JPH0921700A - Optical window member and manufacture thereof - Google Patents

Optical window member and manufacture thereof

Info

Publication number
JPH0921700A
JPH0921700A JP7168985A JP16898595A JPH0921700A JP H0921700 A JPH0921700 A JP H0921700A JP 7168985 A JP7168985 A JP 7168985A JP 16898595 A JP16898595 A JP 16898595A JP H0921700 A JPH0921700 A JP H0921700A
Authority
JP
Japan
Prior art keywords
window
resin
optical window
reinforcing
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7168985A
Other languages
Japanese (ja)
Inventor
Junichi Tani
淳一 谷
Hideki Ueno
秀樹 上野
Masaya Kakimoto
正也 柿本
Akira Nishimura
昭 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7168985A priority Critical patent/JPH0921700A/en
Publication of JPH0921700A publication Critical patent/JPH0921700A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an optical window member made of a resin having an excellent infrared-radiation transmissibity and sufficient strength withstanding external environment by forming a window part transmitting infrared ray and a reinforcing part thicker than the window part as a unitary body by using the resin having the infrared- radiation transmissibity. SOLUTION: The entire body of the optical window member 1 is made of a resin having infrared-radiation as a unitary body. Thick, linear reinforcing parts 11 are arranged at the intermediate parts from the outer surface of a flat plate in a grid pattern. The part surrounded by respective reinforcing parts 11 is made to be a window part 12, which is thinner than the reinforcing part 11 and transmits the infrared rays. In the manufacture of the optical window part 11, any of the following methods is used, that is, an injection method of resin using a metal mold having the irregularities in correspondence with the window part 12 and the reinforcing part 11 from the resin having the infrared-radiation transmissibity, a press molding method for performing press molding of preliminary molded body comprising resin by using a metal mold having the irregularities in correspondence with the window part 12 and the reinforcing part 11 and an after-machining method for removing the resin at a part corresponding to the window part 12 of the preliminary molded body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、たとえば各種セ
ンサ等の、赤外線検知素子を利用した装置において、上
記赤外線検知素子を保護するために使用される光学窓材
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical window material used for protecting an infrared detecting element in an apparatus using the infrared detecting element such as various sensors.

【0002】[0002]

【従来の技術】人体、建物、草木等の種々の物体から、
その表面温度に応じて放射される赤外線を検知して、非
接触でその物体の温度や形状を検知する赤外線検知素子
が、たとえば自動ドアや防犯装置等の人体検知用センサ
や、火災検知用センサ、あるいは電子レンジやヒータ等
の温度検知用センサ等の種々の分野に、広く利用されつ
つある。
2. Description of the Related Art From various objects such as human bodies, buildings, and plants,
Infrared detection elements that detect infrared radiation emitted according to the surface temperature and detect the temperature and shape of the object in a non-contact manner are, for example, human body detection sensors such as automatic doors and security devices, and fire detection sensors. Or, it is being widely used in various fields such as a temperature detecting sensor such as a microwave oven and a heater.

【0003】そして、それにともなって、上記赤外線検
知素子を雨、風、光、ほこり等の外的環境から保護する
ための光学窓材についても、その需要が増加する傾向に
ある。従来、上記光学窓材としては、たとえばシリコ
ン、ふっ化バリウム、硫化亜鉛等の、赤外線透過性にす
ぐれた無機材料からなるものが広く用いられてきたが、
近時、上記無機材料に比して軽量で、かつ成形性、加工
性にすぐれるとともに安価な樹脂製の光学窓材を実用化
すべく、種々検討がなされている。
Along with this, there is a tendency that the demand for an optical window material for protecting the above infrared detecting element from the external environment such as rain, wind, light, dust and the like increases. Conventionally, as the above-mentioned optical window material, for example, those made of an inorganic material excellent in infrared transmissivity such as silicon, barium fluoride, and zinc sulfide have been widely used,
Recently, various studies have been made in order to put into practical use an optical window material made of resin, which is lighter in weight than the above inorganic materials, has excellent moldability and processability, and is inexpensive.

【0004】[0004]

【発明が解決しようとする課題】樹脂は、周知のように
無機材料に比べて機械的強度が低いため、成形体として
の形状を維持し、外的環境に耐えうる構造体とするに
は、その肉厚を厚くする必要がある。しかし、肉厚を厚
くすればするほど、赤外線の透過率が低下して、赤外線
検知素子によるセンシングが困難になるという問題があ
る。
As is well known, a resin has a lower mechanical strength than an inorganic material. Therefore, in order to maintain the shape as a molded body and to withstand an external environment, It is necessary to increase the wall thickness. However, the thicker the wall, the lower the transmittance of infrared rays, which makes it difficult to perform sensing by the infrared sensing element.

【0005】特開平4−243695号公報には、上記
の問題を解決すべく、赤外線透過性を有する樹脂からな
る窓材を、たとえば金属製の補強枠によって補強するこ
とが開示されている。しかし上記の構造のものを製造す
るには、窓材と補強枠との位置合わせ工程や、両者の接
着工程などが必要となる分、製造工程が複雑になるとい
う問題がある。
In order to solve the above-mentioned problems, Japanese Patent Application Laid-Open No. 4-243695 discloses that a window material made of a resin having an infrared transmitting property is reinforced by a reinforcing frame made of metal, for example. However, in order to manufacture the above structure, there is a problem that the manufacturing process becomes complicated because the step of aligning the window member and the reinforcing frame and the step of adhering the two are required.

【0006】また上記の構造においては、窓材と補強枠
とが違う材料によって形成されるため、たとえば気温の
変化にともなう膨張、収縮等が繰り返されると、補強枠
が窓材から脱落したり、補強枠が変形したり、あるいは
窓材が破損したりするおそれがある。この発明の目的
は、赤外線透過性にすぐれるとともに、外的環境に耐え
うる十分な強度を有する樹脂製の光学窓材と、その効率
的な製造方法とを提供することにある。
Further, in the above structure, since the window material and the reinforcing frame are made of different materials, if the expansion and contraction are repeated due to changes in temperature, the reinforcing frame may fall off the window material, The reinforcing frame may be deformed or the window material may be damaged. An object of the present invention is to provide an optical window material made of a resin having excellent infrared ray transparency and having sufficient strength to withstand an external environment, and an efficient manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の、この発明の光学窓材は、赤外線を透過する窓部と、
それよりも肉厚の補強部とを、赤外線透過性を有する樹
脂にて、一体的に形成したことを特徴とする。また、こ
の発明の光学窓材の製造方法は、窓部と補強部とに対応
する凹凸を有する金型を用いた樹脂の射出成形法、樹脂
からなる予備成形体を、窓部と補強部とに対応する凹凸
を有する金型を用いてプレス成形するプレス成形法、お
よび上記予備成形体の、窓部に対応する箇所の樹脂を化
学的、熱的あるいは機械的に除去する後加工法のうちの
少なくとも1種の方法により、請求項1記載の光学窓材
を製造することを特徴とする。
In order to solve the above-mentioned problems, an optical window material of the present invention is a window portion which transmits infrared rays,
It is characterized in that the reinforcing portion having a larger thickness than that is integrally formed of a resin having an infrared transmitting property. Further, the method for manufacturing an optical window material of the present invention includes a resin injection molding method using a mold having irregularities corresponding to the window portion and the reinforcing portion, a preformed body made of the resin, the window portion and the reinforcing portion. Among the press molding method of press molding using a mold having irregularities corresponding to, and the post-processing method of chemically, thermally or mechanically removing the resin at the portion corresponding to the window of the preform The optical window material according to claim 1 is manufactured by at least one of the above methods.

【0008】上記構成からなる、この発明の光学窓材に
よれば、肉薄の窓部によって赤外線透過性を確保しつ
つ、それより肉厚の補強部によって外的環境に耐えうる
強度を維持している。また上記窓部と補強部は、同じ樹
脂により一体的に形成されるため、たとえば気温の変化
にともなう膨張、収縮等が繰り返されても、変形したり
破損したりすることがない。よってこの発明の光学窓材
は、軽量で、かつ成形性、加工性にすぐれるとともに安
価な樹脂からなり、しかも赤外線透過性にすぐれるとと
もに、外的環境に耐えうる十分な強度を有するものとな
る。
According to the optical window member of the present invention having the above-mentioned structure, the thin window portion ensures the infrared transparency while the thicker reinforcing portion maintains the strength capable of withstanding the external environment. There is. Further, since the window portion and the reinforcing portion are integrally formed of the same resin, they are not deformed or damaged even if they are repeatedly expanded and contracted due to a change in temperature. Therefore, the optical window material of the present invention is made of a resin that is lightweight, and is excellent in moldability and workability and at the same time, is excellent in infrared ray transparency, and has sufficient strength to withstand an external environment. Become.

【0009】また、この発明の光学窓材の製造方法によ
れば、上記の光学窓材を、射出成形法、プレス成形法、
または後加工法を用いることで、簡単かつ効率的に製造
することが可能となる。
Further, according to the method of manufacturing an optical window material of the present invention, the above-mentioned optical window material is manufactured by injection molding, press molding,
Alternatively, by using the post-processing method, it is possible to easily and efficiently manufacture.

【0010】[0010]

【発明の実施の形態】以下に、この発明の光学窓材の実
施の形態を、その一例を示す図1〜図3を参照しつつ説
明する。図1および図2の光学窓材1はいずれも平板状
のものであり、図3の光学窓材1はドーム状のものであ
る。これらの光学窓材1は、いずれもその全体が、赤外
線透過性を有する樹脂にて一体形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the optical window material of the present invention will be described below with reference to FIGS. 1 to 3 showing an example thereof. Each of the optical window members 1 in FIGS. 1 and 2 has a flat plate shape, and the optical window member 1 in FIG. 3 has a dome shape. All of these optical window members 1 are integrally formed of a resin having an infrared transmitting property.

【0011】このうち図1の光学窓材1は、平板の外周
と中間に、肉厚でかつ直線状の補強部11が格子状に配
置されているとともに、各補強部11で囲まれた部分
が、上記補強部11よりも肉薄の、赤外線を透過する窓
部12とされたものである。また図2の光学窓材1は、
全体の半分以上の領域が、肉薄平板状の窓部12とさ
れ、残りの領域が、上記窓部12よりも肉厚の補強部1
1とされたものである。
Among them, in the optical window member 1 of FIG. 1, thick and linear reinforcing portions 11 are arranged in a lattice pattern on the outer periphery and in the middle of the flat plate, and a portion surrounded by each reinforcing portion 11 is formed. However, the window portion 12 is thinner than the reinforcing portion 11 and transmits infrared rays. In addition, the optical window material 1 of FIG.
A region of more than half of the whole is the thin-plate-like window portion 12, and the remaining region is thicker than the window portion 12 of the reinforcing portion 1.
It is said to be 1.

【0012】この2つの光学窓材1を比較すると、図1
のものは、窓部12を囲繞するように、補強部11を格
子状に分散して配置しているため、1つずつの窓部12
の面積は小さいが、全体の強度がほぼ均等となるという
利点がある。一方、図2の光学窓材1は、補強部11を
集中して配置しているため、その強度に方向性が生じる
が、窓部12の面積を大きくできるという利点がある。
Comparing these two optical window materials 1, FIG.
Since the reinforcing portions 11 are dispersed and arranged in a grid pattern so as to surround the window portions 12, one window portion 12 is provided.
Has a small area, but has the advantage that the overall strength is almost uniform. On the other hand, in the optical window member 1 of FIG. 2, since the reinforcing portions 11 are arranged in a concentrated manner, the strength thereof has a directionality, but there is an advantage that the area of the window portion 12 can be increased.

【0013】図3に示した光学窓材1は、ドーム状に形
成された窓部12の外側に突出するように、補強部11
を配置したものである。補強部11は、ドームの縁を一
周するものと、ドームの縁の一点から出発して、ドーム
の頂点を通過した後、ドームの縁の反対側に達するもの
2本とで構成されている。なお補強部11は、ドームの
内側に配置してもよい。
The optical window member 1 shown in FIG. 3 has a reinforcing portion 11 so as to project to the outside of a window portion 12 formed in a dome shape.
Is arranged. The reinforcing portion 11 is composed of one that goes around the edge of the dome and two that start from one point of the edge of the dome, pass through the apex of the dome, and then reach the opposite side of the edge of the dome. The reinforcing portion 11 may be arranged inside the dome.

【0014】上述した各光学窓材1は、いずれも、赤外
線透過性を有する樹脂から、窓部12と補強部11とに
対応する凹凸を有する金型を用いた樹脂の射出成形法、
樹脂からなる予備成形体を、窓部12と補強部11とに
対応する凹凸を有する金型を用いてプレス成形するプレ
ス成形法、および上記予備成形体の、窓部12に対応す
る箇所の樹脂を除去する後加工法のうちのいずれかの方
法によって製造される。このうち後加工法には、化学的
な除去法(ケミカルエッチング)、熱的な除去法(サー
マルエッチング)あるいは機械的な除去法(研削、彫刻
等)があるが、このいずれを採用してもよい。
Each of the above-mentioned optical window materials 1 is an injection molding method of resin from a resin having an infrared transmitting property, using a mold having irregularities corresponding to the window portion 12 and the reinforcing portion 11.
A press molding method in which a preform made of a resin is press-formed using a mold having irregularities corresponding to the window portion 12 and the reinforcing portion 11, and a resin at a portion of the preform body corresponding to the window portion 12 Is manufactured by any one of the post-processing methods for removing. Among these post-processing methods, there are a chemical removal method (chemical etching), a thermal removal method (thermal etching), and a mechanical removal method (grinding, engraving, etc.), whichever method is adopted. Good.

【0015】あるいはまた上記各製造法を2法以上併用
しても構わない。前述した各種センサに使用する光学窓
材1の場合、樹脂としては、物体の表面から放射される
赤外線の波長が主に7μm以上、とくに8〜12μm程
度であることから、この波長域の赤外線を良好に透過す
るものが望ましい。かかる樹脂としては、これに限定さ
れないがたとえば、ポリエチレン、ポリプロピレン、エ
チレン−プロピレン共重合体等のポリオレフィン類;天
然ゴム、グッタペルカ等のポリテルペン類;ポリアミ
ド;ブタジエンゴム等があげられる。中でもとくに軽量
で、かつ成形性、加工性にすぐれるとともに安価で、し
かも耐候性、化学的な安定性にもすぐれたポリエチレ
ン、とくに高密度ポリエチレンが、好適に使用される。
Alternatively, two or more of the above manufacturing methods may be used in combination. In the case of the optical window material 1 used in the various sensors described above, as the resin, the wavelength of infrared rays radiated from the surface of the object is mainly 7 μm or more, especially about 8 to 12 μm. It is desirable to have good transparency. Examples of such resins include, but are not limited to, polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer; polyterpenes such as natural rubber and gutta percha; polyamide; butadiene rubber and the like. Among them, polyethylene which is particularly lightweight, excellent in moldability and processability and inexpensive, and also excellent in weather resistance and chemical stability, particularly high-density polyethylene is preferably used.

【0016】前述した各種センサに使用する光学窓材の
場合、窓部12における、波長8〜12μm帯の赤外線
の透過率は、センサの感度を十分に確保するために、5
0%以上であるのが好ましい。上記透過率が50%未満
では、センサの感度が不十分となるおそれがある。なお
窓部12における、上記波長帯の赤外線の透過率は、セ
ンサの感度等を考慮すると高ければ高いほど好ましく、
70%以上であるのがさらに好ましい。
In the case of the optical window material used in the various sensors described above, the transmittance of infrared rays in the wavelength band of 8 to 12 μm in the window portion 12 is 5 in order to secure sufficient sensitivity of the sensor.
It is preferably 0% or more. If the transmittance is less than 50%, the sensitivity of the sensor may be insufficient. In addition, the transmittance of infrared rays in the above wavelength band in the window portion 12 is preferably as high as possible in consideration of the sensitivity of the sensor,
It is more preferably 70% or more.

【0017】ただし、窓部12における赤外線の透過率
は、前述したように当該窓部12の厚みと反比例の関係
にあり、透過率が高すぎる場合は窓部12の厚みが小さ
くなって、欠損等のない均一な窓部12を形成するのが
容易でなくなる他、もし欠損等のない窓部12を形成で
きたとしてもそれは強度的に不十分なものであって、外
力等によって破損しやすくなり、センサ等の保護という
窓部12の重要な機能を果たさなくなるおそれを生じ
る。
However, the transmittance of infrared rays in the window portion 12 is in inverse proportion to the thickness of the window portion 12 as described above, and if the transmittance is too high, the thickness of the window portion 12 becomes small and a defect occurs. It is not easy to form a uniform window portion 12 without any defects, and even if a window portion 12 without defects is formed, it is insufficient in strength and easily damaged by external force. Therefore, there is a possibility that the important function of the window 12 such as protection of the sensor may not be fulfilled.

【0018】したがって、窓部12における赤外線の透
過率は、当該窓部12が十分な強度を確保できる最低限
の厚みに応じて、その上限が設定される。たとえば前述
した高密度ポリエチレン等のオレフィン系樹脂の場合、
窓部12が十分な強度を確保するには、その厚みが0.
1mm以上であるのが好ましく、その際の、波長8〜1
2μm帯の赤外線の透過率の上限は90%である。
Therefore, the upper limit of the infrared ray transmittance of the window portion 12 is set in accordance with the minimum thickness at which the window portion 12 can secure sufficient strength. For example, in the case of the above-mentioned olefin resin such as high-density polyethylene,
In order for the window portion 12 to have sufficient strength, its thickness is 0.
It is preferably 1 mm or more, and the wavelength at that time is 8 to 1
The upper limit of the transmittance of infrared rays in the 2 μm band is 90%.

【0019】なお上記オレフィン系樹脂の場合、前述し
た50%以上の透過率を達成するには、窓部12の厚み
が1mm以下であるのが好ましく、0.5mm以下であ
るのがさらに好ましい。一方、補強部11の厚みは、上
記窓部12の厚みより厚ければよいが、光学窓材1に十
分な強度を付与するためには、1mm以上であるのが好
ましく、3mm以上であるのがさらに好ましく、5mm
以上であるのがとくに好ましい。ただし、補強部11の
厚みがあまりに大きすぎる場合には、とくに成形法によ
って光学窓材1を製造するのが容易でなくなるおそれが
あるので、補強部11の厚みの上限は10mm程度が好
ましい。
In the case of the above-mentioned olefin resin, in order to achieve the above-mentioned transmittance of 50% or more, the thickness of the window portion 12 is preferably 1 mm or less, more preferably 0.5 mm or less. On the other hand, the thickness of the reinforcing portion 11 may be thicker than the thickness of the window portion 12, but is preferably 1 mm or more and preferably 3 mm or more in order to give the optical window material 1 sufficient strength. Is more preferable and 5 mm
The above is particularly preferable. However, if the thickness of the reinforcing portion 11 is too large, it may be difficult to manufacture the optical window material 1 by a molding method in particular, so the upper limit of the thickness of the reinforcing portion 11 is preferably about 10 mm.

【0020】また図1に示すように補強部11を格子状
に配置する等して、当該補強部11を、窓部12を囲繞
するように配置した場合には、窓部12の面積率が50
〜90%となるように、両者の割合を設定するのが好ま
しい。窓部12の面積率が上記範囲未満では、前記特定
波長帯の赤外線の、光学窓材1の全体における平均透過
率が低下して、たとえば前述した各種センサに使用した
場合には、センサの感度が不十分となるおそれがある。
なお、上記平均透過率は、センサの場合、十分な感度を
確保するために、40%以上であるのが好ましい。かか
る平均透過率を達成するには、窓部12の透過率と面積
率を、上記範囲内で調整すればよい。
When the reinforcing portions 11 are arranged so as to surround the window portion 12 by arranging the reinforcing portions 11 in a lattice shape as shown in FIG. 1, the area ratio of the window portion 12 is reduced. Fifty
It is preferable to set the ratio of both so as to be 90%. If the area ratio of the window portion 12 is less than the above range, the average transmittance of the infrared rays in the specific wavelength band in the entire optical window material 1 is lowered, and the sensitivity of the sensor when used in various sensors described above, for example. May be insufficient.
In the case of a sensor, the average transmittance is preferably 40% or more in order to secure sufficient sensitivity. In order to achieve such average transmittance, the transmittance and the area ratio of the window portion 12 may be adjusted within the above range.

【0021】また、窓部12の面積率が上記範囲を超え
た場合には、相対的に補強部11が少なくなりすぎて、
窓部12を囲繞するように補強部11を配置できず、当
該補強部11による補強効果が不十分となるおそれがあ
る。
When the area ratio of the window portion 12 exceeds the above range, the reinforcing portion 11 becomes relatively small,
The reinforcing portion 11 cannot be arranged so as to surround the window portion 12, and the reinforcing effect of the reinforcing portion 11 may be insufficient.

【0022】[0022]

【実施例】以下にこの発明を、実施例、比較例に基づい
て説明する。 実施例1 高密度ポリエチレン〔東燃化学(株)製の商品名エース
ポリエチHDJ6211〕からなる板状の予備成形体
を、昇温速度10℃/分で180℃まで昇温し、さらに
この温度で10分間、予熱した後、窓部と補強部とに対
応する凹凸を有する金型を用いて10分間、プレス成形
した。そして、プレス状態のまま金型を水冷した後、金
型を開いて、図1に示す形状で、かつ各部の寸法が下記
のとおりである、実施例1の光学窓材1を製造した。
The present invention will be described below with reference to examples and comparative examples. Example 1 A plate-shaped preform made of high-density polyethylene [trade name Ace Polyeth HDJ6211 manufactured by Tonen Kagaku Co., Ltd.] was heated to 180 ° C. at a heating rate of 10 ° C./minute, and further heated to 10 ° C. at this temperature. After preheating for 10 minutes, press molding was performed for 10 minutes using a mold having irregularities corresponding to the window portion and the reinforcing portion. Then, the mold was water-cooled in the pressed state, the mold was opened, and the optical window material 1 of Example 1 having the shape shown in FIG. 1 and the dimensions of each part as described below was manufactured.

【0023】外形寸法:100mm×100mm 補強部11の厚みt1 :5mm 補強部11の幅w1 :4mm 窓部12の厚みt2 :0.2mm 窓部12の1辺の長さw2 :20mm 窓部12の面積率:64% 実施例2 金型の寸法を変更したこと以外は実施例1と同様にし
て、実施例1で使用したのと同じ高密度ポリエチレンか
ら、図1に示す形状で、かつ各部の寸法が下記のとおり
である、実施例2の光学窓材1を製造した。
External dimensions: 100 mm × 100 mm Thickness t 1 of the reinforcing portion 11: 5 mm Width w 1 of the reinforcing portion 11: 4 mm Thickness t 2 of the window portion 12: 0.2 mm Length of one side w 2 of the window portion 12: 20 mm Area ratio of window 12: 64% Example 2 The same high-density polyethylene as that used in Example 1 except that the size of the mold was changed, and the shape shown in FIG. Then, the optical window material 1 of Example 2 was manufactured in which the dimensions of the respective parts were as follows.

【0024】外形寸法:100mm×100mm 補強部11の厚みt1 :5mm 補強部11の幅w1 :5.6mm 窓部12の厚みt2 :0.2mm 窓部12の1辺の長さw2 :18mm 窓部12の面積率:52% 実施例3 金型を変更したこと以外は実施例1と同様にして、実施
例1で使用したのと同じ高密度ポリエチレンから、図2
に示す形状で、かつ各部の寸法が下記のとおりである、
実施例3の光学窓材1を製造した。
External dimensions: 100 mm × 100 mm Thickness t 1 of the reinforcing portion 11: 5 mm Width w 1 of the reinforcing portion 11: 5.6 mm Thickness t 2 of the window portion 12: 0.2 mm Length of one side of the window portion 12 2 : 18 mm Area ratio of window portion: 52% Example 3 The same high-density polyethylene as that used in Example 1 was used in the same manner as in Example 1 except that the mold was changed.
In the shape shown in, and the dimensions of each part are as follows,
The optical window material 1 of Example 3 was manufactured.

【0025】外形寸法:100mm×100mm 補強部11の厚みt3 :5mm 補強部11の幅w3 :20mm 窓部12の厚みt4 :0.2mm 窓部12の幅w4 :80mm 窓部12の面積率:80% 比較例1 実施例1で使用したのと同じ高密度ポリエチレンからな
る、厚み0.2mmの凹凸のない平板を比較例1の光学
窓材とした。 比較例2 実施例1で使用したのと同じ高密度ポリエチレンからな
る、厚み0.5mmの凹凸のない平板を比較例1の光学
窓材とした。 比較例3 実施例1で使用したのと同じ高密度ポリエチレンからな
る、厚み0.8mmの凹凸のない平板を比較例1の光学
窓材とした。
External dimensions: 100 mm × 100 mm Thickness t 3 of the reinforcing portion 11: 5 mm Width w 3 of the reinforcing portion 11: 20 mm Thickness t 4 of the window portion 12: 0.2 mm Width w 4 of the window portion 12: 80 mm Window portion 12 Area ratio: 80% Comparative Example 1 A flat plate made of the same high-density polyethylene as that used in Example 1 and having a thickness of 0.2 mm and having no unevenness was used as an optical window material of Comparative Example 1. Comparative Example 2 A flat plate made of the same high-density polyethylene as that used in Example 1 and having a thickness of 0.5 mm and having no unevenness was used as the optical window material of Comparative Example 1. Comparative Example 3 A flat plate having a thickness of 0.8 mm and made of the same high-density polyethylene as that used in Example 1 and having no unevenness was used as an optical window material of Comparative Example 1.

【0026】上記各実施例、比較例の光学窓材について
以下の試験を行って、その特性を評価した。 赤外線透過率測定 フーリエ変換赤外分光分析装置を用いて、実施例、比較
例の光学窓材における、波長8〜12μm帯の赤外線の
透過率(%)を測定した。
The following tests were conducted on the optical window materials of the above Examples and Comparative Examples to evaluate their characteristics. Measurement of Infrared Transmittance Using a Fourier transform infrared spectroscopic analyzer, the transmittance (%) of infrared rays in the wavelength band of 8 to 12 μm in the optical window materials of Examples and Comparative Examples was measured.

【0027】なお実施例1〜3については、上記の測定
を、窓部12および補強部11のそれぞれについて行っ
た。そして両部における透過率の測定結果と、各実施例
における窓部12の面積率(%)とから、下記式によ
り、光学窓材1の全体としての平均透過率(%)を求め
た。なお、下記式中の符号T1 は補強部11の透過率
(%)、T2 は窓部12の透過率(%)、Sは窓部の面
積率(%)である。
In Examples 1 to 3, the above-mentioned measurement was carried out for each of the window portion 12 and the reinforcing portion 11. Then, the average transmittance (%) of the optical window material 1 as a whole was obtained from the measurement result of the transmittance of both parts and the area ratio (%) of the window portion 12 in each example by the following formula. In the following formula, reference numeral T 1 is the transmittance (%) of the reinforcing portion 11, T 2 is the transmittance (%) of the window portion 12, and S is the area ratio (%) of the window portion.

【0028】[0028]

【数1】 [Equation 1]

【0029】強度測定 インストロン引張試験機を使用して、実施例、比較例の
光学窓材を、つかみ具の間隔80mm、引張速度500
mm/分の条件で面方向に引っ張った際の破断強度(k
g)を測定した。この測定は、各実施例、比較例につい
て、それぞれ3個ずつ作成したサンプルを用いて3回ず
つ行い、それぞれの結果の平均値を求めた。なお実施例
3については6個のサンプルを作成し、補強部11の幅
方向(W)および長さ方向(L)について、それぞれ3
回ずつの測定を行って、幅方向および長さ方向の、それ
ぞれの平均値を求めた。
Strength Measurement Using an Instron tensile tester, the optical window materials of Examples and Comparative Examples were clamped at a gripping tool spacing of 80 mm and a pulling speed of 500.
Breaking strength (k when pulled in the plane direction under the condition of mm / min.
g) was measured. This measurement was performed three times for each of the Examples and Comparative Examples using samples prepared three times, and the average value of each result was obtained. In addition, about Example 3, six samples were created and each of the width direction (W) and the length direction (L) of the reinforcing part 11 was 3 respectively.
The measurement was performed once, and the respective average values in the width direction and the length direction were obtained.

【0030】以上の結果を表1に示す。Table 1 shows the above results.

【0031】[0031]

【表1】 [Table 1]

【0032】表1の、比較例1〜3の結果より明らかな
ように、凹凸のない平板状の光学窓材は、十分な強度を
えるべく、その厚みを大きくすると、赤外線の透過率が
低下し、逆に赤外線の透過率を向上すべく、その厚みを
小さくすると、強度が低下した。これに対し、窓部12
と補強部11とを設けた実施例1〜3の光学窓材によれ
ば、十分に高い強度と、高い赤外線の透過率とを両立で
きることがわかった。
As is clear from the results of Comparative Examples 1 to 3 in Table 1, the flat optical window material having no irregularities has a reduced infrared transmittance when its thickness is increased to obtain sufficient strength. On the contrary, when the thickness was reduced in order to improve the infrared transmittance, the strength decreased. On the other hand, the window 12
It was found that the optical window materials of Examples 1 to 3 provided with and the reinforcing portion 11 can achieve both sufficiently high strength and high infrared transmittance.

【0033】また上記実施例1〜3を比較すると、補強
部11を集中して配置した実施例3の光学窓材は、その
強度に方向性が生じるものの、赤外線の透過率が高くな
り、逆に上記補強部11を、窓部12を囲繞するように
分散して配置した実施例1,2の光学窓材は、赤外線の
透過率がやや低くなるものの、より高強度であることが
わかった。 実施例4 実施例1で使用したのと同じ高密度ポリエチレンから、
図3に示すドーム状の光学窓材1を、射出成形により製
造した。
Comparing Examples 1 to 3 above, the optical window material of Example 3 in which the reinforcing portions 11 are arranged in a concentrated manner has a directionality in its strength, but the infrared transmittance becomes high, and It was found that the optical window materials of Examples 1 and 2 in which the reinforcing portions 11 were dispersedly arranged so as to surround the window portion 12 had a slightly lower infrared transmittance but a higher strength. . Example 4 From the same high density polyethylene used in Example 1,
The dome-shaped optical window material 1 shown in FIG. 3 was manufactured by injection molding.

【0034】えられた光学窓材1の各部の寸法は下記の
とおりである。 ドームの高さ:40mm ドームの底の直径:125mm 補強部11の厚み:3.0mm 補強部11の幅:10mm 窓部12の厚み:0.2mm 上記光学窓材1の、波長8〜12mm帯の赤外線の平均
透過率(%)を、前記と同様にして求めたところ61%
であった。
The dimensions of each part of the obtained optical window material 1 are as follows. Dome height: 40 mm Diameter of dome bottom: 125 mm Thickness of reinforcing part 11: 3.0 mm Width of reinforcing part 11: 10 mm Thickness of window part 12: 0.2 mm Wavelength 8-12 mm band of the above optical window material 1 The average transmittance (%) of infrared rays of was calculated in the same manner as above, and was 61%.
Met.

【0035】[0035]

【発明の効果】以上、詳述したようにこの発明の光学窓
材は、赤外線透過性を確保する肉薄の窓部と、外的環境
に耐えうる強度を維持する肉厚の補強部とを備えるた
め、軽量で、かつ成形性、加工性にすぐれるとともに安
価な樹脂からなり、しかも赤外線透過性にすぐれるとと
もに、外的環境に耐えうる十分な強度を有するものとな
る。
As described above in detail, the optical window material of the present invention comprises a thin window portion for ensuring infrared transparency and a thick reinforcing portion for maintaining the strength capable of withstanding the external environment. Therefore, the resin is lightweight, is excellent in moldability and workability, and is made of an inexpensive resin. Further, it is excellent in infrared ray transparency and has sufficient strength to withstand an external environment.

【0036】またこの発明の光学窓材の製造方法によれ
ば、上記の特性にすぐれた光学窓材を効率よく製造する
ことができる。よってこの発明によれば、各種センサ等
の、赤外線検知素子を利用した装置において、上記赤外
線検知素子を保護する光学窓材への、軽量かつ安価な樹
脂の導入が可能となるという、特有の作用効果を奏す
る。
Further, according to the method of manufacturing an optical window material of the present invention, it is possible to efficiently manufacture an optical window material excellent in the above characteristics. Therefore, according to the present invention, in a device using an infrared detection element, such as various sensors, it is possible to introduce a lightweight and inexpensive resin into an optical window material for protecting the infrared detection element, which is a unique action. Produce an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の光学窓材の、一実施例の外観を示す
部分切り欠き斜視図である。
FIG. 1 is a partially cutaway perspective view showing an external appearance of an embodiment of an optical window material of the present invention.

【図2】この発明の光学窓材の、他の実施例の外観を示
す斜視図である。
FIG. 2 is a perspective view showing the appearance of another embodiment of the optical window material of the present invention.

【図3】この発明の光学窓材の、さらに他の実施例の外
観を示す斜視図である。
FIG. 3 is a perspective view showing the external appearance of still another embodiment of the optical window material of the present invention.

【符号の説明】[Explanation of symbols]

1 光学窓材 11 補強部 12 窓部 1 Optical window material 11 Reinforcing section 12 Window section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 昭 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Akira Nishimura 1-3-3 Shimaya, Konohana-ku, Osaka Sumitomo Electric Industries, Ltd. Osaka Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】赤外線を透過する窓部と、それよりも肉厚
の補強部とを、赤外線透過性を有する樹脂にて、一体的
に形成したことを特徴とする光学窓材。
1. An optical window material, characterized in that a window portion which transmits infrared rays and a reinforcing portion which is thicker than the window portion are integrally formed of a resin having an infrared ray transmitting property.
【請求項2】窓部における、波長8〜12μm帯の赤外
線の透過率が50%以上である請求項1記載の光学窓
材。
2. The optical window material according to claim 1, wherein the window has a transmittance of infrared rays in the wavelength band of 8 to 12 μm of 50% or more.
【請求項3】補強部の厚みが1〜10mmである請求項
1記載の光学窓材。
3. The optical window material according to claim 1, wherein the reinforcing portion has a thickness of 1 to 10 mm.
【請求項4】補強部を、窓部を囲繞するように配置した
請求項1記載の光学窓材。
4. The optical window material according to claim 1, wherein the reinforcing portion is arranged so as to surround the window portion.
【請求項5】窓部の面積率が50〜90%である請求項
4記載の光学窓材。
5. The optical window material according to claim 4, wherein the area ratio of the window portion is 50 to 90%.
【請求項6】窓部と補強部とに対応する凹凸を有する金
型を用いた樹脂の射出成形法、樹脂からなる予備成形体
を、窓部と補強部とに対応する凹凸を有する金型を用い
てプレス成形するプレス成形法、および上記予備成形体
の、窓部に対応する箇所の樹脂を化学的、熱的あるいは
機械的に除去する後加工法のうちの少なくとも1種の方
法により、請求項1記載の光学窓材を製造することを特
徴とする光学窓材の製造方法。
6. A resin injection molding method using a mold having projections and depressions corresponding to a window portion and a reinforcement portion, and a preform made of resin, a mold having projections and depressions corresponding to the window portion and the reinforcement portion. By at least one method of a press molding method of press molding using, and a post-processing method of chemically, thermally or mechanically removing the resin at the portion corresponding to the window of the preform, A method of manufacturing an optical window material, comprising manufacturing the optical window material according to claim 1.
JP7168985A 1995-07-04 1995-07-04 Optical window member and manufacture thereof Pending JPH0921700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7168985A JPH0921700A (en) 1995-07-04 1995-07-04 Optical window member and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7168985A JPH0921700A (en) 1995-07-04 1995-07-04 Optical window member and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0921700A true JPH0921700A (en) 1997-01-21

Family

ID=15878221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7168985A Pending JPH0921700A (en) 1995-07-04 1995-07-04 Optical window member and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0921700A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061792A (en) * 1999-08-27 2001-03-13 Omron Corp Radiation type thermometer
JP2010112787A (en) * 2008-11-05 2010-05-20 Sumitomo Electric Ind Ltd Flame detector
JP2010112718A (en) * 2008-11-04 2010-05-20 Takasago Thermal Eng Co Ltd Method for measuring temperature distribution in air path
DE102010046100A1 (en) * 2010-09-21 2012-03-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Radiation entrance window for a radiation detector
JP2016179774A (en) * 2015-03-25 2016-10-13 三菱電機株式会社 Optical window structure, and optical device having optical window structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061792A (en) * 1999-08-27 2001-03-13 Omron Corp Radiation type thermometer
JP2010112718A (en) * 2008-11-04 2010-05-20 Takasago Thermal Eng Co Ltd Method for measuring temperature distribution in air path
JP2010112787A (en) * 2008-11-05 2010-05-20 Sumitomo Electric Ind Ltd Flame detector
DE102010046100A1 (en) * 2010-09-21 2012-03-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Radiation entrance window for a radiation detector
WO2012038017A1 (en) 2010-09-21 2012-03-29 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Radiation entry window for a radiation detector
JP2016179774A (en) * 2015-03-25 2016-10-13 三菱電機株式会社 Optical window structure, and optical device having optical window structure

Similar Documents

Publication Publication Date Title
JPH0921700A (en) Optical window member and manufacture thereof
US4358503A (en) Glass fibre reinforced plastic sheeting material
FR2404036A1 (en) OBJECT SHAPED IN A PLASTIC OR GLASS MATERIAL AND INCLUDING A COATING PROVIDING IT BETTER RESISTANCE TO SCRATCHES AND TO THE FORMATION OF FOG, AND ITS MANUFACTURING PROCESS
CN112840743A (en) Microwave reflecting panel, element comprising such a panel and method for obtaining an element
JPS63233340A (en) Pyroelectric type infrared sensor
EP0225103B1 (en) Encapsulated-lens retroreflective sheeting and method of making
Mohammed et al. Application of electron beam radiation technology in tire manufacturing
EP1079218A3 (en) Radiant type thermometer
US5493126A (en) LWIR-transmitting windows
JPS6449626A (en) Spectacle frame and manufacture thereof
JPH0345526A (en) Heat treatment of glass plate
CA1140718A (en) Shaped body of extruded acrylic glass
Garton A novel technique for the study of coupling agent phenomena
CH427234A (en) Panel, especially for glazing
CN212897039U (en) Curtain wall glass convenient to clean
JP3329959B2 (en) Heat ray shielding material
Tung Effect of processing variables on the mechanical and thermal properties of sheet molding compound
GB2120973A (en) Armouring film
JPH0921701A (en) Optical window material
Erismann et al. IR optical properties of ZnS/ZnSe‐modified high‐density polyethylene
KR20180010947A (en) Laminated glass and method for producing the same and mobile terminal using laminated glass
JPH0690918B2 (en) Fluorescent lamp
KR101758899B1 (en) Water-proof and anti-dew condensation sheet using carbon heating element and construction method of manufacturing the same
JPS5827043A (en) Forming method for sample for spectroscopic analysis
Yoshida et al. Responses and responsive shape control of environmentally responsive composites with embedded TiNi alloy as effector