流の変化を、電圧ま
たは電流の電気信号に変換する関数発生器、電流検出装
置および電流検出装置からの信号を等しくなるように制
御する自動電流制御装置から成る、この理論に基づく陽
極酸化処理の実施用装置を開示している。
In order to solve the above-mentioned problems in the surface anodic oxidation treatment of an aluminum workpiece, Professor Hoshino of Musashi Institute of Technology has established a unique theory of preventing the burning phenomenon by means of controlling the electrolytic current. −
No. 23196 proposed an improved method of the above processing. According to this theory, the following equation (1) holds between the electrolytic current and the minimum thickness of the anodized surface film where the burning phenomenon occurs. ab = B / √i ... (1) (where, ab is the thickness of the anode surface coating, i is the electrolytic current density, and B is a constant determined by the material being treated, the composition of the electrolytic bath and the electrolytic conditions.) Equations (2) and (3) below: If 0 <t ≦ t 0 , i = i 0 (2) And if t ≧ t 0 , i = i 0 / [1 + β (t−t 0 )] 2/3 (3) (where β = 3Ki 0 3/2 / SB, t is the electrolysis time, t
0 is the initial electrolysis time, i 0 is the initial electrolysis current density, i is the electrolysis current density at time t, K is the generation constant of the anodized surface film, B is the burning constant, and S is the safety factor. When) holds, the burning phenomenon is avoided even during high-speed anodizing. This patent publication discloses a function generator that converts a change in electrolytic current into an electric signal of voltage or current, a current detection device, and an automatic current control device that controls the signals from the current detection device to be equal. Discloses an apparatus for performing an anodizing treatment based on JIS.

【0007】この装置で、上記式(2)および(3)を
満足させるようにバーニング曲線に沿って電解電流を漸
次減少させて電解陽極酸化処理をすれば、バーニングに
よる問題を回避しながら、短時間で比較的大きな厚さの
陽極酸化処理表面皮膜が得られる。例えば、所望の陽極
酸化処理表面皮膜の厚さが90μmの時、電解時の浴電
圧は100Vを越える高電圧となり、陽極酸化処理表面
皮膜は時々HMV200以下の低硬度の不均一層が発生
することが判明している。この都合の悪い現象の原因
は、おそらく、この表面陽極酸化処理が電解電流制御下
で行われるため、電解中の浴電圧が非常に高くなるため
で、これが陽極酸化処理表面皮膜の不均一組織形成の原
因になると推定されている。
In this apparatus, if the electrolytic anodic oxidation treatment is performed by gradually decreasing the electrolytic current along the burning curve so as to satisfy the above equations (2) and (3), the problem caused by burning can be avoided. An anodized surface film having a relatively large thickness can be obtained in a short time. For example, when the thickness of the desired anodized surface film is 90 μm, the bath voltage during electrolysis becomes a high voltage exceeding 100 V, and the anodized surface film sometimes generates a low hardness non-uniform layer having a HMV of 200 or less. Is known. The cause of this inconvenient phenomenon is probably that the surface anodic oxidation treatment is performed under the control of the electrolytic current, so that the bath voltage during the electrolysis becomes very high, which results in the formation of a non-uniform structure of the anodized surface film. It is presumed to cause this.

【0008】そこで、不均一に陽極酸化処理された表面
皮膜組の形成を避ける方法として、電解初期には、浴電
圧が一定の限界値に達するまで電流密度が一定であるよ
うに電解電流が制御され、また、一旦浴電圧が一定の限
界値に達した後は、浴電圧をその限界値で維持するよう
に、電解電流が継続的に減少する陽極酸化処理方法が提
案された(特開平2−325480号公報参照)。この
方法は、均一な陽極酸化処理皮膜は、定電圧制御方法に
よって電解を行うことにより得ることができるにもかか
わらず(但し、この方法においては、浴電圧の増加は予
め設定した限界値を超えないように抑制される)、電解
を完全に行なうために要する電解時間は、電解電流がバ
ーニング曲線に沿って継続的に減少する場合に理論的に
期待できる最短電解時間よりも長くなるという不利があ
る。
Therefore, as a method of avoiding the formation of a non-uniformly anodized surface film set, in the early stage of electrolysis, the electrolytic current is controlled so that the current density is constant until the bath voltage reaches a certain limit value. Further, once the bath voltage reaches a certain limit value, an anodizing treatment method in which the electrolytic current is continuously reduced so as to maintain the bath voltage at the limit value has been proposed (Japanese Patent Application Laid-Open No. HEI 2 (1990)). -325480). In this method, a uniform anodized film can be obtained by performing electrolysis according to a constant voltage control method (however, in this method, an increase in bath voltage exceeds a preset limit value). The disadvantage is that the electrolysis time required to complete electrolysis is longer than the theoretically expected shortest electrolysis time when the electrolysis current continuously decreases along the burning curve. is there.

【0009】高電流密度で陽極酸化処理を行なう場合に
は、(イ)電解中に発生するジュール熱や酸化熱を対象
面から均一に素早く除去しないと、電解が継続できなく
なる、(ロ)電解液は複数の管状固定ノズルから処理面
に噴射されるため、電解液と処理面との接触状態は全表
面を通じて均一にはなることができず、(ハ)上述した
ように、表面と噴射された電解液の接触が不均一なた
め、形成された陽極酸化処理皮膜は、光沢はあるが、表
面と電解液の間で接触状態が良好な表面領域上では厚み
は薄く、陽極酸化処理表面皮膜の熱膨張による熱の除去
が不十分なため、表面と噴射された溶液の間の直接接触
が得られない表面領域では光沢がなく、不均一であり、
皮膜の物理的強度が減少する。
When anodizing treatment is performed at a high current density, (a) the electrolysis cannot be continued unless the Joule heat or oxidation heat generated during the electrolysis is uniformly and quickly removed from the target surface. Since the liquid is sprayed onto the processing surface from the plurality of tubular fixed nozzles, the contact state between the electrolytic solution and the processing surface cannot be uniform over the entire surface, and (c) as described above, the liquid is sprayed on the surface. The anodized film formed is glossy due to uneven contact of the electrolytic solution, but the thickness is small on the surface area where the contact between the surface and the electrolytic solution is good. Insufficient removal of heat due to the thermal expansion of the surface area, where direct contact between the surface and the jetted solution is not obtained, is dull and uneven,
The physical strength of the coating is reduced.

【0010】[0010]

【発明が解決しようとする課題】本発明の課題は、上記
の点に鑑み、表面陽極酸化処理アルミニウム品を工業的
生産に適するように、高電解電流密度でアルムニウムま
たはアルミニウム合金製被処理物の高速表面陽極酸化処
理を行なう装置を提供することにある。
SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to provide an aluminum article having a high electrolytic current density at a high electrolytic current density so as to be suitable for industrial production. An object of the present invention is to provide an apparatus for performing high-speed surface anodic oxidation.

【0011】[0011]

【課題を解決するための手段】前記課題は、本発明の特
許請求の範囲に記載の装置によって解決される。すなわ
ち、本発明は、アルミニウムまたはアルミニウム合金か
らなる被処理物に接続した陽極と電解槽の電解液中にあ
る陰極とを電源に結ぶ電気供給回路に、電解電流の時間
的変化量を電圧または電流等の電気信号として発生させ
る関数発生器、電流検出装置および電流検出装置から電
流帰還回路を通る信号が等しくなるように電解電流を調
整する自動電流制御装置を備えた陽極酸化処理装置にお
いて、陽極回路に電流分配抵抗を設け、電解液を均一に
流量分配して回転噴射盤のスリット吐出口から陽極の被
処理物表面に均一に噴射させる構成とするアルミニウム
またはアルミニウム合金の陽極酸化処理装置を要旨とす
る。
The object is achieved by a device according to the present invention. That is, the present invention provides an electric supply circuit that connects an anode connected to an object to be processed made of aluminum or an aluminum alloy and a cathode in an electrolytic solution of an electrolytic cell to a power supply, by applying a time-dependent change amount of an electrolytic current to a voltage or a current. In an anodizing apparatus provided with a function generator for generating an electric signal such as an electric current, a current detection device, and an automatic current control device for adjusting an electrolytic current so that a signal passing from the current detection device to a current feedback circuit becomes equal. An aluminum or aluminum alloy anodic oxidation treatment device that is provided with a current distribution resistor to uniformly distribute the flow rate of the electrolytic solution and uniformly spray the electrolyte from the slit discharge port of the rotary spraying plate to the surface of the anode workpiece. I do.

【0012】[0012]

【発明の実施の形態】本発明の装置では、電解中に発生
した熱の除去効率と除去均一性を高めるため、被処理物
の表面に複数の回転噴射盤から電解液が噴射され、それ
ぞれにおいて電解電流が均等に分配され電解液の流れが
分割される。これらの特性により、本発明は、被処理物
が内燃機関のピストンまたは従来の方法ではうまく電解
陽極酸化処理できないアルミニウム合金のダイカストで
も、高電流密度でアルミニウム被処理物の高速陽極酸化
処理が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the apparatus of the present invention, in order to increase the efficiency and uniformity of removal of heat generated during electrolysis, an electrolytic solution is sprayed from a plurality of rotary spraying plates onto the surface of an object to be processed. The electrolytic current is evenly distributed and the flow of the electrolytic solution is divided. Due to these characteristics, the present invention makes it possible to perform high-speed anodizing of an aluminum workpiece at a high current density, even if the workpiece is a piston of an internal combustion engine or an aluminum alloy die-cast that cannot be electrolytically anodized by conventional methods. Become.

【0013】以下、図面に基づいて本発明の装置を詳細
に説明する。図1は、本発明の陽極酸化処理装置の概略
ブロック図であり、図2−1Aは管状ノズル吐出口を有
する従来の固定噴射盤、図2−1Bはこの装置により陽
極酸化処理された後のピストンヘッドのそれぞれ斜視図
である。図2−2Aは、スリット吐出口を有する本発明
による回転式噴射盤、図2−2Bは本発明の装置により
陽極酸化処理した後のピストンヘッドのそれぞれ斜視図
であり、図3は、本発明の電解槽および噴射ノズルの回
転のメカニズムを示す概略縦断面図である。
Hereinafter, the device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic block diagram of an anodizing apparatus of the present invention. FIG. 2-1A shows a conventional fixed injection plate having a tubular nozzle discharge port, and FIG. It is a perspective view of each piston head. FIG. 2-2A is a perspective view of a rotary spray plate having a slit discharge port according to the present invention, and FIG. 2-2B is a perspective view of a piston head after anodizing by the apparatus of the present invention, and FIG. FIG. 4 is a schematic longitudinal sectional view showing a mechanism of rotation of the electrolytic cell and the injection nozzle.

【0014】図1に示すように、陽極5と陰極3とを直
流電源Aに接続する電気供給回路には、自動電流制御装
置B、電流帰還回路を介して接続された陰極電流検出装
置Cが設けられ、該陰極電流検出装置Cで発生した信号
が自動電流制御装置Bに入力される。自動電流制御装置
Bからの電流は電流分配器で分割され、抵抗器10、検
出装置11および回路遮断器12を通って陽極5へ供給
される。関数発生器Dは、電解電流密度の予め設定され
た条件に応じて変化する信号を発生させ、この信号は制
御回路を通って自動電流制御装置へ導かれ、陰極電流検
出装置Cからの入力信号と関数発生器Dからの入力信号
とが一致するように自動電流制御装置Bにより電力供給
が調整される。
As shown in FIG. 1, an electric supply circuit for connecting the anode 5 and the cathode 3 to a DC power supply A includes an automatic current control device B and a cathode current detection device C connected via a current feedback circuit. The signal generated by the cathode current detection device C is provided to the automatic current control device B. The current from the automatic current controller B is divided by the current distributor and supplied to the anode 5 through the resistor 10, the detector 11, and the circuit breaker 12. The function generator D generates a signal that changes according to a preset condition of the electrolytic current density, and this signal is guided to an automatic current controller through a control circuit, and an input signal from the cathode current detector C is input. The power supply is adjusted by the automatic current control device B such that the input signal from the function generator D matches the input signal from the function generator D.

【0015】電解槽1は電解液2と陰極3を含み、陽極
酸化処理用被処理物4は陽極5に接続され、マスクソケ
ット6により支持されるように電解液2中に保持され
る。スリット吐出口7を有する噴射盤8は、電解槽1の
底部に設置される。噴射盤の吐出口7は、例えば放射状
に、またはスリット吐出口の数が4のときは図2−2A
に示されるように十文字状に配置された複数のスリット
吐出口を有し、そこから電解液が被処理物の表面にジェ
ット噴射のように噴射される。スリット吐出口の配置
は、図に示すように放射状配置に限定されないが、ジェ
ット噴射の分配の均等性が保証される限り、他の配置で
もよい。放射状に配置されたスリット吐出口の数は3〜
6が望ましく、特には4が望ましい。
The electrolytic bath 1 contains an electrolytic solution 2 and a cathode 3, and an object 4 to be anodized is connected to an anode 5 and held in the electrolytic solution 2 so as to be supported by a mask socket 6. An injection plate 8 having a slit discharge port 7 is installed at the bottom of the electrolytic cell 1. The discharge port 7 of the ejection plate is, for example, radially or when the number of slit discharge ports is four, as shown in FIG.
Has a plurality of slit discharge ports arranged in a cross shape as shown in FIG. 1, from which an electrolytic solution is jetted onto the surface of the object to be processed like a jet jet. The arrangement of the slit discharge ports is not limited to the radial arrangement as shown in the figure, but may be another arrangement as long as uniformity of distribution of jet injection is guaranteed. The number of slit outlets arranged radially is 3 to
6 is desirable, and especially 4 is desirable.

【0016】電解液2は、貯槽F、ポンプP、分配弁1
3、流量計、電解槽1および熱交換器(図示せず)を接
続する回路を通って循環する。この電解液は噴射盤8を
通って電解槽1へ導かれる。
The electrolyte 2 is stored in a storage tank F, a pump P, a distribution valve 1
3. Circulate through the circuit connecting the flow meter, electrolytic cell 1 and heat exchanger (not shown). This electrolytic solution is led to the electrolytic cell 1 through the spray plate 8.

【0017】上記装置で最も重要な特徴は、噴射盤8が
ローター9により垂直軸の回りを回転できることであ
る。図2−1Aに示す固定噴射盤の実験では、噴射盤は
複数の管状吐出口7aを有し、回転しないで静止してい
るため、電解液のジェット噴射は、ピストンヘッドの全
表面に均一に噴射されず、ジェット噴射の強さはノズル
吐出口に面する箇所が強いため、図2−1Bに示すよう
に、噴射が弱い部分では、処理皮膜は不均一となり、時
として膨張、硬度の低下や皮膜の光沢減少の原因にな
る。これに対し、本発明における電解液は、図2−2A
に示すように、回転噴射盤の複数のスリット吐出口から
噴射されるため、図2−2Bに斜線で示すように、被処
理面全体に陽極酸化皮膜が均一に形成された。
The most important feature of the above device is that the spray plate 8 can be rotated by a rotor 9 about a vertical axis. In the experiment of the fixed injection plate shown in FIG. 2-1A, since the injection plate has a plurality of tubular discharge ports 7a and is stationary without rotating, the jet injection of the electrolyte is uniformly applied to the entire surface of the piston head. Since the jet is not jetted and the intensity of the jet jet is strong at the portion facing the nozzle outlet, as shown in FIG. 2-1B, in the portion where the jet is weak, the treated film becomes non-uniform, and sometimes expands and the hardness decreases. And the gloss of the film is reduced. On the other hand, the electrolytic solution in the present invention is shown in FIG.
As shown in FIG. 2, since the liquid is ejected from a plurality of slit outlets of the rotary spraying plate, as shown by oblique lines in FIG. 2-2B, an anodic oxide film was uniformly formed on the entire surface to be treated.

【0018】前記のように噴射盤のスリット吐出口が円
形かまたは突出管状である場合は、全表面に均一なジェ
ット噴射ができないため、本発明の吐出口の場合、それ
ぞれ細長いスリット状をしていることが重要である。細
長いスリット吐出口を備えた回転噴射盤は、被処理表面
から熱を十分除去するため、回転速度を上げればよい
が、回転速度が高すぎると回転の中央部で噴射の強さが
増し、遠心効果によりジェット噴射の渦が生ずるため、
あまり高すぎてはならない。この点で回転速度は0.5
〜10回転/秒、好ましくは0.5〜5回転/秒にすべ
きである。ジェット噴射分配の均一性を確実にするた
め、図2−2Aに示すように、噴射盤8が十字形状に配
置された4つのスリット吐出口7を備えているときは、
0.5〜3回転/秒が望ましい。
When the slit discharge port of the injection plate is circular or protruding tubular as described above, uniform jet injection cannot be performed on the entire surface. Therefore, in the case of the discharge port of the present invention, each of the discharge ports has an elongated slit shape. Is important. A rotary spray plate with a long slit discharge port can increase the rotation speed to sufficiently remove heat from the surface to be processed.However, if the rotation speed is too high, the strength of the spray increases at the center of rotation, and centrifugation occurs. Because the effect causes the vortex of jet injection,
Should not be too high. At this point the rotation speed is 0.5
It should be between 10 and 10 revolutions / sec, preferably between 0.5 and 5 revolutions / sec. In order to ensure the uniformity of jet injection distribution, as shown in FIG. 2-2A, when the injection plate 8 includes four slit discharge ports 7 arranged in a cross shape,
0.5-3 rotations / second is desirable.

【0019】図3は、図1に示すものとは多少異なる実
施例で、電解槽1を含む本発明の陽極酸化処理装置の主
要部の説明図である。この実施例では、図1の電解液循
環回路の一部を形成する貯槽Fの代わりに蓋1Bを備え
たジャケット槽1Aが設けられているが、電解液の流路
を示す矢印から分かるように、装置の作動原理は同じで
ある。ピストンヘッドのような被処理物とマスクソケッ
ト6との間隙は、陽極酸化処理される本体4の表面Hを
決めるOリングパッキン16で液体漏れのないように厳
重に封止されている。噴射装置の吐出口7は、4枚のタ
ービン刃15を有するローター9により回転し、また液
体の流れのエネルギーにより回転する。
FIG. 3 is an embodiment slightly different from that shown in FIG. 1 and is an explanatory view of a main part of the anodizing apparatus of the present invention including the electrolytic cell 1. In this embodiment, a jacket tank 1A provided with a lid 1B is provided instead of the storage tank F forming a part of the electrolyte circulation circuit of FIG. 1, but as can be seen from the arrow indicating the flow path of the electrolyte. The operation principle of the device is the same. The gap between the object to be treated such as a piston head and the mask socket 6 is tightly sealed by an O-ring packing 16 that determines the surface H of the main body 4 to be anodized so as not to leak liquid. The discharge port 7 of the injection device is rotated by a rotor 9 having four turbine blades 15 and is rotated by energy of a liquid flow.

【0020】図1から判るように、熱交換器とポンプP
を通って貯槽Fから来る電解液が分配弁13により複数
の部分流に分割されるため、図3に示される複数の陽極
酸化処理装置は、制御された全く同一の電流供給システ
ムに並列に接続され同時に操作される。一方、自動電流
制御装置Bから供給される全電解電流は、電流分配制御
装置Eにより等しく分割され、分割された電流は、検知
装置11中の電流をモニターして各陽極5に供給され
る。陽極5のうちの一つへ流れる電流中に、検知装置に
より被処理物上のバーニングまたはその他のトラブルに
よる異常が検知されたときは、電流分配制御装置Eに接
続された回路遮断器(ブレーカー)12により回路が開
かれる。部分回路の“開”に対応して発生した信号は、
特別な被処理体4に供給される電流について電流制限制
御の効果を上げるように、電流分配制御装置Eから電流
制御装置Bに入力される。
As can be seen from FIG. 1, the heat exchanger and the pump P
The plurality of anodizing devices shown in FIG. 3 are connected in parallel to one and the same controlled current supply system since the electrolyte coming from the reservoir F through the reservoir is divided into a plurality of partial flows by the distribution valve 13 Are operated at the same time. On the other hand, the total electrolysis current supplied from the automatic current control device B is equally divided by the current distribution control device E, and the divided current is supplied to each anode 5 by monitoring the current in the detection device 11. A circuit breaker (breaker) connected to the current distribution control device E when an abnormality due to burning or other trouble on the workpiece is detected by the detection device during the current flowing to one of the anodes 5. 12 opens the circuit. The signal generated in response to the "open" of the partial circuit is
The current supplied to the special object 4 is input from the current distribution control device E to the current control device B so as to enhance the effect of the current limit control.

【0021】[0021]

【実施例】以下、本発明を一実施例を用いて説明する。
12個の電解槽1は、図1による単一の直流電源Aに並
列に接続される。18〜23%のシリコンを含有するア
ルミニウム合金AC8A製の自動車エンジン用のピスト
ンブロック4は、電解槽1の各々のマスクソケット6に
挿入され、12個のピストンブロック4のヘッド表面は
同時に陽極酸化処理された。図2の2Aに示されるよう
に、回転式噴射ノズルの噴射盤8には放射状に十文字配
置の4つの細長いスリット吐出口7が設けられている。
電解液の優れた撹拌効果及び処理中の表面の十分且つ均
一な冷却を達成し、その結果、1〜10分間の陽極酸化
処理により75〜100μmの厚さの陽極酸化処理表面
皮膜が得られるように、電解陽極酸化処理は、毎秒1回
転の速度で噴射ノズルの回転下で行われた。陽極処理表
面は0.78dm2 であった。陽極酸化処理表面皮膜の
生成定数K及び式(1)〜(3)のバーニング定数B
は、それぞれ0.53及び450であった。以下の表1
は、各実験における、A/dm2 中の電流密度、安全係
数、陽極処理時間T(秒)および定電流時間tのデータ
を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment.
The twelve electrolyzers 1 are connected in parallel to a single DC power supply A according to FIG. A piston block 4 for an automobile engine made of aluminum alloy AC8A containing 18 to 23% of silicon is inserted into each mask socket 6 of the electrolytic cell 1, and the head surfaces of the 12 piston blocks 4 are simultaneously anodized. Was done. As shown in FIG. 2A, the injection plate 8 of the rotary injection nozzle is provided with four elongated slit discharge ports 7 arranged radially in a cross shape.
An excellent stirring effect of the electrolytic solution and a sufficient and uniform cooling of the surface during the treatment are achieved, so that an anodized surface film of 75 to 100 μm thick can be obtained by anodizing for 1 to 10 minutes. The electrolytic anodic oxidation treatment was performed at a speed of one revolution per second while rotating the injection nozzle. The anodized surface was 0.78 dm 2 . Generation constant K of anodized surface film and burning constant B in equations (1) to (3)
Was 0.53 and 450, respectively. Table 1 below
Shows data of current density in A / dm 2 , safety factor, anodizing time T (second) and constant current time t in each experiment.

【0022】[0022]

【表1】 [Table 1]

【0023】それに反し、図2−1Aに示すように、ピ
ストンブロックの陽極酸化処理が電解液用静止噴射ノズ
ルを使用して行われた場合、陽極酸化処理表面の光沢が
均一でないことが知られ、また、電流密度がおよそ10
A/dm2 に達するまでバーニングが確認されなかった
にも係わらず、陽極酸化皮膜厚さが表1に示される数値
に達するまでは顕著なバーニング現象は起きなかった。
その結果、12個のピストンブロックの全てが表面の光
沢不足のため、製品検査に合格することはできなかっ
た。
On the other hand, as shown in FIG. 2A, when the anodizing treatment of the piston block is performed using the stationary injection nozzle for the electrolytic solution, it is known that the gloss of the anodized surface is not uniform. And the current density is about 10
Although burning was not confirmed until A / dm 2 was reached, no remarkable burning phenomenon occurred until the thickness of the anodized film reached the value shown in Table 1.
As a result, all of the twelve piston blocks could not pass the product inspection due to insufficient surface gloss.

【0024】[0024]

【発明の効果】本発明では、高電流密度に伴うバーニン
グ現象が防止でき、陽極酸化皮膜の厚膜形成時間が従来
の1/10に短縮でき、皮膜特性も顕著に改善される。
したがって、自動産業、半導体装置産業へより安く、
より品質の良い製品を供給できる、 省資源、環境問
題に貢献する。とくに自動車用ピストンでは、熱亀裂防
止のため、ピストン頂部のみ陽極酸化皮膜形成が要求さ
れるため、頂部以外を1個づつマスキングしていたが、
本発明の装置では専用のマスキングを差し込むだけで、
これを反復利用できるので、マスキング工数と使い捨て
マスキング材の節約になる。合理的設備ラインが可能
になる。
According to the present invention, the burning phenomenon associated with a high current density can be prevented, the time required for forming a thick anodic oxide film can be reduced to 1/10 of that of the prior art, and the film characteristics can be significantly improved.
Therefore, it is cheaper for the automation industry and semiconductor device industry,
Contribute to resource conservation and environmental issues by providing better quality products. In particular, in the case of automotive pistons, to prevent thermal cracking, it is necessary to form an anodic oxide film only on the top of the piston.
In the device of the present invention, just insert a special masking,
This can be used repeatedly, which saves masking man-hours and disposable masking material. A rational equipment line becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の陽極酸化処理装置の概略ブロック図で
ある。
FIG. 1 is a schematic block diagram of an anodizing apparatus according to the present invention.

【図2】図2−1Aおよび図2−1Bは、管状ノズル吐
出口を有する従来の静止噴射噴射盤および陽極酸化処理
後のピストンヘッドのそれぞれ斜視図である。図2−2
Aおよび図2−2Bは、スリット吐出口を有する本発明
による回転式噴射盤および本発明装置により陽極酸化処
理後のピストンヘッドのそれぞれ斜視図である。
FIGS. 2-1A and 2-1B are perspective views of a conventional static injection spray plate having a tubular nozzle discharge port and a piston head after anodizing treatment, respectively. Fig. 2-2
FIGS. 2A and 2B are perspective views of a rotary spray plate having slit discharge ports according to the present invention and a piston head after anodizing treatment by the device of the present invention.

【図3】本発明の電解槽および噴射ノズルの回転メカニ
ズムを示す概略縦断面図である。
FIG. 3 is a schematic vertical sectional view showing a rotating mechanism of the electrolytic cell and the injection nozzle of the present invention.

【符号の説明】[Explanation of symbols]

1:電解槽 A:電源 1B:蓋 B:電流制
御装置 1A:ジャケット C:電流検
出装置 2:電解液 D:関数発生
器 3:陰極 E:電流分配
制御装置 4:被処理物 F:貯槽 5:陽極 P:ポンプ 6:マスクソケット 7:吐出口 8:噴射盤 9:ローター 10:抵抗器 11:検知装置 12:回路遮断器 13:分配弁 15:タービン刃 16:Oリングパッキン
1: Electrolyzer A: Power supply 1B: Lid B: Current controller 1A: Jacket C: Current detector 2: Electrolyte D: Function generator 3: Cathode E: Current distribution controller 4: Workpiece F: Storage tank 5 : Anode P: Pump 6: Mask socket 7: Discharge port 8: Injection board 9: Rotor 10: Resistor 11: Detector 12: Circuit breaker 13: Distribution valve 15: Turbine blade 16: O-ring packing

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムまたはアルミニウム合金か
らなる被処理物に接続した陽極と電解槽の電解液中にあ
る陰極とを電源に結ぶ電気供給回路に、電解電流の時間
的変化量を電圧または電流等の電気信号として発生させ
る関数発生器、電流検出装置および電流検出装置から電
流帰還回路を通る信号が等しくなるように電解電流を調
整する自動電流制御装置を備えた陽極酸化処理装置にお
いて、陽極回路に電流分配抵抗を設け、電解液を均一に
流量分配して回転噴射盤のスリット吐出口から陽極の被
処理物表面に均一に噴射させる構成としたことを特徴と
するアルミニウムまたはアルミニウム合金の陽極酸化処
理装置。
1. An electric supply circuit for connecting an anode connected to an object to be processed made of aluminum or an aluminum alloy and a cathode in an electrolytic solution of an electrolytic cell to a power supply, the time variation of the electrolytic current being measured by a voltage or a current. A function generator that generates as an electric signal, an anodizing treatment device equipped with an automatic current control device that adjusts an electrolytic current so that signals passing through a current feedback circuit from the current detection device and the current detection device are equalized. Anodizing treatment of aluminum or aluminum alloy characterized by providing a current distribution resistor, uniformly distributing the flow rate of the electrolyte, and uniformly spraying the electrolyte from the slit discharge port of the rotary spraying plate to the surface of the anode workpiece. apparatus.
【請求項2】 回転噴射盤のスリット吐出口が十字状に
配置されていること特徴とする請求項1に記載の装置。
2. The apparatus according to claim 1, wherein the slit discharge ports of the rotary injection plate are arranged in a cross shape.
【請求項3】 回転噴射盤のスリット吐出口3〜6個が
放射状に配置されていることを特徴とする請求項1に記
載の装置。
3. The apparatus according to claim 1, wherein three to six slit discharge ports of the rotary injection plate are arranged radially.
【請求項4】 回転噴射盤の回転数が毎秒0.5〜10
回転であることを特徴とする請求項1に記載の装置。
4. The rotation speed of the rotary injection plate is 0.5 to 10 per second.
The device of claim 1, wherein the device is a rotation.
【請求項5】 自動電流制御装置からの電流を、並列に
接続された複数の電解槽に供給される部分電流に均等に
分割する電流分配器を備えていることを特徴とする請求
項1に記載の装置。
5. The apparatus according to claim 1, further comprising a current distributor for equally dividing a current from the automatic current controller into partial currents supplied to a plurality of electrolytic cells connected in parallel. The described device.
【請求項6】 内燃機関のピストンを被処理物とし、こ
れに専用マスクを差し込んだときのマスキングしない頂
部が、被処理面であることを特徴とする請求項1に記載
の装置。
6. The apparatus according to claim 1, wherein a piston of the internal combustion engine is an object to be processed, and an unmasked top when a dedicated mask is inserted into the piston is a surface to be processed.
JP8321554A 1995-12-04 1996-12-02 Anodizing equipment for aluminum or aluminum alloy Expired - Fee Related JP2837397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8321554A JP2837397B2 (en) 1995-12-04 1996-12-02 Anodizing equipment for aluminum or aluminum alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-315198 1995-12-04
JP31519895 1995-12-04
JP8321554A JP2837397B2 (en) 1995-12-04 1996-12-02 Anodizing equipment for aluminum or aluminum alloy

Publications (2)

Publication Number Publication Date
JPH09217200A true JPH09217200A (en) 1997-08-19
JP2837397B2 JP2837397B2 (en) 1998-12-16

Family

ID=26568224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8321554A Expired - Fee Related JP2837397B2 (en) 1995-12-04 1996-12-02 Anodizing equipment for aluminum or aluminum alloy

Country Status (1)

Country Link
JP (1) JP2837397B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315396A (en) * 1998-03-23 1999-11-16 Pioneer Metal Finishing Method for subjecting object to anodic oxidation treatment and device therefor
US6814851B2 (en) 2001-11-05 2004-11-09 Unisia Jecs Corporation Method and apparatus for an anodic treatment
US6821408B2 (en) 2001-01-15 2004-11-23 Unisia Jecs Corporation Method and apparatus for an anodic treatment
KR100830210B1 (en) * 2006-11-10 2008-05-19 한국에너지기술연구원 A devise for forming partial anodized film
KR100851204B1 (en) * 2006-11-09 2008-08-07 금오공과대학교 산학협력단 Anodic Oxidation Apparatus
JP2010084235A (en) * 2010-01-18 2010-04-15 Ebara Corp Plating apparatus
WO2011040679A1 (en) * 2009-10-01 2011-04-07 한국전기연구원 High field anodizing apparatus
CN102459838A (en) * 2009-04-15 2012-05-16 丰田自动车株式会社 Engine combustion chamber structure and method for producing the same
CN102828215A (en) * 2012-09-13 2012-12-19 上海瑞尔实业有限公司 Anodizing method for changing flow direction of electrolyte
JP2013535579A (en) * 2010-08-06 2013-09-12 シャーメン ユニバーシティー Surface structure control and manufacturing method of metal nano catalyst
KR101349354B1 (en) * 2012-03-07 2014-01-16 한국전기연구원 anodic oxidation system using parallel operation process
US8691403B2 (en) 2008-12-26 2014-04-08 Denso Corporation Method for anodizing aluminum and anodized aluminum
JP2017061736A (en) * 2015-09-25 2017-03-30 アイシン軽金属株式会社 Electrolytic device for partial anode oxidation treatment and treatment method using the same
CN107313095A (en) * 2017-08-30 2017-11-03 重庆协成汽车零部件有限公司 Anodic oxidation device and piston anodic oxidation processing technology
CN113481561A (en) * 2021-08-02 2021-10-08 浙江米皇新材股份有限公司 Aluminum profile oxidation equipment
US11211267B2 (en) 2018-12-27 2021-12-28 Toshiba Memory Corporation Substrate processing apparatus and substrate processing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315396A (en) * 1998-03-23 1999-11-16 Pioneer Metal Finishing Method for subjecting object to anodic oxidation treatment and device therefor
US7396439B2 (en) 2001-01-15 2008-07-08 Hitachi, Ltd. Method and apparatus for an anodic treatment
US6821408B2 (en) 2001-01-15 2004-11-23 Unisia Jecs Corporation Method and apparatus for an anodic treatment
US6814851B2 (en) 2001-11-05 2004-11-09 Unisia Jecs Corporation Method and apparatus for an anodic treatment
DE10249194B4 (en) * 2001-11-05 2005-03-03 Hitachi Unisia Automotive, Ltd., Atsugi Method and device for carrying out anodic treatment
KR100851204B1 (en) * 2006-11-09 2008-08-07 금오공과대학교 산학협력단 Anodic Oxidation Apparatus
KR100830210B1 (en) * 2006-11-10 2008-05-19 한국에너지기술연구원 A devise for forming partial anodized film
US8691403B2 (en) 2008-12-26 2014-04-08 Denso Corporation Method for anodizing aluminum and anodized aluminum
CN102459838A (en) * 2009-04-15 2012-05-16 丰田自动车株式会社 Engine combustion chamber structure and method for producing the same
WO2011040679A1 (en) * 2009-10-01 2011-04-07 한국전기연구원 High field anodizing apparatus
JP2010084235A (en) * 2010-01-18 2010-04-15 Ebara Corp Plating apparatus
JP2013535579A (en) * 2010-08-06 2013-09-12 シャーメン ユニバーシティー Surface structure control and manufacturing method of metal nano catalyst
KR101349354B1 (en) * 2012-03-07 2014-01-16 한국전기연구원 anodic oxidation system using parallel operation process
CN102828215A (en) * 2012-09-13 2012-12-19 上海瑞尔实业有限公司 Anodizing method for changing flow direction of electrolyte
CN102828215B (en) * 2012-09-13 2015-10-28 上海瑞尔实业有限公司 A kind of change electrolyte stream to anode oxidation method
JP2017061736A (en) * 2015-09-25 2017-03-30 アイシン軽金属株式会社 Electrolytic device for partial anode oxidation treatment and treatment method using the same
CN107313095A (en) * 2017-08-30 2017-11-03 重庆协成汽车零部件有限公司 Anodic oxidation device and piston anodic oxidation processing technology
US11211267B2 (en) 2018-12-27 2021-12-28 Toshiba Memory Corporation Substrate processing apparatus and substrate processing method
CN113481561A (en) * 2021-08-02 2021-10-08 浙江米皇新材股份有限公司 Aluminum profile oxidation equipment
CN113481561B (en) * 2021-08-02 2023-08-11 浙江米皇新材股份有限公司 Aluminium alloy oxidation equipment

Also Published As

Publication number Publication date
JP2837397B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
JP2837397B2 (en) Anodizing equipment for aluminum or aluminum alloy
US6126808A (en) Method and apparatus for anodizing objects
KR100871332B1 (en) Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
EP1488024B1 (en) Process and device for forming ceramic coatings on metals and alloys
US6585875B1 (en) Process and apparatus for cleaning and/or coating metal surfaces using electro-plasma technology
EP0441887B1 (en) Method of processing orifices
JP5152574B2 (en) Method for anodizing aluminum member
US3079308A (en) Process of anodizing
EA012825B1 (en) Method of forming a protective ceramic coating on the surface of metal products
RU2149929C1 (en) Process of microplasma electrolytic machining of surface of current-conducting materials
JP2007224369A (en) Anodizing treatment method, treatment device therefor and anodizing treatment system
JPH10158888A (en) Anodic oxidation treatment device
JPH04224695A (en) Method and apparatus for executing anodic oxide coating treatment to piston
JP2004043873A (en) Method for surface treatment of aluminum alloy
JP2728313B2 (en) Surface treatment method of aluminum or its alloy
RU2063486C1 (en) Method of electrolytic depositing of silicate coatings on aluminum alloys
RU2718820C1 (en) Method of electrochemical oxidation of coatings on valve metals or alloys
SU926083A1 (en) Method for electrolytically applying silicate coatings
JP2000282292A (en) Method of anodizing treatment
EP0055316B1 (en) A plating apparatus
CN117488383A (en) Anode micro-arc oxidation method for preparing ceramic film on steel surface
Lerner Practical effects of unclogging pores with AC power during aluminum anodizing in sulfuric acid electrolytes

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees