JPH0345526A - Heat treatment of glass plate - Google Patents

Heat treatment of glass plate

Info

Publication number
JPH0345526A
JPH0345526A JP17796189A JP17796189A JPH0345526A JP H0345526 A JPH0345526 A JP H0345526A JP 17796189 A JP17796189 A JP 17796189A JP 17796189 A JP17796189 A JP 17796189A JP H0345526 A JPH0345526 A JP H0345526A
Authority
JP
Japan
Prior art keywords
glass plate
glass
cooling
transfer coefficient
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17796189A
Other languages
Japanese (ja)
Other versions
JPH0653585B2 (en
Inventor
Kazuyuki Akeyoshi
明吉 一幸
Osamu Shiozuka
塩塚 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP17796189A priority Critical patent/JPH0653585B2/en
Publication of JPH0345526A publication Critical patent/JPH0345526A/en
Publication of JPH0653585B2 publication Critical patent/JPH0653585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0417Controlling or regulating for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To easily obtain a glass plate excellent in resistance to wind pressure and thermal crack by cooling a glass plate under specified cooling conditions depended on its thickness to control the enhancing stress generated. CONSTITUTION:Firstly, a glass plate 5-12mm thick is heated to 570-660 deg.C. Sec ond, air is blown on the surface of the glass plate heated to bring the cooling heat transfer coefficient to 40-60Kcal/m<2>h deg.C, thus cooling the plate to its strain point temperature or lower. Third, said glass plate is further cooled while the heat transfer coefficient is gradually increased to 100-120Kcal/m<2>h deg.C. Thence, the glass plate is further cooled with its heat transfer coefficient kept invariant so that its central tensile stress sigmat fall between 85 and 200kg/cm<2> and the ratio sigmac/sigmat between 1.5 and 3 (where sigmac is surface compressive stress).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガラス板にクラックが入った時にもクラック
が自走しないとともに耐風圧強度が充分で、且つ熱割れ
しない高層ビルの窓用として最適な熱処理ガラスを製造
する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is suitable for use in windows of high-rise buildings, which prevents cracks from propagating even when a glass plate cracks, has sufficient wind pressure resistance, and does not crack due to heat. The present invention relates to a method for producing optimal heat-treated glass.

[従来の技術] 高層ビルに於いては、窓ガラス板の耐風圧向上を図る為
、10mm〜20mm程度の特厚のガラス板が使用され
ている。この様に特厚のガラス板を使用すると重量が著
しく増大するという欠点があるとともに、板厚の厚い熱
線吸収ガラスや着色コートガラス板を使用した場合には
、特に熱割れの危険性が高くなるという欠点がある。軽
量化対策、熱割れ防止対策の為に風冷強化ガラス板を使
用することも可能であるが、風冷強化ガラス板は破損時
細かい多くの破片になる為、高層ビルに風冷強化ガラス
板を使用すると破損した時高層ビルの窓からガラス板の
破片が降り落ちるという危険があり、好ましくない。
[Prior Art] In high-rise buildings, extra-thick glass plates of about 10 mm to 20 mm are used in order to improve the wind pressure resistance of window glass plates. Using extra-thick glass plates like this has the disadvantage of significantly increasing weight, and when thick heat-absorbing glass or colored coated glass plates are used, there is a particularly high risk of thermal cracking. There is a drawback. It is also possible to use air-cooled tempered glass sheets to reduce weight and prevent heat cracking, but air-cooled tempered glass sheets break into many small pieces when broken, so air-cooled tempered glass sheets are not recommended for high-rise buildings. This is undesirable, as there is a risk that glass fragments may fall from the windows of high-rise buildings when they break.

ソーダライムよりなるガラス板を軟化点温度域600〜
60℃迄加熱した後直ちに、このガラス板の両面に空気
を吹き付けて急冷して強化した従来の普通の強化ガラス
板は、1000kg/cm”〜1500kg/cm2の
表面圧縮応力とその断面方向の中心部に表面圧縮応力の
1/2の引張応力が発生し、その断面応力分布は第1図
に示した様になる。そして、この強化ガラス板が破壊し
た時は、ガラス板に発生したクラックが自走し、そして
上記中央引張応力の大きさによって一義的に決まる破砕
密度、例えば40〜200個15cm角をもって細かく
割れてしまう。又、ガラス板の強化度を調整した所謂早
強化ガラス板は、 300〜600kg/cm2の表面
圧縮応力σcと 250〜400kg/cm”の中央引
張応力σtと、1.5未満のσc/σtの比を有し、そ
の断面応力分布は第2図に示した様になり、この早強化
ガラス板が破壊した場合には、細かい破片をもって割れ
ないものの、破壊時ガラス板に発生したクラックは自走
し、ガラス板の端部まで及んでしまう。
A glass plate made of soda lime has a softening point temperature range of 600~
Conventional tempered glass sheets, which are heated to 60°C and then immediately quenched and strengthened by blowing air on both sides of the glass sheet, have a surface compressive stress of 1000 kg/cm'' to 1500 kg/cm2 and a center of the cross-sectional direction. A tensile stress that is 1/2 of the surface compressive stress is generated in the area, and the cross-sectional stress distribution is as shown in Figure 1.When this tempered glass plate breaks, the cracks that have occurred in the glass plate It runs on its own and breaks into small pieces with a crushing density that is uniquely determined by the magnitude of the central tensile stress, for example, 40 to 200 pieces of 15 cm square.Also, so-called early-strengthened glass plates, in which the degree of reinforcement of the glass plate is adjusted, It has a surface compressive stress σc of 300 to 600 kg/cm2, a central tensile stress σt of 250 to 400 kg/cm, and a ratio of σc/σt of less than 1.5, and its cross-sectional stress distribution is as shown in Figure 2. Therefore, when this early-strengthened glass plate is broken, although it does not break into small pieces, the cracks that occur in the glass plate at the time of breakage propagate by themselves and extend to the edges of the glass plate.

又、化学強化ガラス板は、1000kg/cm” 〜3
000kg/am”の表面圧縮応力と1(1〜60kg
/ca+”の中央引張応力とを有するものであり、その
応力分布は第3図に示した様で、破砕時の破片数密度の
小さいものもあるが、この化学強化ガラス板は表面圧縮
応力層が薄いため傷がついた時の衝撃強度が著しく低下
する欠点を有するとともに、強化処理工程に長時間を要
するため実用上適当でない。
In addition, chemically strengthened glass plates have a weight of 1000 kg/cm” ~ 3
000 kg/am” surface compressive stress and 1 (1 to 60 kg
/ca+", and its stress distribution is shown in Figure 3. Although some pieces have a small number of fragments when crushed, this chemically strengthened glass sheet has a surface compressive stress layer. Since it is thin, it has the disadvantage that the impact strength when scratched is significantly reduced, and the reinforcing treatment process requires a long time, so it is not suitable for practical use.

[発明の解決しようとする課題] 以上のような従来の強化ガラスを高層ビル等の窓ガラス
として用いる際に発生する問題点を解決するために、ガ
ラス板にクラックが入った時にもクラックが自走せず、
かつ耐風圧強度が充分で熱割れしない高層ビルの窓ガラ
ス用或いはスバンドレル用として最適な熱処理ガラス、
即ち板厚が5〜12mmの熱処理ガラスであって、その
熱処理ガラス板の中央引張応力σtが85kg/cm2
〜200kg/cm’の範囲にあり、かつ、その表面の
圧縮応力σゎと中央引張応力σtとの比σC/σ1が1
.5〜3.0の範囲にある断面応力分布を持つ熱処理ガ
ラス板が提案されている。
[Problem to be solved by the invention] In order to solve the problems that occur when conventional tempered glass is used as window glass for high-rise buildings, etc., it is necessary to solve the problems that occur when the conventional tempered glass is used as window glass for high-rise buildings. Not running,
Heat-treated glass that has sufficient wind pressure resistance and does not crack due to heat, making it ideal for use in high-rise building window glass or swandrels.
That is, the heat-treated glass plate has a thickness of 5 to 12 mm, and the central tensile stress σt of the heat-treated glass plate is 85 kg/cm2.
~200 kg/cm', and the ratio σC/σ1 of the surface compressive stress σゎ and the central tensile stress σt is 1.
.. Heat-treated glass sheets have been proposed with cross-sectional stress distributions in the range of 5 to 3.0.

またこの様な熱処理ガラス板の製法として、ガラス板を
加熱炉内を通して600〜660℃に加熱した後、この
ガラス板を加熱炉から取出し、その後直ちにこのガラス
板表面に風を吹き付けてガラス板の冷却速度を通常の風
冷強化ガラスの1/3〜l/4に遅くしてガラス板の歪
点温度以下迄冷却することが知られている。しかしなが
ら、この様な製造方法では、ガラス板の冷却速度が小さ
いため、通常の強化ガラスの約2〜3倍の冷却時間を必
要とするため、生産性が低く、大量生産に向かないとい
う欠点があった。
In addition, as a manufacturing method for such a heat-treated glass plate, a glass plate is passed through a heating furnace and heated to 600 to 660°C, and then the glass plate is taken out from the heating furnace, and then air is immediately blown onto the surface of the glass plate to heat the glass plate. It is known to slow down the cooling rate to 1/3 to 1/4 of that of ordinary air-cooled tempered glass to cool the glass plate to below its strain point temperature. However, in this manufacturing method, the cooling rate of the glass plate is slow, so the cooling time is about 2 to 3 times that of ordinary tempered glass, so the productivity is low and it is not suitable for mass production. there were.

本発明は、高層ビル等の窓ガラスとして従来の特厚ガラ
ス板の板厚より薄くて、クラックが自走せず、且つ熱割
れがなく実用上の不都合もなく、更に量産化が可能な熱
処理ガラスの製法を提供することを目的とするものであ
る。
The present invention is a heat treatment method that is thinner than conventional extra-thickness glass sheets for window glass of high-rise buildings, etc., does not allow cracks to propagate, does not cause thermal cracking, has no practical problems, and can be mass-produced. Its purpose is to provide a method for manufacturing glass.

[課題を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、板厚が5mm〜12+nmのガラス板を570℃〜
660℃に加熱する加熱工程と、このガラスを加熱炉か
ら取出し、その後直ちにこのガラス表面に風を吹き付け
てガラス板表面の冷却熱伝達率を40〜60kcal/
m”h ’Cとしてガラス板の歪点温度以下迄冷却する
初期冷却工程と、次いで冷却熱伝達率を漸増しながらガ
ラス板を冷却する移行工程と、冷却熱伝達率が100〜
120kcal/m2h”cに達したところで冷却熱伝
達率を保持しつつガラス板を冷却する二次冷却工程を有
し、この処理されたガラス板の中央引張応力σtが85
〜200kg/cm”の範囲となり、かつその表面圧縮
応力σcと中央引張応力σtとの比σC/σtが1.5
〜3.0の範囲となる様に制御することを特徴とするガ
ラス板の熱処理方法を提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and it is possible to heat a glass plate having a thickness of 5 mm to 12+ nm at 570°C to
A heating process of heating the glass to 660°C, and then taking out the glass from the heating furnace, immediately blowing wind on the glass surface to increase the cooling heat transfer coefficient of the glass plate surface to 40 to 60 kcal/
An initial cooling process in which the glass plate is cooled down to the strain point temperature or less as m''h'C, then a transition process in which the glass plate is cooled while gradually increasing the cooling heat transfer coefficient, and the cooling heat transfer coefficient is 100~
When the temperature reaches 120 kcal/m2h"c, a secondary cooling process is carried out to cool the glass plate while maintaining the cooling heat transfer coefficient, and the central tensile stress σt of the treated glass plate is 85
~200 kg/cm'', and the ratio σC/σt of the surface compressive stress σc and the central tensile stress σt is 1.5.
The present invention provides a method for heat treatment of a glass plate, which is characterized in that the heat treatment is controlled to be in the range of .about.3.0.

本発明の熱処理ガラス板は、その中央引張応力σtが8
5〜200kg/cm”の間に低くコントロールされ、
かつその表面圧縮応力σcと中央引張応力σtとの比σ
e/σtが1.5〜3.0の範囲にコントロールされて
表面圧縮応力も127〜600kg/cm”の範囲、更
に好ましくは250〜350kg/cm”に低く押えら
れ、第4図に示した様な断面応力分布にされているので
、この熱処理ガラス板にクラックが入った時その破壊線
が自走せず、細かい破片で割れない。しかもこの熱処理
ガラス板は板厚51IIII+以上12mm以下を有し
、かつ127〜600kg/cm”、更に好ましくは2
50〜350kg/c−の表面圧縮応力を持っているの
で耐風圧強度は、同一厚みの生板の2倍以上で実用上充
分な強度であり、かつ熱割れすることもない。
The heat-treated glass plate of the present invention has a central tensile stress σt of 8
Controlled low between 5 and 200 kg/cm,
and the ratio σ of the surface compressive stress σc and the central tensile stress σt
e/σt is controlled in the range of 1.5 to 3.0, and the surface compressive stress is kept low in the range of 127 to 600 kg/cm'', more preferably 250 to 350 kg/cm'', as shown in Figure 4. Since the cross-sectional stress distribution is uniform, when a crack occurs in this heat-treated glass plate, the fracture line does not propagate on its own, and it does not break into small pieces. Moreover, this heat-treated glass plate has a thickness of 51III+ or more and 12 mm or less, and has a weight of 127 to 600 kg/cm, more preferably 2
Since it has a surface compressive stress of 50 to 350 kg/c-, the wind pressure strength is more than twice that of a raw board of the same thickness, which is sufficient for practical use, and it does not suffer from thermal cracking.

例えば、板厚が6ffII11で中央引張応力σtが2
50kg/cm”、表面圧縮応力σcが500kg/C
m”(σc/σt=2)の熱処理ガラス板は、中央引張
応力が高すぎる為にガラス板にクラックが入った場合、
クラックが自走するとともに破砕片が細かくなって第9
図に示す様な破砕パターンとなり、破砕片が窓から落下
する危険性が高くなって好ましくない。又板厚が8mm
で中央引張応力σtが300kg/cm”、表面圧縮応
力σcが580kg/am” (即ちa Jσ−1−9
3)のガラス板も同様である。
For example, when the plate thickness is 6ffII11, the central tensile stress σt is 2
50kg/cm”, surface compressive stress σc is 500kg/C
m” (σc/σt=2), if the central tensile stress is too high and the glass plate cracks,
As the crack propagates on its own, the fragments become finer and the 9th
This results in a crushing pattern as shown in the figure, which is undesirable because there is a high risk that the crushed pieces will fall out of the window. Also, the board thickness is 8mm
, the central tensile stress σt is 300 kg/cm" and the surface compressive stress σc is 580 kg/am" (i.e. a Jσ-1-9
The same applies to the glass plate 3).

一方、本発明により製造される熱処理ガラス板、例えば
実施例1〜3のサンプルの熱処理ガラス板の破砕パター
ンはそれぞれ第6〜8図の様になり、ガラス板にクラッ
クが入った場合クラックの自走が抑えられ、破壊線が何
本もガラス板の一端から他端進入ることがなく、窓から
ガラス板の破壊片が落下するのを防ぐことができる。又
、熱割れ防止及び風圧破壊防止に要求される表面圧縮応
力127kg/am”以上、特に好ましくは200kg
/c−より高い表面圧縮応力を有しているので、熱割れ
する危険性が少く、又耐風圧強度も充分である。
On the other hand, the fracture patterns of the heat-treated glass plates manufactured by the present invention, for example, the samples of Examples 1 to 3, are as shown in Figs. This prevents the breakage line from entering from one end of the glass plate to the other, and prevents broken pieces of the glass plate from falling from the window. In addition, the surface compressive stress required to prevent thermal cracking and wind pressure fracture is 127 kg/am” or more, particularly preferably 200 kg.
Since it has a higher surface compressive stress than /c-, there is less risk of thermal cracking and also has sufficient wind pressure resistance.

尚、ガラス板が割れる時、クラックの自走が抑えられて
破壊線(ヒビ)がガラスの一辺から他辺に及ばない様に
されたものが窓ガラス板の破砕片が落下する危険性が少
なく好ましいが、ガラス板の一辺から他辺迄及ぶ破壊線
(ヒビ)が−本程度あっても窓からの破砕片の落下の危
険性が実際1少ないので、この種の一本程度の破砕線(
ヒビ)の存在は、本発明により製造された熱処理ガラス
の破砕パターンとして許される。例えば、第7.8図は
この許される例である。
In addition, when a glass plate breaks, the risk of falling fragments of the window glass plate is reduced if the self-propagation of the crack is suppressed and the fracture line (crack) does not extend from one side of the glass to the other. Although it is preferable, even if there is about one fracture line (cracks) extending from one side of the glass plate to the other, the risk of falling fragments from the window is actually reduced by one.
The presence of cracks is acceptable as a fracture pattern in the heat-treated glass produced according to the present invention. For example, Figure 7.8 is an example of this being allowed.

第10図は、本発明の熱処理ガラス板を製造するために
使用される一具体例を示したものであり、図に於いて、
1は熱処理される5〜l O++u++厚のガラス板、
2はローラーハース、3はガラス板の搬送ロール、4は
ガラス板の加熱装置、5は上下に対向して設けられた風
吹出口、6は上下に対向して設けられた冷却炉表面被覆
面を示す。風吹出口5については第10図の様に1つだ
け設けておき、風吹出口5からの風の強さをプログラム
等で制御することによりガラス板表面の冷却熱伝達率を
コントロールしても良いし、2つ以上の風吹出口を設け
て風量を変化させる様にしても良い。熱処理されるガラ
ス板1はローラーハース内2を搬送ロール3により水平
に搬送されながら、或いは、水平に摺動されながらガラ
ス板を強化するのに充分な温度迄、例えば570℃〜6
60℃迄加熱される。(加熱工程)そしてローラーハー
ス2から取出されたガラス板1は、上下に対向した風吸
出口間に移動され、この風吸出口から風をガラス板面に
吹き付けて、ガラス板表面の冷却熱伝達率が40〜60
kcal/m”h”cになる様にし、ガラス板の温度が
歪点以下(通常のソーダライムガラスの場合には520
℃以下、好ましくは480℃以下)になる迄冷却する。
FIG. 10 shows a specific example used for manufacturing the heat-treated glass plate of the present invention, and in the figure,
1 is a glass plate of 5~l O++u++ thickness to be heat treated;
2 is a roller hearth, 3 is a conveyor roll for a glass plate, 4 is a heating device for a glass plate, 5 is a wind outlet provided vertically facing each other, and 6 is a cooling furnace surface coating surface provided vertically facing each other. show. Only one wind outlet 5 may be provided as shown in Fig. 10, and the cooling heat transfer coefficient of the glass plate surface may be controlled by controlling the strength of the wind from the wind outlet 5 using a program or the like. Alternatively, two or more air outlets may be provided to vary the air volume. The glass plate 1 to be heat treated is heated to a temperature sufficient to strengthen the glass plate, for example, 570° C. to 6° C., while being horizontally conveyed or slid horizontally in a roller hearth 2 by a conveying roll 3.
Heated to 60°C. (Heating process) The glass plate 1 taken out from the roller hearth 2 is moved between vertically opposed wind suction ports, and air is blown onto the glass plate surface from the wind suction ports to transfer cooling heat to the glass plate surface. Rate is 40-60
kcal/m"h"c, and the temperature of the glass plate is below the strain point (520°C for normal soda lime glass).
℃ or lower, preferably 480℃ or lower).

(初期冷却工程)この際の、゛最適な冷却熱伝達率は6
mm厚のガラス板で約60kca1/m2h℃、8mm
厚のガラス板で約50kcal/m2h’c、10mm
厚のガラス板で約40kcal/m”h ’Cである。
(Initial cooling process) At this time, the optimum cooling heat transfer coefficient is 6
Approximately 60kca1/m2h℃, 8mm for a mm thick glass plate
Approximately 50kcal/m2h'c, 10mm with thick glass plate
It is approximately 40kcal/m"h'C for a thick glass plate.

またこの時、吹き付ける空気の温度を50℃〜400℃
の熱風にすれば、吹き付ける風の圧力は0.1〜lOm
nAgにすることにより、ガラス板表面の熱伝達率が4
0〜60kcal/m2h’cになる様に制御できる。
Also, at this time, the temperature of the air being blown should be between 50℃ and 400℃.
If the hot air is
By using nAg, the heat transfer coefficient of the glass plate surface is 4
It can be controlled to be 0 to 60 kcal/m2h'c.

さらにこの場合、風吹出口或いは冷却炉壁は、鏡面加工
した5US304等で輻射率を0.1以下にし、輻射に
よる冷却を押えれば、ガラス板表面の冷却熱伝達率をよ
り制御し易くなるので好ましい。
Furthermore, in this case, if the air outlet or the cooling furnace wall is made of mirror-finished 5US304 or the like with an emissivity of 0.1 or less and cooling by radiation is suppressed, it will be easier to control the cooling heat transfer coefficient of the glass plate surface. preferable.

このようにして、ガラス板の温度が歪点以下に下がった
ら、次いで、冷却能を漸増させながら、即ち通常はガラ
ス板表面の冷却熱伝達率を漸増させながら冷却を行なう
。(移行工程)この漸増の割合は、あまり大きすぎると
ガラス板の破損等を生じる原因になり、あまり小さすぎ
ると生産性を向上するという本発明の効果が小さいため
、ガラス板の厚みに応じである程度の幅のなかに設定す
ることが好ましい。
Once the temperature of the glass plate has fallen below the strain point in this way, cooling is then carried out while gradually increasing the cooling capacity, that is, usually while gradually increasing the cooling heat transfer coefficient of the surface of the glass plate. (Transition process) If the rate of gradual increase is too large, it may cause damage to the glass plate, and if it is too small, the effect of the present invention in improving productivity will be small. It is preferable to set it within a certain range.

具体的には、6mm厚のガラス板では、2〜4 kca
l/m2h”c 5 8mm厚のガラス板では、 1〜3 kcal/m”h@c 5 10mm厚のガラス板では、 0 、 5〜2 、 5 kca1/m2h℃ sにす
るのが好ましい。
Specifically, for a 6mm thick glass plate, 2 to 4 kca
l/m2h"c 5 For an 8 mm thick glass plate, it is preferably 1 to 3 kcal/m"h@c 5 For a 10 mm thick glass plate, it is preferably 0, 5 to 2, 5 kcal/m2hC s.

ガラス板表面の冷却熱伝達率が100〜120kcal
/m”h″Csに達したら、以後はその熱伝達率を保持
しながら冷却する。(二次冷却工程)以上のことから容
易に理解されるように、移行工程に要する時間は、ガラ
ス板の厚みに依存するが、おおよそ20〜40秒である
The cooling heat transfer coefficient of the glass plate surface is 100 to 120 kcal
/m"h"Cs, cooling is performed thereafter while maintaining that heat transfer coefficient. (Secondary Cooling Step) As can be easily understood from the above, the time required for the transition step depends on the thickness of the glass plate, but is approximately 20 to 40 seconds.

典型的なガラス板表面の冷却熱伝達率の推移をガラス板
厚ごとに第16図に示した。ここにおいて、横軸は時間
、縦軸は冷却熱伝達率を示している。
Figure 16 shows the changes in the cooling heat transfer coefficient of a typical glass plate surface for each glass plate thickness. Here, the horizontal axis represents time, and the vertical axis represents cooling heat transfer coefficient.

こうして表面の冷却熱伝達率を増加させて冷却したもの
については、240秒〜420秒程度の時間で1サイク
ルの熱処理が行なえる。これは従来の熱処理法に比べて
約%〜Hの時間であり、本発明に係るガラス板の熱処理
方法を採用することにより、大幅な生産性の向上が可能
となることがわかる。
When the surface is cooled by increasing the cooling heat transfer coefficient, one cycle of heat treatment can be performed in about 240 seconds to 420 seconds. This is a time of about %~H compared to the conventional heat treatment method, and it can be seen that by employing the glass plate heat treatment method according to the present invention, it is possible to significantly improve productivity.

このあと、風吹出口からガラス板を取り出し、所定の応
力値及び応力分布をもった強化ガラス板製品とする。
Thereafter, the glass plate is taken out from the air outlet and is made into a tempered glass plate product having a predetermined stress value and stress distribution.

前述した本発明の熱処理ガラス板の製l去は、ローラー
ハースを利用したものであるが、この方法に限らず、ガ
スハースを利用してガラス板を水平に搬送しながら加熱
し、ガスハースの出口から出た直後、加熱ガラス板を熱
処理する方法、あるいはガラス板を吊手により吊下げて
搬送しながら加熱炉内で加熱し、この加熱炉の出口から
出た直後、加熱ガラス板を熱処理する方法などによって
も同様に製造できる。
The heat-treated glass plate of the present invention is manufactured using a roller hearth as described above, but this method is not limited to this method.The glass plate is heated while being conveyed horizontally using a gas hearth, and the glass plate is heated from the outlet of the gas hearth. A method of heat-treating the heated glass plate immediately after it comes out, or a method of heating the glass plate in a heating furnace while hanging it from a hanger and transporting it, and then heat-treating the heated glass plate immediately after it comes out of the outlet of the heating furnace. It can also be manufactured in the same way.

[作 用] 本発明の方法により、中央引張応力σtが85〜200
kg/cm”の範囲となり、かつその表面圧縮応力σc
と中央引張応力σtとの比σc/σtが1.5〜3.0
の範囲にある熱処理ガラスが得られる理由については、
次の様に考えられる。
[Function] By the method of the present invention, the central tensile stress σt is 85 to 200.
kg/cm” and its surface compressive stress σc
and the central tensile stress σt, the ratio σc/σt is 1.5 to 3.0
The reason for obtaining heat-treated glass in the range of
It can be considered as follows.

軟化したガラス板を急冷すると、ガラス板断面方向の温
度分布はある遷移状態を経過したのちに定常状態となる
。通常ガラス板中心部の温度が固化温度(560〜57
0℃)を通過するときの温度分布(表面と中心の温度差
)がガラス板の強化度即ち中央引張応力と表面圧縮応力
を決定する。
When a softened glass plate is rapidly cooled, the temperature distribution in the cross-sectional direction of the glass plate reaches a steady state after passing through a certain transition state. Normally, the temperature at the center of the glass plate is the solidification temperature (560 to 57
The temperature distribution (difference in temperature between the surface and the center) when passing through the glass plate (0°C) determines the degree of reinforcement of the glass plate, that is, the central tensile stress and the surface compressive stress.

本発明の方法はこの軟化したガラス板が固化するときの
温度分布の制御に着目したものである。即ち、ガラス板
断面の温度分布は板厚が決まると冷却条件により一義的
に決まるので、この冷却条件を制御して、発生する強化
応力を制御するものである。
The method of the present invention focuses on controlling the temperature distribution when this softened glass plate is solidified. That is, once the thickness of the glass plate is determined, the temperature distribution in the cross section of the glass plate is uniquely determined by the cooling conditions, so the strengthening stress that occurs is controlled by controlling the cooling conditions.

[実施例] 上記した装置を用いて通常のソーダ・ライムガラス板(
歪点511℃、軟化点740℃)を第1表に示した条件
で熱処理し、その熱処理条件、得られた熱処理ガラス板
の中央引張応力σえ、表面圧縮応力σc、σJσ1、耐
風圧性を示す許容荷重(破壊確率1/1000以下)、
熱割れ試験結果(熱割れするまでのガラス板中央部と周
辺部の温度差)、−回の処理サイクルに必要な時間等を
実施例1〜3、比較例1〜4として第1表に示した。又
、実施例1〜3の熱処理ガラス板及び比較例1〜3の熱
処理ガラス板についてJISR3206の6−5に規定
された破壊試験を行なった時の破砕パターンを第5〜8
図に示す。
[Example] Using the above-mentioned apparatus, a normal soda-lime glass plate (
Strain point: 511°C, softening point: 740°C) was heat treated under the conditions shown in Table 1, and the heat treatment conditions, central tensile stress σ, surface compressive stress σc, σJσ1, and wind pressure resistance of the resulting heat-treated glass plate are shown. Allowable load (probability of failure 1/1000 or less),
Thermal cracking test results (temperature difference between the center and periphery of the glass plate until thermal cracking), the time required for - treatment cycles, etc. are shown in Table 1 as Examples 1 to 3 and Comparative Examples 1 to 4. Ta. In addition, the fracture patterns when the destructive test specified in JISR3206 6-5 was conducted on the heat-treated glass plates of Examples 1 to 3 and the heat-treated glass plates of Comparative Examples 1 to 3 were 5 to 8.
As shown in the figure.

第1表の実施例1〜3を比較例1〜3と比べることによ
り、本発明に係るガラス板の熱処理方法によれば、従来
法とほぼ同様の破砕パターンを示すガラス板が極めて短
い処理サイクルにて得られることがわかる。
By comparing Examples 1 to 3 in Table 1 with Comparative Examples 1 to 3, it can be seen that according to the heat treatment method for glass plates according to the present invention, glass plates showing almost the same crushing pattern as the conventional method can be obtained in an extremely short treatment cycle. It can be seen that it can be obtained by

上記実施例及び比較例におけるガラス板の表面圧縮応力
は東芝風冷強化硝子表面応力計FSM−30により測定
し、又、中央引張応力は次の様に測定したものである。
The surface compressive stress of the glass plates in the above Examples and Comparative Examples was measured using a Toshiba air-cooled tempered glass surface stress meter FSM-30, and the central tensile stress was measured as follows.

・中央引張応力の測定 第11図の様にガラス・サンプル11を水平に保持し、
端面に垂直にHe−Neレーザ12を、光源に偏光子1
3、レンズ14、絞り15を通した直線偏光Aを入射す
る。ガラス板11面に平行および垂直な方向を各々y、
z、入射方向をXとする。
・Measurement of central tensile stress Hold the glass sample 11 horizontally as shown in Figure 11,
A He-Ne laser 12 is installed perpendicular to the end face, and a polarizer 1 is used as a light source.
3. Linearly polarized light A that has passed through a lens 14 and an aperture 15 is incident. The directions parallel and perpendicular to the surface of the glass plate 11 are respectively y,
z, and the incident direction is X.

入射光の振動方向はy−z面で各軸に対し、45@の角
度になるようにする。
The vibration direction of the incident light is set to form an angle of 45@ with respect to each axis in the y-z plane.

ガラス板の端面から入射された直線偏光Aはガラスに内
在するy−z平面の主応力差によって、位相差を生じ、
第12図の様にy−z軸と45°の角度に軸を持つ楕円
−円一楕円一直線(入射光と直交)−楕円N円−楕円−
直線と偏光が変わり、位相差360°で元の入射光と振
動方向が同じ直線偏光に戻る。
Linearly polarized light A incident from the end surface of the glass plate produces a phase difference due to the principal stress difference in the y-z plane inherent in the glass,
As shown in Figure 12, an ellipse with its axis at an angle of 45° with the y-z axis - one circle, one ellipse, one straight line (orthogonal to the incident light) - an ellipse N circles - an ellipse -
The linear and polarized light changes, and returns to linearly polarized light with a phase difference of 360° and the same vibration direction as the original incident light.

この偏光はガラスの中で散乱され、光軸と直角をなすy
−z平面内のy、z軸と45°の方向から観察すると、
第13図のB又は第14図の様に1波長ごとのドツト状
に見える。
This polarized light is scattered within the glass and is oriented at right angles to the optical axis.
- When observed from the direction of 45 degrees with the y and z axes in the z plane,
As shown in FIG. 13B or FIG. 14, each wavelength looks like a dot.

フロート・ガラス板の散乱は非常に小さいため、観察し
ようとする散乱光は微弱である。このため、マイクロ・
チャンネル・イメージ・インテンシファイヤーを内蔵し
た暗視装置を使い、高感度テレビ・カメラ16を通して
モニタテレ?17上に散乱光のドツト・パターンを映し
出す。ポジション・アナライザー18と組み合わせて実
時間で長さを読みとる。
Since the scattering of the float glass plate is very small, the scattered light to be observed is weak. For this reason, micro
Using a night vision device with a built-in channel image intensifier, monitor TV through a high-sensitivity TV camera 16. A dot pattern of scattered light is projected onto 17. In combination with the position analyzer 18, the length can be read in real time.

このドツト1つが360° (1波長)の位相差に対応
するので、この実長さを測定すれば、光弾性定数をから
主応力差が計算できる。
Since one dot corresponds to a phase difference of 360° (one wavelength), by measuring this actual length, the principal stress difference can be calculated from the photoelastic constant.

ここで求めた主応力差Δσより中央部 σtを下式により求める。From the principal stress difference Δσ obtained here, the central part σt is determined by the following formula.

主応力差 △σ 張応力 oy=応力の平面方向の成分、即ち中央引張応力σt σ工:応力の厚み方向の成分(σ2尋○)ルニ  レー
ザ光波長(632,8mμmHe−Neレーザ)βλ:
360°の位相差に対応する光路差(cm)C:光弾性
定数2.63m u /cm/kg/am”(フロート
板) なお、本発明により製造される中央引張応力σtが85
〜200kg/cm”、表面圧縮応力σcが127〜6
00kg/cm”、更に好ましくは200〜300kg
/cm”の熱処理ガラス板の上記各応力値とは、第15
図の様に熱処理ガラス板の周辺部の4点Pと中央部の1
点Qの5点における測定値を平均したものを示したもの
であり、平均値として捕えたものである。
Principal stress difference △σ Tensile stress oy = Component of stress in the plane direction, i.e. central tensile stress σt σ: Component of stress in the thickness direction (σ2 fathom○) Luni Laser light wavelength (632.8 mm He-Ne laser) βλ:
Optical path difference (cm) corresponding to a 360° phase difference C: Photoelastic constant 2.63 m u /cm/kg/am'' (float plate) Note that the central tensile stress σt manufactured by the present invention is 85
~200kg/cm”, surface compressive stress σc is 127~6
00kg/cm”, more preferably 200 to 300kg
/cm", the above stress values of the heat-treated glass plate are the 15th
As shown in the figure, 4 points P on the periphery of the heat-treated glass plate and 1 point on the center.
It shows the average of the measured values at five points, including point Q, and is taken as an average value.

[発明の効果] 本発明によれば、耐風圧強度が実用上充分で、且つ熱割
れすることがなく、更にクラックがガラス板に入っても
クラックが自走せず、細かい破砕に割れることがない熱
処理ガラスを生産性良く提供することが出来る。このガ
ラス板は割れても破片の一部或いは全体が窓枠から脱落
する危険性が少なく、ビル、住宅等の建築用ガラス板と
して有用である。特にガラス板の破片の落下の危険性の
ないガラス板が要求される中、高層ビル用の窓用ビルガ
ラス板として本発明の熱処理ガラス板は最適である。
[Effects of the Invention] According to the present invention, the wind pressure strength is practically sufficient and there is no thermal cracking, and even if a crack enters the glass plate, the crack does not propagate on its own and does not break into small pieces. It is possible to provide heat-treated glass with high productivity. Even if this glass plate breaks, there is little risk that some or all of the pieces will fall off the window frame, and it is useful as a glass plate for construction of buildings, houses, etc. In particular, there is a demand for a glass plate that is free from the risk of glass fragments falling, and the heat-treated glass plate of the present invention is most suitable as a building glass plate for windows of high-rise buildings.

中でも、熱割れの危険性の高い窓用、あるいはスパンド
レル用に使用される熱線吸収ガラス板、着色コートガラ
ス板、熱線反射ガラス板等のガラス板に対し、本発明の
熱処理ガラス板は好適である。
Among these, the heat-treated glass plate of the present invention is suitable for glass plates such as heat-absorbing glass plates, colored coated glass plates, and heat-reflecting glass plates used for windows or spandrels that have a high risk of thermal cracking. .

又、本発明によるガラス板は耐風圧強度及び熱割れ強度
が向上され、又クラック自走防止がh 火 ・h −r
I\ t ハ哨   l翔1 与 lギ  件本1八−
−百ハ イ ネス板が使用されていた。中高層用の上坂
窓ガラス板を本発明による6mm厚の熱処理ガラス板に
、又12mm厚の従来の上坂窓ガラス板を本発明による
8+n+++厚の熱処理ガラス板に置き換えることがで
き、ガラス板の軽量化を図れる。
In addition, the glass plate according to the present invention has improved wind pressure strength and thermal cracking strength, and also has improved crack self-propagation prevention.
I\ THA L Sho 1 Legged Lug Book 18-
−100 Highness board was used. Uesaka window glass sheets for mid-to-high-rise buildings can be replaced with 6 mm thick heat-treated glass sheets according to the present invention, and 12 mm thick conventional Uesaka window glass sheets can be replaced with 8+n+++ thick heat-treated glass sheets according to the present invention, thereby reducing the weight of the glass sheets. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜第3図は、従来の強化ガラス板の厚さ方向の断面
の応力分布図、第4図は本発明の方法により製造された
熱処理ガラス板の厚さ方向の断面の応力分布図、第5図
は比較例に係るガラス板の破砕パターン図、第6〜8図
は本発明装置の一具体例に係る概略図、第11図はガラ
ス板の中央引張応力を測定する為の装置の概略図、第1
2〜14図はガラス板の中央引張応力の測定原理を示す
為の説明図、第15図は応力の測定点を示す説明図、第
16図は本発明に係るガラス板の熱処理時におけるガラ
ス板表面のA+n肺l二こ去Itl小十績拉也二十H二
1鴫七フl:熱処理されるガラス板、2:ローラーハー
ス炉、3:搬送ロール、4ニガラス板の加熱装置、5:
風吹出口。 71昭 f3悶 才2閾 74濁 71−5 洩 千7 図 矛 う 図 オb図 !−8図 第 0 図 才 )I′I 才!2時 オフ3垣 才/4 )’A 才/ぷ扇 手続補正書 平成1年10月ユ4日
1 to 3 are stress distribution diagrams of a cross section in the thickness direction of a conventional tempered glass plate, and FIG. 4 is a stress distribution diagram of a cross section in the thickness direction of a heat-treated glass plate manufactured by the method of the present invention. Fig. 5 is a diagram of the crushing pattern of a glass plate according to a comparative example, Figs. 6 to 8 are schematic diagrams of a specific example of the apparatus of the present invention, and Fig. 11 is a diagram of an apparatus for measuring the central tensile stress of a glass plate. Schematic diagram, 1st
Figures 2 to 14 are explanatory diagrams showing the principle of measuring the central tensile stress of a glass plate, Figure 15 is an explanatory diagram showing stress measurement points, and Figure 16 is a glass plate during heat treatment of the glass plate according to the present invention. Surface A + n lungs 2 Kochi Itl Kojuki Laya 20H21 7Fl: Glass plate to be heat treated, 2: Roller hearth furnace, 3: Conveyance roll, 4 Heating device for glass plate, 5:
Wind outlet. 71 Sho f3 Agony 2 Threshold 74 Muddy 71-5 Yusen 7 Diagram contradictory diagram and b diagram! -8 Figure 0 Figure Sai) I'I Sai! 2 o'clock off 3 Kakisai/4) 'A Sai/Puogi procedural amendment October 4, 1999

Claims (1)

【特許請求の範囲】[Claims] (1)板厚が5mm〜12mmのガラス板を570℃〜
660℃に加熱する加熱工程と、このガラスを加熱炉か
ら取出し、その後直ちにこのガラス表面に空気を吹き付
けてガラス板表面の冷却熱伝達率を40〜60kcal
/m^2h℃としてガラス板の歪点温度以下迄冷却する
初期冷却工程と、次いで冷却熱伝達率を漸増しながらガ
ラス板を冷却する移行工程と、冷却熱伝達率が100〜
120kca1/m^2h℃に達したところで冷却熱伝
達率を保持しつつガラス板を冷却する二次冷却工程を有
し、この処理されたガラス板の中央引張応力σtが85
〜200kg/cm^2の範囲となり、かつその表面圧
縮応力σcと中央引張応力σtとの比σc/σtが1.
5〜3.0の範囲となる様に制御することを特徴とする
ガラス板の熱処理方法。
(1) Glass plate with a thickness of 5 mm to 12 mm at 570°C
A heating process of heating the glass to 660°C, and then taking out the glass from the heating furnace, immediately blowing air onto the glass surface to increase the cooling heat transfer coefficient of the glass plate surface to 40 to 60 kcal.
/m^2h℃ to below the strain point temperature of the glass plate, followed by a transition process in which the glass plate is cooled while gradually increasing the cooling heat transfer coefficient, and the cooling heat transfer coefficient is 100~
When the temperature reaches 120kca1/m^2h℃, there is a secondary cooling process in which the glass plate is cooled while maintaining the cooling heat transfer coefficient, and the central tensile stress σt of the treated glass plate is 85
~200 kg/cm^2, and the ratio σc/σt of the surface compressive stress σc and the central tensile stress σt is 1.
A method for heat treatment of a glass plate, characterized in that the heat treatment is controlled to be in the range of 5 to 3.0.
JP17796189A 1989-07-12 1989-07-12 Heat treatment method for glass plate Expired - Fee Related JPH0653585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17796189A JPH0653585B2 (en) 1989-07-12 1989-07-12 Heat treatment method for glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17796189A JPH0653585B2 (en) 1989-07-12 1989-07-12 Heat treatment method for glass plate

Publications (2)

Publication Number Publication Date
JPH0345526A true JPH0345526A (en) 1991-02-27
JPH0653585B2 JPH0653585B2 (en) 1994-07-20

Family

ID=16040107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17796189A Expired - Fee Related JPH0653585B2 (en) 1989-07-12 1989-07-12 Heat treatment method for glass plate

Country Status (1)

Country Link
JP (1) JPH0653585B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659100A1 (en) * 2004-11-22 2006-05-24 Tamglass Ltd. Oy Method and apparatus for controlling a treatment process in safety glass production
CN102942300A (en) * 2012-12-03 2013-02-27 洛阳兰迪玻璃机器股份有限公司 Glass geometric parameter measurement system based on linear array ultraviolet detector
US9296638B2 (en) 2014-07-31 2016-03-29 Corning Incorporated Thermally tempered glass and methods and apparatuses for thermal tempering of glass
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
US12064938B2 (en) 2019-04-23 2024-08-20 Corning Incorporated Glass laminates having determined stress profiles and methods of making the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659100A1 (en) * 2004-11-22 2006-05-24 Tamglass Ltd. Oy Method and apparatus for controlling a treatment process in safety glass production
CN102942300A (en) * 2012-12-03 2013-02-27 洛阳兰迪玻璃机器股份有限公司 Glass geometric parameter measurement system based on linear array ultraviolet detector
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US9783448B2 (en) 2014-07-31 2017-10-10 Corning Incorporated Thin dicing glass article
US9802853B2 (en) 2014-07-31 2017-10-31 Corning Incorporated Fictive temperature in damage-resistant glass having improved mechanical characteristics
US9975801B2 (en) 2014-07-31 2018-05-22 Corning Incorporated High strength glass having improved mechanical characteristics
US10005691B2 (en) 2014-07-31 2018-06-26 Corning Incorporated Damage resistant glass article
US10077204B2 (en) 2014-07-31 2018-09-18 Corning Incorporated Thin safety glass having improved mechanical characteristics
US10233111B2 (en) 2014-07-31 2019-03-19 Corning Incorporated Thermally tempered glass and methods and apparatuses for thermal tempering of glass
US9296638B2 (en) 2014-07-31 2016-03-29 Corning Incorporated Thermally tempered glass and methods and apparatuses for thermal tempering of glass
US9776905B2 (en) 2014-07-31 2017-10-03 Corning Incorporated Highly strengthened glass article
US11891324B2 (en) 2014-07-31 2024-02-06 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US12064938B2 (en) 2019-04-23 2024-08-20 Corning Incorporated Glass laminates having determined stress profiles and methods of making the same
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US12043575B2 (en) 2019-08-06 2024-07-23 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same

Also Published As

Publication number Publication date
JPH0653585B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US3107196A (en) Heat treatment of glass and product
JPH0345526A (en) Heat treatment of glass plate
TW201930215A (en) Glass-based articles having stress profiles with high stored energy and methods of manufacture
JP2019514827A (en) High strength ultra thin glass and method for producing the same
EP3053888B1 (en) Method for producing glass sheet
JP2017206434A (en) Asymmetrization method of hydrogen content, manufacturing method of tabular glass article capable of being chemically reinforced at high level, glass article obtained according to the method
JPH0769669A (en) Fire prevention safe plate glass
JP2015187070A (en) Float process for producing float glass pane and float glass pane
Zijlstra et al. Fracture phenomena and strength properties of chemically and physically strengthened glass: I. General survey of strength and fracture behaviour of strengthened glass
EP3100986B1 (en) Process for producing glass plate and uses of glass plate
US20180009703A1 (en) Glass plate and manufacturing method thereof
JPH02175624A (en) Heat-treated glass plate and production thereof
JPS5925734B2 (en) Glass plate heat treatment method
JPS598631A (en) Preparation of improved heat-treated glass plate
TWI746646B (en) Compositional modification of glass articles through laser heating and methods for making the same and optical waveguide device, electronic device
JPS6238288B2 (en)
JPS598627A (en) Heat-treated glass plate and preparation thereof
US20190047893A1 (en) Thermally strengthened photochromic glass and related systems and methods
McMaster Fundamentals of tempered glass
JP2003306343A (en) Fireproof glazing
SU1677028A1 (en) Method of heat treatment of glass products
JPS5925735B2 (en) Manufacturing method of heat treated glass plate
JPH0331656B2 (en)
JPS6335581B2 (en)
KR20220107218A (en) 3D glass-ceramic articles and methods of making them

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees