JP2010112718A - Method for measuring temperature distribution in air path - Google Patents

Method for measuring temperature distribution in air path Download PDF

Info

Publication number
JP2010112718A
JP2010112718A JP2008282898A JP2008282898A JP2010112718A JP 2010112718 A JP2010112718 A JP 2010112718A JP 2008282898 A JP2008282898 A JP 2008282898A JP 2008282898 A JP2008282898 A JP 2008282898A JP 2010112718 A JP2010112718 A JP 2010112718A
Authority
JP
Japan
Prior art keywords
air
air path
temperature distribution
path
predetermined member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008282898A
Other languages
Japanese (ja)
Other versions
JP5421570B2 (en
Inventor
Masahiro Ikeda
昌弘 池田
Naoki Aizawa
直樹 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2008282898A priority Critical patent/JP5421570B2/en
Publication of JP2010112718A publication Critical patent/JP2010112718A/en
Application granted granted Critical
Publication of JP5421570B2 publication Critical patent/JP5421570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring a temperature distribution in an air path which measures the temperature distribution in the air path within an air conditioner. <P>SOLUTION: The method for measuring the temperature distribution in the air path which measures the temperature distribution in the air path 3 within the air conditioner 1 has: an occlusion process for occluding an opening 12 provided in an exterior 2 of the air conditioner 1 and opening the middle of the air path 3 by a predetermined member 14 for transmitting infrared rays; and a measurement process for measuring the temperature distribution in the air path 3, based on an energy distribution of the infrared rays transmitted through the predetermined member 14 which is obtained by an infrared camera 15 for capturing an image within the air path 3 through the opening 12. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、空気経路の温度分布計測方法に関する。   The present invention relates to a temperature distribution measuring method for an air path.

ビル等の建物には、冷凍機で生成された冷水やボイラで生成された蒸気を使った空調システムが導入されている。空調用の空気と冷水や蒸気との熱交換は、熱交換器を内蔵した空調機器で行われる。   In buildings such as buildings, air conditioning systems using cold water generated by refrigerators and steam generated by boilers are introduced. Heat exchange between air for air conditioning and cold water or steam is performed by an air conditioner with a built-in heat exchanger.

空調機器の熱交換器における熱交換は、温度差を利用して行われる。このため、熱交換器に流入する空気の温度分布にばらつきがあると、熱交換器の性能が十分に発揮されない。そこで、空調機器内の空気経路の温度分布を可視化することが望まれる。例えば、特許文献1には、光プローブで赤外線を赤外線カメラに導いて温度分布を計測する技術が開示されている。また、特許文献2には、気体が流れる前と後の画像データを比較し、気体が流れた際の微小な温度変化を基に気体の流れを可視化する技術が開示されている。また、特許文献3には、物に光を当ててその表面を均等に加熱し、物の表面を流れる流体の流れを物の表面温度の分布で計測する技術が開示されている。
特開2005−337739号公報 特開平7−225156号公報 特公平5−47069号公報
Heat exchange in the heat exchanger of the air conditioner is performed using a temperature difference. For this reason, if there is variation in the temperature distribution of the air flowing into the heat exchanger, the performance of the heat exchanger is not sufficiently exhibited. Therefore, it is desired to visualize the temperature distribution of the air path in the air conditioner. For example, Patent Document 1 discloses a technique for measuring temperature distribution by guiding infrared rays to an infrared camera with an optical probe. Patent Document 2 discloses a technique for comparing the image data before and after the gas flow, and visualizing the gas flow based on a minute temperature change when the gas flows. Patent Document 3 discloses a technique in which light is applied to an object to uniformly heat the surface of the object, and the flow of fluid flowing on the surface of the object is measured by the distribution of the surface temperature of the object.
JP 2005-337739 A JP 7-225156 A Japanese Patent Publication No. 5-47069

赤外線カメラを空調機器の内部に設置できない場合、開口部から内部を撮影することになる。しかし、空調機器内の空気経路が外部と連通した状態では空気の流れが変化してしまい、機器内の空気経路の温度分布を正しく計測できない。本発明は、係る問題に鑑みなされたものであり、空調機器内の空気経路の温度分布を計測可能にする温度分布計測方法を提供することを課題とする。   When the infrared camera cannot be installed inside the air conditioner, the inside is photographed from the opening. However, when the air path in the air conditioner communicates with the outside, the air flow changes, and the temperature distribution of the air path in the apparatus cannot be measured correctly. This invention is made | formed in view of the problem which concerns, and makes it a subject to provide the temperature distribution measuring method which makes it possible to measure the temperature distribution of the air path | route in air-conditioning equipment.

本発明は、上記課題を解決するため、空調機器の外装部分に設けられた開口部を、赤外線を透過可能な材料で塞ぎ、これを透過した赤外線のエネルギー分布で空気経路の温度分布を計測する。   In order to solve the above-mentioned problems, the present invention closes an opening provided in an exterior part of an air conditioner with a material that can transmit infrared rays, and measures the temperature distribution of the air path by the energy distribution of infrared rays that have passed through the openings. .

詳細には、空調機器の内部にある空気経路の温度分布を計測する温度分布計測方法であって、前記空調機器の外装部分に設けられ、前記空気経路の途中を開口する開口部を、赤外線を透過可能な所定部材で塞ぐ閉塞工程と、前記開口部から前記空気経路内を撮影する赤外線カメラによって得られる、前記所定の部材を透過した赤外線のエネルギー分布に基づいて、該空気経路の温度分布を計測する計測工程と、を有する。   Specifically, it is a temperature distribution measurement method for measuring the temperature distribution of an air path inside an air conditioner, and is provided in an exterior portion of the air conditioner, and an opening that opens in the middle of the air path is made infrared. The temperature distribution of the air path is determined based on the blockage step of blocking with a predetermined member that can be transmitted and the energy distribution of infrared light transmitted through the predetermined member obtained by an infrared camera that images the inside of the air path from the opening. And a measuring step for measuring.

上記空調機器の温度分布計測方法は、空調機器の内部にある空気経路の温度分布を計測するものである。係る温度分布計測方法は、温度分布が問題となる空気経路に適用されることでその効果を有意に発揮する。このような空気経路としては、例えば、互いに温度が異なる二種以上の空気が混ざる経路等が挙げられる。   The temperature distribution measuring method for the air conditioner measures the temperature distribution of the air path inside the air conditioner. Such a temperature distribution measuring method exhibits its effect significantly by being applied to an air path in which the temperature distribution is a problem. Examples of such an air path include a path where two or more kinds of air having different temperatures are mixed.

空気経路は、空気を案内するため、基本的に空気経路の周囲の空間から閉じられている。途中に開口部分があると空気が漏れ出し、空気を適切に案内できないためである。しかし、周囲の空間から閉じられた空気経路内の温度分布を赤外線カメラで捉える場合、空気
経路の途中で不可避的に開口することになる。そこで、上記温度分布計測方法では、空気経路内を可視状態にする開口部を、赤外線を透過し且つ空気の流れを遮ることができる所定部材で塞ぐ。これにより、空気経路の空気が開口部から漏れ出さなくなる。なお、所定部材とは、赤外線を透過可能なあらゆる部材であって開口部における空気の流通を阻止可能な部材であり、例えば、高密度ポリエチレンで形成されるフィルム等が挙げられる。高密度ポリエチレンは赤外線を透過可能であり且つ安価で機械的強度も優れるため、所定部材として好適に用いることができる。
The air path is basically closed from the space around the air path to guide the air. This is because if there is an opening in the middle, the air leaks and the air cannot be guided properly. However, when the temperature distribution in the air path closed from the surrounding space is captured by an infrared camera, the air path is inevitably opened in the air path. Therefore, in the above temperature distribution measuring method, the opening that makes the inside of the air path visible is closed with a predetermined member that can transmit infrared rays and block the flow of air. As a result, air in the air path does not leak from the opening. Note that the predetermined member is any member that can transmit infrared rays and can prevent air from flowing through the opening, and examples thereof include a film formed of high-density polyethylene. High-density polyethylene can transmit infrared rays, is inexpensive, and has excellent mechanical strength. Therefore, it can be suitably used as a predetermined member.

上記温度分布計測方法では、上記所定部材で塞がれた開口部から前記空気経路内を撮影する赤外線カメラにより、空気経路の温度分布を計測する。係る所定部材は、赤外線を透過可能であるため、所定部材を透過した赤外線を走査してエネルギーの分布を捉え、赤外線のエネルギー強度を温度に変換することで空気経路の温度分布を捉えることができる。   In the temperature distribution measuring method, the temperature distribution of the air path is measured by an infrared camera that takes an image of the inside of the air path from the opening blocked by the predetermined member. Since the predetermined member is capable of transmitting infrared light, the infrared light transmitted through the predetermined member is scanned to grasp the energy distribution, and the temperature distribution of the air path can be caught by converting the energy intensity of the infrared light into the temperature. .

なお、前記所定部材は、該所定部材を透過した前記赤外線のエネルギー分布が、該エネルギー分布に基づいて計測される前記温度分布により前記空気経路内の気流が明らかになる程度のエネルギー分布になるように、該所定部材の厚さが設定されるものであってもよい。所定部材の厚さがこのように設定されることにより、空気経路内の気流を、計測された空気経路の温度分布で捉えることが可能となる。   The predetermined member has an energy distribution such that the energy distribution of the infrared light transmitted through the predetermined member is such that the airflow in the air path is clarified by the temperature distribution measured based on the energy distribution. In addition, the thickness of the predetermined member may be set. By setting the thickness of the predetermined member in this way, the airflow in the air path can be captured by the measured temperature distribution of the air path.

また、前記空調機器は、2以上の経路からの空気が前記空気経路内で合流し、且つ合流した空気が該空気経路内の熱交換器を通過するものであってもよい。このような、二種以上の空気が交じり合う空気経路であれば、空気経路で温度分布にばらつきが生じやすいため、本発明の効果を有意に発揮することができる。   The air conditioner may be one in which air from two or more paths merges in the air path, and the merged air passes through a heat exchanger in the air path. If the air path is such that two or more kinds of air are mixed, the temperature distribution is likely to vary in the air path, so that the effect of the present invention can be exhibited significantly.

また、前記空調機器は、前記空気経路内の前記熱交換器の上流側に空気フィルタを有し、前記赤外線カメラは、前記空気経路内の前記空気フィルタを撮影するものであってもよい。固体が保有できる熱量は、気体よりも大きいため、両者が同じ温度の場合、気体から放たれる赤外線よりも固体から放たれる赤外線の方がエネルギーが強い。よって、上記赤外線カメラで計測される赤外線のエネルギー分布は、空気経路の内壁等を構成する構造物の表面からの赤外線によるものとなる。空気経路を流れる空気の流れを正確に把握するため、ここでは、空気経路内の空気フィルタを赤外線カメラで撮影することにしている。空気フィルタを通過する空気の温度が空気フィルタの表面から放たれる赤外線のエネルギーに比例したものとなるため、空気フィルタの表面の温度分布を計測することで空気経路内をどのように空気が流れているのかをより正確に把握することが可能となる。   The air conditioner may have an air filter on the upstream side of the heat exchanger in the air path, and the infrared camera may take an image of the air filter in the air path. Since the amount of heat that the solid can hold is greater than that of the gas, when both are at the same temperature, the infrared rays emitted from the solid are stronger than the infrared rays emitted from the gas. Therefore, the energy distribution of infrared rays measured by the infrared camera is due to infrared rays from the surface of the structure constituting the inner wall of the air path. Here, in order to accurately grasp the flow of air flowing through the air path, the air filter in the air path is photographed with an infrared camera. Since the temperature of the air that passes through the air filter is proportional to the infrared energy emitted from the surface of the air filter, how the air flows in the air path by measuring the temperature distribution on the surface of the air filter It becomes possible to grasp more accurately.

空調機器内の空気経路の温度分布を計測可能にする温度分布計測方法を提供することが可能になる。   It is possible to provide a temperature distribution measurement method that enables measurement of the temperature distribution of the air path in the air conditioner.

以下、本発明の実施形態を例示的に説明する。以下に示す実施形態は例示であり、本発明はこれらに限定されるものではない。   Hereinafter, embodiments of the present invention will be exemplarily described. Embodiment shown below is an illustration and this invention is not limited to these.

本実施形態では、2つの経路から流れる2種類の空気を混合する空調機器である混合チャンバ内の温度分布を計測する。図1は、本実施形態の適用対象である混合チャンバ1の構成図である。混合チャンバ1は、図1に示すように、直方体の外形を有する筐体2で外装部分が構成されている。   In this embodiment, the temperature distribution in the mixing chamber, which is an air conditioner that mixes two types of air flowing from two paths, is measured. FIG. 1 is a configuration diagram of a mixing chamber 1 to which the present embodiment is applied. As shown in FIG. 1, the mixing chamber 1 has an exterior portion composed of a housing 2 having a rectangular parallelepiped outer shape.

筐体2は、空気が流れる内部空間である空気経路3を有しており、混合チャンバ1の外装部分を構成する。筐体2は、その長手方向の一端に外気ダクト4および還気ダクト5が
繋がれ、他端に給気ダクト6が繋がれている。外気ダクト4は、屋外に繋がっており、屋外の空気を空気経路3内に導入する。また、還気ダクト5は、図示しない空調対象の室内と繋がっており、室内の空気を空気経路3内に導入する。給気ダクト6は、空調対象の室内と繋がっており、空気経路3のうち空調用に熱交換した後の空気を室内へ供給する。すなわち、筐体2の空気経路3では、外気ダクト4および還気ダクト5から給気ダクト6へ流れる空気が通過する。なお、筐体2の空気経路3内には、外気ダクト4および還気ダクト5の側から給気ダクト6の側へ向かって、空気フィルタ7、加熱コイル8、冷却コイル10、加湿器9、及び送風機11が順に配置されている。また、筐体2には、空気経路3内の一部を視認可能にする点検口12(本発明でいう開口部に相当する)が設けられている。点検口12には扉13が設けられており、通常は閉じられている。
The housing 2 has an air path 3 that is an internal space through which air flows, and constitutes an exterior portion of the mixing chamber 1. The casing 2 has an outside air duct 4 and a return air duct 5 connected to one end in the longitudinal direction, and an air supply duct 6 connected to the other end. The outside air duct 4 is connected to the outside and introduces outside air into the air path 3. The return air duct 5 is connected to an air-conditioning room (not shown), and introduces indoor air into the air path 3. The air supply duct 6 is connected to a room to be air-conditioned, and supplies air after heat exchange for air conditioning in the air path 3 to the room. That is, air flowing from the outside air duct 4 and the return air duct 5 to the air supply duct 6 passes through the air path 3 of the housing 2. In the air path 3 of the housing 2, an air filter 7, a heating coil 8, a cooling coil 10, a humidifier 9, from the outside air duct 4 and the return air duct 5 side toward the air supply duct 6 side, And the air blower 11 is arrange | positioned in order. In addition, the casing 2 is provided with an inspection port 12 (corresponding to an opening in the present invention) that allows a part of the air path 3 to be visually recognized. The inspection port 12 is provided with a door 13 and is normally closed.

空気フィルタ7は、外気ダクト4や還気ダクト5から流れる空気中の粉塵で加熱コイル8や冷却コイル10が汚れるのを防ぐために設けられるフィルタである。外気ダクト4および還気ダクト5を流れる空気は、空気フィルタ7の手前で合流する。   The air filter 7 is a filter provided to prevent the heating coil 8 and the cooling coil 10 from being contaminated by dust in the air flowing from the outside air duct 4 and the return air duct 5. The air flowing through the outside air duct 4 and the return air duct 5 merges before the air filter 7.

加熱コイル8は、図示しないボイラからの蒸気がコイル内を流れるフィン付きのヒーティングコイルであり、上流側から流れる空気と蒸気との間で熱交換を行う。加熱コイル8には、図示しないドレントラップが設けられており、コイル内の復水がボイラの給水系統に回収される。   The heating coil 8 is a heating coil with fins in which steam from a boiler (not shown) flows in the coil, and performs heat exchange between air flowing from the upstream side and steam. The heating coil 8 is provided with a drain trap (not shown), and the condensate in the coil is collected in the water supply system of the boiler.

加湿器9は、加熱コイル8へ供給される蒸気の一部が流れる配管や、この配管を流れる蒸気を筐体2内に噴射するノズルで構成されており、加湿器9を通過する空気を加湿する。なお、加熱コイル8や加湿器9は、外気温度の低い冬季に蒸気が通気される。   The humidifier 9 includes a pipe through which a part of the steam supplied to the heating coil 8 flows and a nozzle that injects the steam flowing through the pipe into the housing 2, and humidifies the air passing through the humidifier 9. To do. Note that steam is passed through the heating coil 8 and the humidifier 9 in winter when the outside air temperature is low.

冷却コイル10は、図示しない冷凍機からの冷水がコイル内を流れるフィン付きのクーリングコイルであり、上流側から流れる空気と蒸気との間で熱交換を行う。   The cooling coil 10 is a finned cooling coil in which cold water from a refrigerator (not shown) flows in the coil, and performs heat exchange between air flowing from the upstream side and steam.

図2は、本発明の一実施形態に係る空気経路の温度分布計測方法(以下、単に計測方法という)の処理フロー図である。本実施形態に係る計測方法は、図2に示すように、閉塞工程(S101)と計測工程(S102)とを有する。以下、図2の処理フロー図に沿って、本実施形態に係る計測方法を説明する。   FIG. 2 is a process flow diagram of an air path temperature distribution measuring method (hereinafter simply referred to as a measuring method) according to an embodiment of the present invention. As shown in FIG. 2, the measurement method according to the present embodiment includes a closing step (S101) and a measurement step (S102). Hereinafter, the measurement method according to the present embodiment will be described with reference to the processing flowchart of FIG.

本計測方法は、まず、点検口12を赤外線透過性のフィルムで塞ぐことから始まる(S101)。すなわち、扉13を開き(図3参照)、点検口12をフィルム14(本発明でいう所定部材に相当する)で塞ぐ(図4参照)。点検口12を塞ぐフィルム14は、いわゆる低圧法または中圧法で製造された高密度ポリエチレンのフィルムであり、波長が2.5〜4.0μm程度の中赤外線や波長が8〜14μm程度の遠赤外線の波長領域で赤外線の吸収が非常に少ないという性質を有する。なお、空気経路3の気流の状態が明らかになる程度に、その空気経路3内の温度分布が明確に計測されるようにするため、フィルム14の厚さを極めて薄くしている。すなわち、フィルム14を透過する際の赤外線のエネルギーの減衰により衰える温度分布の分解能が、少なくとも外気ダクト4からの空気と還気ダクト5からの空気とを区別可能な程度の分解能になるようにする。具体的には、後述する赤外線カメラで計測される空気経路3内の温度分布の分解能が、外気ダクト4の空気と還気ダクト5の空気との温度差を判別可能な程度の分解能になるようにする。例えば、外気ダクト4の空気が28℃程度であり、還気ダクト5の空気の温度が25℃程度である場合、赤外線カメラにより計測される空気経路3内の温度分布の分解能が3℃よりも細かい温度差まで計測できるように、フィルム14の厚さを設定する。但し、空気経路3内と筐体2の周囲との間の気圧差に耐えられる程度の厚さは確保する。   This measurement method starts by first closing the inspection port 12 with an infrared transparent film (S101). That is, the door 13 is opened (see FIG. 3), and the inspection port 12 is closed with a film 14 (corresponding to a predetermined member in the present invention) (see FIG. 4). The film 14 that closes the inspection port 12 is a high-density polyethylene film manufactured by a so-called low-pressure method or medium-pressure method, and has a mid-infrared wavelength of about 2.5 to 4.0 μm or a far-infrared wavelength of about 8 to 14 μm. In the wavelength region, the absorption of infrared rays is very small. Note that the thickness of the film 14 is extremely thin so that the temperature distribution in the air path 3 is clearly measured to such an extent that the state of the airflow in the air path 3 becomes clear. That is, the resolution of the temperature distribution that is attenuated by the attenuation of infrared energy when passing through the film 14 is set to a resolution that can distinguish at least the air from the outside air duct 4 and the air from the return air duct 5. . Specifically, the resolution of the temperature distribution in the air path 3 measured by an infrared camera described later is such that the temperature difference between the air in the outside air duct 4 and the air in the return air duct 5 can be determined. To. For example, when the air in the outside air duct 4 is about 28 ° C. and the temperature of the air in the return air duct 5 is about 25 ° C., the resolution of the temperature distribution in the air path 3 measured by the infrared camera is higher than 3 ° C. The thickness of the film 14 is set so that a fine temperature difference can be measured. However, a thickness that can withstand the pressure difference between the air path 3 and the periphery of the housing 2 is ensured.

なお、高密度ポリエチレンとは、エチレンが分岐を持たずに直鎖状に結合した合成樹脂
であり、その硬い性質に由来して硬質ポリエチレン、或いは製法に由来して中低圧法ポリエチレンとも呼ばれる。高密度ポリエチレンは、石油を元としたナフサを熱分解して得られるエチレンをラジカル重合して製造される。重合には、エチレンを常圧または数気圧程度の圧力を掛けながら溶媒中に吹き込んで重合する低圧法や、エチレンを数十〜百数十気圧の環境下で重合する中圧法がある。高密度ポリエチレンは、比重が約0.95であり、引っ張り強さや衝撃強さに優れる。耐熱性に関しては、−80℃の低温環境下から+110℃程度の高温環境下までその機械的な強度を保つことが可能である。
The high-density polyethylene is a synthetic resin in which ethylene is linearly bonded without branching, and is also referred to as hard polyethylene due to its hard property or medium-low pressure method polyethylene due to its production method. High density polyethylene is produced by radical polymerization of ethylene obtained by pyrolyzing naphtha based on petroleum. Polymerization includes a low pressure method in which ethylene is blown into a solvent while applying a pressure of about atmospheric pressure or several atmospheres, and an intermediate pressure method in which ethylene is polymerized in an environment of several tens to several tens of atmospheres. High density polyethylene has a specific gravity of about 0.95 and is excellent in tensile strength and impact strength. Regarding heat resistance, it is possible to maintain the mechanical strength from a low temperature environment of -80 ° C to a high temperature environment of about + 110 ° C.

次に、点検口12の前に赤外線カメラ15を設置する(図5参照)。赤外線カメラ15の向きは、点検口12の内部が見える位置であって、空気経路3内に配置される空気フィルタ7の表面を映すように設置する。そして、赤外線カメラ15を動作させて空気経路3の温度分布の計測を行う(S102)。これにより、空気経路3の温度分布が判り、経路内の空気の流れの状態を把握することができる。なお、この赤外線カメラ15は、赤外線を自ら発して物体からの反射を捉えて撮影するのではなく、物体が自らの熱で放つ赤外線を受動的に捉えて撮影するものである。   Next, an infrared camera 15 is installed in front of the inspection port 12 (see FIG. 5). The direction of the infrared camera 15 is a position where the inside of the inspection port 12 can be seen, and is installed so as to reflect the surface of the air filter 7 arranged in the air path 3. And the infrared camera 15 is operated and the temperature distribution of the air path 3 is measured (S102). Thereby, the temperature distribution of the air path 3 is known, and the state of the air flow in the path can be grasped. The infrared camera 15 does not shoot infrared rays by itself and capture reflections from the object, but passively captures and shoots infrared rays emitted by the object with its own heat.

図6は、赤外線カメラ15が撮影した空気経路3内の温度分布である。赤外線カメラ15は、図6に示すように、空気フィルタ7の表面やその周辺部分の温度分布を計測している。図6の温度分布から明らかなように、空気フィルタ7の表面は、上側の温度が下側の温度よりも高い。よって、この温度分布から、空気フィルタ7の上流側で合流している外気ダクト4からの空気と還気ダクト5からの空気は、十分に混合されないまま空気フィルタ7を通過していることが判る。すなわち、2つの経路から流れるそれぞれの空気が筐体2内で合流しても十分に混じり合わず、空気経路3内の上側を還気ダクト5からの空気が流れ、空気経路3内の下側を外気ダクト4からの空気が流れていることが判る。   FIG. 6 is a temperature distribution in the air path 3 taken by the infrared camera 15. As shown in FIG. 6, the infrared camera 15 measures the temperature distribution on the surface of the air filter 7 and its peripheral portion. As is apparent from the temperature distribution of FIG. 6, the upper temperature of the surface of the air filter 7 is higher than the lower temperature. Therefore, it can be seen from this temperature distribution that the air from the outside air duct 4 and the air from the return air duct 5 that merge together on the upstream side of the air filter 7 pass through the air filter 7 without being sufficiently mixed. . That is, even if the air flowing from the two paths merges in the housing 2, the air does not sufficiently mix, the air from the return air duct 5 flows on the upper side in the air path 3, and the lower side in the air path 3 It can be seen that the air from the outside air duct 4 is flowing.

本実施形態に係る計測方法で混合チャンバ1内の空気の流れが判るようになることで、次のようなことが判る。すなわち、外気ダクト4からの空気と還気ダクト5からの空気とが十分に混じり合わないまま冷却コイル10や加熱コイル8を通過していることが判るようになる。よって、冷却コイル10を流れる冷水や加熱コイル8を流れる蒸気と空気経路3を流れる空気との温度差が小さい部分が生じていることを把握することができる。本実施形態に係る計測方法によれば、混合チャンバ1のような空調機器の内部の温度分布が把握できるようになることで、熱交換器の性能が十分に発揮されていないことを捉えることが可能となり、必要な改善策等の措置を講じることが可能となる。例えば、上記混合チャンバ1の場合であれば、空気フィルタ7の上流側に多数の邪魔板を配置することにより外気ダクト4からの空気と還気ダクト5からの空気とが十分に混合されるようにする等の改善策を講じ、冷却コイル10や加熱コイル8の効率を高めることができる。   As the flow of air in the mixing chamber 1 can be determined by the measurement method according to the present embodiment, the following can be understood. That is, it can be seen that the air from the outside air duct 4 and the air from the return air duct 5 pass through the cooling coil 10 and the heating coil 8 without being sufficiently mixed. Therefore, it can be understood that there is a portion where the temperature difference between the cold water flowing through the cooling coil 10 or the steam flowing through the heating coil 8 and the air flowing through the air path 3 is small. According to the measurement method according to the present embodiment, it becomes possible to grasp the temperature distribution inside the air conditioner such as the mixing chamber 1 so that the performance of the heat exchanger is not sufficiently exhibited. It becomes possible and measures such as necessary improvement measures can be taken. For example, in the case of the mixing chamber 1, the air from the outside air duct 4 and the air from the return air duct 5 are sufficiently mixed by arranging a number of baffle plates upstream of the air filter 7. Thus, the efficiency of the cooling coil 10 and the heating coil 8 can be increased.

なお、上記実施形態では、混合チャンバ1内の空気の流れを計測した温度分布で把握していたが、本発明はこのような実施形態に限定されるものではない。本発明に係る計測方法は、例えば、冷却コイルおよび加熱コイルの何れかのみ配置されるチャンバ内の温度分布や、その他、温度が互いに異なる複数種類の空気が混合するあらゆる流路の温度分布を計測するために適用することが可能である。   In the above embodiment, the temperature distribution obtained by measuring the air flow in the mixing chamber 1 is grasped. However, the present invention is not limited to such an embodiment. The measurement method according to the present invention measures, for example, the temperature distribution in a chamber in which only one of the cooling coil and the heating coil is arranged, and other temperature distributions in all flow paths in which plural types of air having different temperatures are mixed. It is possible to apply to

混合チャンバの構成図。The block diagram of a mixing chamber. 空気経路の温度分布計測方法の処理フロー図。The processing flow figure of the temperature distribution measurement method of an air path. 点検口がフィルムで塞がれる前の混合チャンバを示す図。The figure which shows the mixing chamber before the inspection port is closed with a film. 点検口がフィルムで塞がれた後の混合チャンバを示す図。The figure which shows the mixing chamber after the inspection port is obstruct | occluded with the film. 赤外線カメラによる計測状態を示す図。The figure which shows the measurement state by an infrared camera. 赤外線カメラが撮影した空気経路内の温度分布を示す図。The figure which shows the temperature distribution in the air path | route which the infrared camera image | photographed.

符号の説明Explanation of symbols

1・・・混合チャンバ
2・・・筐体
3・・・空気経路
12・・点検口
14・・フィルム
15・・赤外線カメラ
DESCRIPTION OF SYMBOLS 1 ... Mixing chamber 2 ... Housing 3 ... Air path 12 ... Inspection port 14 ... Film 15 ... Infrared camera

Claims (5)

空調機器の内部にある空気経路の温度分布を計測する温度分布計測方法であって、
前記空調機器の外装部分に設けられ、前記空気経路の途中を開口する開口部を、赤外線を透過可能な所定部材で塞ぐ閉塞工程と、
前記開口部から前記空気経路内を撮影する赤外線カメラによって得られる、前記所定の部材を透過した赤外線のエネルギー分布に基づいて、該空気経路の温度分布を計測する計測工程と、を有する、
空気経路の温度分布計測方法。
A temperature distribution measuring method for measuring a temperature distribution in an air path inside an air conditioner,
A blocking step that is provided in an exterior part of the air conditioner and that closes an opening that opens in the middle of the air path with a predetermined member that can transmit infrared rays;
A measurement step of measuring a temperature distribution of the air path based on an energy distribution of infrared light transmitted through the predetermined member obtained by an infrared camera that images the air path from the opening.
Temperature distribution measurement method for air path.
前記所定部材は、該所定部材を透過した前記赤外線のエネルギー分布が、該エネルギー分布に基づいて計測される前記温度分布により前記空気経路内の気流が明らかになる程度のエネルギー分布になるように、該所定部材の厚さが設定される、
請求項1に記載の空気経路の温度分布計測方法。
The predetermined member has an energy distribution such that the energy distribution of the infrared light transmitted through the predetermined member is such that the airflow in the air path is clarified by the temperature distribution measured based on the energy distribution. The thickness of the predetermined member is set,
The temperature distribution measuring method of the air path according to claim 1.
前記所定部材は、高密度ポリエチレンで形成されるフィルムである、
請求項1または2に記載の空気経路の温度分布計測方法。
The predetermined member is a film formed of high-density polyethylene,
The temperature distribution measuring method of the air path according to claim 1 or 2.
前記空調機器は、2以上の経路からの空気が前記空気経路内で合流し、且つ合流した空気が該空気経路内の熱交換器を通過する、
請求項1から3の何れか一項に記載の空気経路の温度分布計測方法。
In the air conditioner, air from two or more paths merges in the air path, and the merged air passes through a heat exchanger in the air path.
The method for measuring a temperature distribution in an air path according to any one of claims 1 to 3.
前記空調機器は、前記空気経路内の前記熱交換器の上流側に空気フィルタを有し、
前記赤外線カメラは、前記空気経路内の前記空気フィルタを撮影する、
請求項4に記載の空気経路の温度分布計測方法。
The air conditioner has an air filter on the upstream side of the heat exchanger in the air path,
The infrared camera images the air filter in the air path;
The temperature distribution measuring method of the air path according to claim 4.
JP2008282898A 2008-11-04 2008-11-04 Air path temperature distribution measurement method Active JP5421570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282898A JP5421570B2 (en) 2008-11-04 2008-11-04 Air path temperature distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282898A JP5421570B2 (en) 2008-11-04 2008-11-04 Air path temperature distribution measurement method

Publications (2)

Publication Number Publication Date
JP2010112718A true JP2010112718A (en) 2010-05-20
JP5421570B2 JP5421570B2 (en) 2014-02-19

Family

ID=42301395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282898A Active JP5421570B2 (en) 2008-11-04 2008-11-04 Air path temperature distribution measurement method

Country Status (1)

Country Link
JP (1) JP5421570B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117782324A (en) * 2024-02-26 2024-03-29 合肥航谱时代科技有限公司 High-precision infrared temperature measuring device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100339A (en) * 1986-06-20 1988-05-02 Nkk Corp Temperature distribution measuring instrument
JPH01176922A (en) * 1988-01-06 1989-07-13 Toshiba Corp Exhaust gas temperature detecting device for gas turbine
JPH0252944A (en) * 1988-08-15 1990-02-22 Hitachi Ltd Controller for total outdoor air air-conditioner
JPH03115820A (en) * 1989-09-28 1991-05-16 Mazda Motor Corp Method for measuring air temperature
JPH06137777A (en) * 1992-10-22 1994-05-20 Zexel Corp Heat exchanger
JPH07190862A (en) * 1993-12-27 1995-07-28 Uchu Kagaku Kenkyusho Detecting apparatus of temperature distribution of flame
JPH0921700A (en) * 1995-07-04 1997-01-21 Sumitomo Electric Ind Ltd Optical window member and manufacture thereof
JP2007045179A (en) * 2005-08-05 2007-02-22 Calsonic Kansei Corp Automotive air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100339A (en) * 1986-06-20 1988-05-02 Nkk Corp Temperature distribution measuring instrument
JPH01176922A (en) * 1988-01-06 1989-07-13 Toshiba Corp Exhaust gas temperature detecting device for gas turbine
JPH0252944A (en) * 1988-08-15 1990-02-22 Hitachi Ltd Controller for total outdoor air air-conditioner
JPH03115820A (en) * 1989-09-28 1991-05-16 Mazda Motor Corp Method for measuring air temperature
JPH06137777A (en) * 1992-10-22 1994-05-20 Zexel Corp Heat exchanger
JPH07190862A (en) * 1993-12-27 1995-07-28 Uchu Kagaku Kenkyusho Detecting apparatus of temperature distribution of flame
JPH0921700A (en) * 1995-07-04 1997-01-21 Sumitomo Electric Ind Ltd Optical window member and manufacture thereof
JP2007045179A (en) * 2005-08-05 2007-02-22 Calsonic Kansei Corp Automotive air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117782324A (en) * 2024-02-26 2024-03-29 合肥航谱时代科技有限公司 High-precision infrared temperature measuring device and method
CN117782324B (en) * 2024-02-26 2024-05-17 合肥航谱时代科技有限公司 High-precision infrared temperature measuring device and method

Also Published As

Publication number Publication date
JP5421570B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP6727421B2 (en) Indoor unit for refrigerant detection device and air conditioner
ES2369276T3 (en) PROCEDURE AND DEVICE FOR MONITORING THE FORMATION OF INCRUSTATIONS IN COMBUSTION CHAMBERS
BRPI1004845B1 (en) condensation management system, furnace that includes the same and condensation collection box
JP2007234791A (en) Electronic apparatus cooling device
JP2007024727A (en) Apparatus for measuring thermal performance of window
JP2007309628A (en) Thermal output measuring device and its measuring method for hot air generator, and air conditioner
CN102313471B (en) The function of cooling system monitors and/or control method and corresponding cooling system
CN110537145A (en) Projection type video display apparatus
Liu et al. A frosting limit model of air-to-air quasi-counter-flow membrane energy exchanger for use in cold climates
KR100914216B1 (en) Apparatus for testing air handling unit
JP5421570B2 (en) Air path temperature distribution measurement method
Pak et al. Impact of Fouling and Cleaning on Plate Fin and Spine Fin Heat Exchanger Performance.
KR102172259B1 (en) Examination apparatus for waterwall tube and waterwall tube analysys system having the same
KR102383336B1 (en) Moisture inflow prevent device of vehicle dust sensor
WO2019156107A1 (en) Refrigerant detection device and air conditioner
JP2019027662A (en) Indoor equipment of air conditioner
JP6511928B2 (en) Measuring device and combustion furnace equipment
JP2016217582A (en) Indoor unit, air conditioner and control method of indoor unit
JP2021156522A (en) Refrigeration cycle device
CN102248009B (en) Cooling device for diameter measuring instrument
TWI759757B (en) Optical characteristic measurement device and fabrication method thereof
JP3969701B2 (en) Air conditioning equipment management device
JP5495977B2 (en) Air conditioning ventilator
JP2020060486A (en) Leakage detection system and leakage detection method
US7715009B1 (en) Optical instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R150 Certificate of patent or registration of utility model

Ref document number: 5421570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150