JP3969701B2 - Air conditioning equipment management device - Google Patents
Air conditioning equipment management device Download PDFInfo
- Publication number
- JP3969701B2 JP3969701B2 JP2001355865A JP2001355865A JP3969701B2 JP 3969701 B2 JP3969701 B2 JP 3969701B2 JP 2001355865 A JP2001355865 A JP 2001355865A JP 2001355865 A JP2001355865 A JP 2001355865A JP 3969701 B2 JP3969701 B2 JP 3969701B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- air conditioning
- actually measured
- actual measurement
- flow velocity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
- Air Conditioning Control Device (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、加熱又は冷却した流体を、流路に循環させて空調を行う空調設備の異常を検出する空調設備管理装置に関する。
【0002】
【従来の技術】
空調設備の一例としての暖房設備では、建物の各部屋を貫通した流路に、ボイラにて加熱した温水を循環させて、各部屋を暖房する構成になっている。そして、従来では、このような空調設備を管理すべく、温水の流量、圧力その他の物理量をセンサにて実測し、それら各物理量が所定の基準範囲にそれぞれ収まっているか否かに基づいて、異常判定を行っていた。
【0003】
【発明が解決しようとする課題】
ところで、例えば、ボイラから流路に一定の流量の温水を送っている場合には、温水の流速(=[流量]/[流路の断面積])と圧力との間には、一定の関係が成立する。従って、温水の流速が変化すれば、これに連動して温水の圧力も変化する。このように、空調設備では、一般に空調用の流体に係る複数のパラメータのうち何れかのパラメータ同士が、相互に一定の関係を有して連動する構成になっている。
【0004】
しかしながら、従来では、流体に係る各パラメータの実測データが、それぞれ別々に設けた基準範囲に収まっているか否かのみに基づいて異常判定を行っていた。具体的に上記した暖房設備に関しては、従来では、温水の流速と圧力とが、それぞれ所定の基準範囲に入っていたか否かを、別々にチェックしていた。即ち、温水の流速と圧力とが、図4のグラフG1で示した一定の関係を有している場合でも、そのグラフG1とは無関係に、流速及び圧力の各上限値と下限値とで囲んだ矩形範囲W1内に、実測データが収まったか否かに基づいて、異常判定を行っていた。
【0005】
このため、例えば、図4のポイントD2に示すように、流速と圧力の実測データが共に下限値に近い値となって、理論曲線G1上に乗っている場合と、同ポイントD3に示すように、流速の実測データが下限値に近い値になり、かつ、圧力の実測データが上限値に近い値になって、理論曲線G1から大きく外れた場合とが、区別されることなく、共に異常なしと判断されていた。
【0006】
つまり、従来では、流体に係る各パラメータの実測値が、それぞれ別々に設けた基準範囲に収まっているか否かのみに基づいて異常判定を行っていたので、それら各パラメータの間の一定の関係が崩れるような現象を伴う異常を検出することができなかった。
【0007】
本発明は、上記事情に鑑みてなされたもので、従来より詳細に空調設備の管理を行うことが可能な空調設備管理装置の提供を目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するためになされた請求項1の発明に係る空調設備管理装置は、熱源にて強制的に加熱又は冷却した流体を、パイプに循環させて空調を行う空調設備の異常を検出する空調設備管理装置であって、パイプの2箇所に取り付けられて、流体の流速及び圧力をそれぞれ実測する1対のセンサヘッドと、一方のセンサヘッドが実測した流速及び圧力の実測データと、他方のセンサヘッドが実測した流速及び圧力の実測データとの計4つの実測データを取り込み、それら4つの実測データのうちの何れか3つの実測データをベルヌーイ方程式に代入して残り1つの実測データに対する基準値を演算すると共に、残り1つの実測データが所定の範囲内で基準値に一致したか否かに基づいて異常の有無を判別する信号処理部とを備えたところに特徴を有する。
【0011】
【発明の作用及び効果】
請求項1の空調設備管理装置では、一方のセンサヘッドがパイプの1箇所で実測した流速及び圧力の実測データと、他方のセンサヘッドがパイプの別の箇所で実測した流速及び圧力の実測データとの計4つの実測データを信号処理部に取り込み、それら4つの実測データのうちの何れか3つの実測データをベルヌーイ方程式に代入して残り1つの実測データに対する基準値を演算する。そして、残り1つの実測データが所定の範囲内で基準値に一致したか否かに基づいて異常の有無を判別する。このように、本発明によれば、パイプにおける2箇所の実測データの間でベルヌーイ方程式が成立しなくなる異常(例えば、流体の漏れ)を検出することができ、従来より詳細に空調設備の管理することが可能になる。
【0014】
【発明の実施の形態】
<第1実施形態>
以下、本発明を空調設備としての暖房設備10に適用した第1実施形態を図1〜図3に基づいて説明する。この暖房設備10は、図1に示すように、建物内の各部屋50を貫通したパイプ11に温水(本発明の「流体」に相当する)を流し、パイプ11から放熱した熱によって、各部屋50を暖房する構造になっている。
【0015】
暖房設備には、本発明の熱源としてのボイラ12と、パイプ11に温水を送るための図示しないポンプとが備えられている。そして、これらポンプ及びボイラ12の設定によって、所定の温度の温水を、所定の圧力及び流量でパイプ11に流すことができる。
【0016】
パイプ11は、基幹部13から各部屋50に向けて複数の枝部14を延ばした構造をなす。基幹部13は、ボイラ12から送給した温水が流される往路13Aと、ボイラ12に温水を戻すための復路13Bと、これら往路13Aと復路13Bとを繋ぐバイパス13Cとを備える。
【0017】
各枝部14は、バイパス13Cに並列して、往路13Aと復路13Bとの間を繋ぐようにして設けられ、これにより、往路13Aから各枝部14に温水が分配されると共に、各枝部14を通過した温水が復路13Bに回収される。また、枝部14は、各部屋50内で蛇行して、部屋50内における表面積が広く確保され、さらに、枝部14の途中に設けたバルブ15の操作によって、枝部14内を流れる温水の流量を変更することができる。
【0018】
さて、パイプ11のうち往路13Aと復路13Bの各基端部には、それぞれ管理装置20,20が設けれ、これら管理装置20,20が出力する実測データが信号処理装置40 に取り込まれて処理されている。そして、信号処理装置40と2台の管理装置20とによって、本発明に係る空調設備管理装置が構成されている。管理装置20は、図2に示すように流量センサ21と温度センサ22と圧力センサ23とを、1つのセンサヘッド24に纏めて固定し、かつ、このセンサヘッド24に信号処理部30を一体に設けた構造をなしている。
【0019】
センサヘッド24は、例えば、全体として円柱状をなし、パイプ11のバイパス13Cに連通したセンサ装着筒25に挿入されている。センサヘッド24の軸芯部分には、前記流量センサ21が設けられている。この流量センサ21は、電磁流量計であり、センサヘッド24の軸芯部に延ばしたコア27にコイル28を巻回して備えると共に、コア27を間に挟んだ両側に、1対の電極29,29を設け、それら電極29,29の先端をパイプ11内に突出させてある。そして、コイル28にて生成した交番磁界を、温水が直交して流れることで、電極29,29間に生じた起電力を検出し、この起電力に対応した温水の流量が測定される。
【0020】
また、センサヘッド24のうち先端外面寄りには、温度センサ22としてのサーミスタが設けられている。さらに、センサヘッド24には、先端面に開放した連通路26が設けられ、その連通路26の奥部に、圧力センサ23が設けられている。圧力センサ23は、前記連通路26の奥部に設けたダイヤフラム23Aの変形量に基づいて、温水の圧力を測定する構成になっている。
【0036】
信号処理装置40は、図示しないMPUを主要部として、ROM、RAMを備えた構成をなし、ROMに記憶したメインプログラムM2をランして、信号処理を行う。図3に示すように、メインプログラムM2では、まず、各管理装置20,20が実測した温水の流速及び圧力を取り込む(S30)。ここで、一方の管理装置20から取り込んだ流速及び圧力の実測データを、以下、流速V1及び圧力P1とし、他方の管理装置20から取り込んだ流速及び圧力を、流速V2及び圧力P2とすると、ベルヌーイ(Bernoulli)方程式から、
【0037】
P1+C1・V12=P2+C1・V22+C2・・・(1)
【0038】
が成立する。但し、上記式(1)においてC1は、単位質量wを2で除した定数であり、C2は、両管理装置20,20が取り付けられたパイプ11の高低差hに、重力加速度g及び単位質量wを乗じた定数である。そして、メインプログラムM2では、取り込んだ4つの実測データP1,P2,V1,V2のうちの、例えば圧力P1を除く、3つの実測データP2,V1,V2を上記式(1)に代入して、圧力の基準値P0を算出する(S31)。
【0039】
次いで、この圧力の基準値P0と、実測した圧力P1とが、所定の損失範囲C3内で一致したか否かをチェックし(S32)、一致しなかった場合には、遠隔表示部36に警告表示を行う(S33)。具体的には、例えば、パイプ11から温水が漏れるような事態が生じた場合には、ベルヌーイ方程式が成立しなくなるから、圧力の基準値P0と、実測した圧力P1とが、所定の損失範囲C3内で一致しなくなり、異常発生を検出することができる。このように、本実施形態によれば、従来より、詳細に暖房設備10(空調設備)を管理することができ、異常を早期に発見することが可能になる。
【0040】
<他の実施形態>
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)前記各実施形態では、管理装置20を、空調設備としての暖房設備10に設置したものを例示したが、管理装置20は、クーラに設置してもよい。即ち、本発明における「熱源」には、冷熱源が含まれる。
【0041】
(2)前記各実施形態の管理装置20に備えた流量センサ21は、電磁流量計であったが、流量計はこれに限られず、例えば、オリフィスやベンチュリ管を用いた流量計であってもよい。
【0043】
(3)また、本発明は、空調設備以外で、流路を備えた設備(例えば、化学プラント等における熱交換器)の異常検出装置に応用することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態に係る暖房設備(空調設備)の概念図
【図2】 管理装置の断面図
【図3】 信号処理装置でランされるメインプログラムのフローチャート
【図4】 流速と圧力との関係及び従来の異常判別の基準範囲を示したグラフ
【符号の説明】
10…暖房設備(空調設備)
11…パイプ
12…ボイラ(熱源)
20…管理装置
21…流量センサ
22…温度センサ
23…圧力センサ
30…信号処理部
40…信号処理装置(信号処理部)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner management apparatus that detects an abnormality in an air conditioner that performs air conditioning by circulating a heated or cooled fluid through a flow path.
[0002]
[Prior art]
Heating equipment as an example of air conditioning equipment is configured to heat each room by circulating hot water heated by a boiler through a flow path that passes through each room of a building. Conventionally, in order to manage such air conditioning equipment, the flow rate of hot water, pressure, and other physical quantities are measured with sensors, and abnormalities are determined based on whether each physical quantity is within a predetermined reference range. Judgment was made.
[0003]
[Problems to be solved by the invention]
By the way, for example, when a constant flow of hot water is sent from the boiler to the flow path, there is a fixed relationship between the flow rate of the hot water (= [flow rate] / [cross-sectional area of the flow path]) and the pressure. Is established. Therefore, if the flow rate of the hot water changes, the pressure of the hot water changes accordingly. As described above, in the air conditioning equipment, in general, any one of a plurality of parameters related to the air conditioning fluid has a certain relationship with each other and interlocks.
[0004]
However, conventionally, the abnormality determination is performed only based on whether or not the measured data of each parameter relating to the fluid is within a reference range provided separately. Specifically, with regard to the heating equipment described above, conventionally, it has been separately checked whether the flow rate and pressure of hot water are within a predetermined reference range. That is, even when the flow rate and pressure of the hot water have a certain relationship shown by the graph G1 in FIG. 4 , they are surrounded by the upper and lower limits of the flow rate and pressure regardless of the graph G1. The abnormality determination is performed based on whether or not the actually measured data is within the rectangular range W1.
[0005]
Therefore, for example, as shown at point D2 in FIG. 4 , when the measured data of the flow velocity and the pressure are both close to the lower limit values and are on the theoretical curve G1, as shown at the point D3. The case where the measured flow velocity data is close to the lower limit value and the measured pressure data is close to the upper limit value and deviates greatly from the theoretical curve G1 is not distinguished and there is no abnormality. It was judged.
[0006]
In other words, conventionally, the abnormality determination is performed based only on whether or not the actual measurement values of the parameters related to the fluid are within the reference ranges provided separately, and therefore there is a certain relationship between the parameters. An anomaly with a phenomenon that collapsed could not be detected.
[0007]
The present invention has been made in view of the above circumstances, and an object thereof is to provide an air conditioning equipment management apparatus capable of managing air conditioning equipment in more detail than before.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an air conditioning equipment management apparatus according to the invention of claim 1 detects an abnormality of an air conditioning equipment that performs air conditioning by circulating a fluid forcibly heated or cooled by a heat source through a pipe. An air-conditioning equipment management apparatus, which is attached to two locations of a pipe and which measures a flow velocity and a pressure of a fluid, a pair of sensor heads, a flow velocity and pressure measured by one sensor head, A total of four actual measurement data including the actual measurement data of the flow velocity and pressure measured by the sensor head is taken, and any three of the four actual measurement data are substituted into the Bernoulli equation and the reference value for the remaining one actual measurement data while calculating a, and a signal processing unit for the remaining one measured data to determine the presence or absence of abnormality based on whether a match to a reference value within a predetermined range Toko To have the feature.
[0011]
[Action and effect of the invention]
In the air-conditioning equipment management apparatus according to claim 1, measured data of flow velocity and pressure measured by one sensor head at one location of the pipe, and measured data of flow velocity and pressure measured by another sensor head at another location of the pipe, Are taken into the signal processing unit, and any three of the four actual measurement data are substituted into the Bernoulli equation, and a reference value for the remaining one actual measurement data is calculated. Then, the presence / absence of abnormality is determined based on whether or not the remaining one actually measured data matches the reference value within a predetermined range. As described above, according to the present invention, it is possible to detect an abnormality (for example, fluid leakage) where the Bernoulli equation does not hold between the two measured data in the pipe, and the air conditioning equipment is managed in more detail than before. It becomes possible.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
<First Embodiment>
Hereinafter, a first embodiment in which the present invention is applied to the
[0015]
The heating facility includes a
[0016]
The
[0017]
Each
[0018]
[0019]
The
[0020]
Further, a thermistor as a temperature sensor 22 is provided near the outer surface of the tip of the
[0036]
The
[0037]
P1 + C1 · V12 = P2 + C1 · V22 + C2 (1)
[0038]
Is established. However, in the above formula (1) , C1 is a constant obtained by dividing the unit mass w by 2, and C2 is the gravitational acceleration g and unit mass to the height difference h of the
[0039]
Next, it is checked whether or not the reference value P0 of the pressure and the actually measured pressure P1 match within the predetermined loss range C3 (S32). If they do not match, the
[0040]
<Other embodiments>
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.
(1) In the above embodiments, the
[0041]
(2) Although the
[0043]
(3 ) Moreover, this invention is applicable to the abnormality detection apparatus of the equipment (For example, heat exchanger in a chemical plant etc.) provided with the flow path other than an air conditioning equipment.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of heating equipment (air conditioning equipment) according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of a management device. FIG. 3 is a flowchart of a main program run by a signal processing device . Graph showing the relationship between flow velocity and pressure, and the standard range for conventional anomaly discrimination 【Explanation of symbols】
10. Heating equipment (air conditioning equipment)
11 ...
DESCRIPTION OF
Claims (1)
前記パイプの2箇所に取り付けられて、前記流体の流速及び圧力をそれぞれ実測する1対のセンサヘッドと、
一方の前記センサヘッドが実測した流速及び圧力の実測データと、他方の前記センサヘッドが実測した流速及び圧力の実測データとの計4つの実測データを取り込み、それら4つの実測データのうちの何れか3つの実測データをベルヌーイ方程式に代入して残り1つの実測データに対する基準値を演算すると共に、前記残り1つの実測データが所定の範囲内で前記基準値に一致したか否かに基づいて異常の有無を判別する信号処理部とを備えたことを徴とする空調設備管理装置。An air conditioner management device that detects an abnormality in an air conditioner that performs air conditioning by circulating a fluid that is forcibly heated or cooled by a heat source to a pipe ,
A pair of sensor heads attached to two locations of the pipe for measuring the flow velocity and pressure of the fluid, respectively;
One of the four actual measurement data, which is a total of four actual measurement data, that is, the actual measurement data of the flow velocity and pressure actually measured by one of the sensor heads and the actual measurement data of the flow velocity and pressure actually measured by the other sensor head. Substituting the three actually measured data into the Bernoulli equation and calculating a reference value for the remaining one actually measured data, and determining whether or not there is an abnormality based on whether the remaining one actually measured data matches the reference value within a predetermined range. An air conditioning facility management apparatus characterized by comprising a signal processing unit for determining presence or absence .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001355865A JP3969701B2 (en) | 2001-11-21 | 2001-11-21 | Air conditioning equipment management device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001355865A JP3969701B2 (en) | 2001-11-21 | 2001-11-21 | Air conditioning equipment management device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003161505A JP2003161505A (en) | 2003-06-06 |
JP3969701B2 true JP3969701B2 (en) | 2007-09-05 |
Family
ID=19167489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001355865A Expired - Fee Related JP3969701B2 (en) | 2001-11-21 | 2001-11-21 | Air conditioning equipment management device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3969701B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10347890A1 (en) * | 2003-10-10 | 2005-05-04 | Abb Patent Gmbh | Magnetic-inductive measuring device for flowing substances and method for its production |
DE10347878A1 (en) * | 2003-10-10 | 2005-05-04 | Abb Patent Gmbh | Magnetic-inductive measuring device for flowing substances and method for its production |
EP3186621A4 (en) * | 2014-09-29 | 2018-02-14 | Smiths Medical ASD, Inc. | Method to determine heat transfer efficiency of a heating device and system therefor |
JP6639685B2 (en) * | 2016-09-02 | 2020-02-05 | 三菱電機株式会社 | Air conditioner |
-
2001
- 2001-11-21 JP JP2001355865A patent/JP3969701B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003161505A (en) | 2003-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10001289B2 (en) | Apparatus and methods to measure economizer outdoor air fractions and fault detection diagnostics of airflow, cooling capacity, and heating capacity | |
US6571566B1 (en) | Method of determining refrigerant charge level in a space temperature conditioning system | |
US7226206B2 (en) | Dynamic heat flow meter for measuring thermal properties of insulation or the like, and corresponding method | |
US8939036B2 (en) | System and method for airflow sensing and monitoring using manometer with special readout scale | |
CN102313471B (en) | The function of cooling system monitors and/or control method and corresponding cooling system | |
US8186230B1 (en) | System and method for airflow sensing and monitoring | |
US12066199B2 (en) | Airstream sensor devices, systems and methods | |
WO2006047072A2 (en) | Method for estimating inlet and outlet air conditions of an hvac system | |
CN108731190B (en) | Detection method, detection device and detection system for air conditioner host parameters | |
US11971183B2 (en) | Systems and methods for refrigerant leak detection in a climate control system | |
US7610765B2 (en) | Refrigerant charge status indication method and device | |
WO2022222940A1 (en) | Air conditioning unit and defrosting control method therefor | |
CN108759991A (en) | The diagnosis of survey error method, apparatus and air-conditioning system of sensor in air-conditioning system | |
JP3969701B2 (en) | Air conditioning equipment management device | |
US11391656B2 (en) | Pressure probes and pressure measurements in airflow | |
CN104896675B (en) | The return-air degree of superheat method of testing and multiple on-line system of multiple on-line system | |
CN105115196B (en) | The flow control methods of cooling circuit again and device of multiple on-line system | |
JP6913646B2 (en) | Wind speed measuring machine and environmental test equipment | |
CN109059208A (en) | Detection method, detection device and the detection system of air-conditioner host parameter | |
KR101519837B1 (en) | flow meter using heat pulse | |
JP3608655B2 (en) | Refrigeration capacity test method and apparatus | |
CN205317350U (en) | Temperature measurement device ware and temperature measurement composite set | |
US20220163228A1 (en) | High resolution wide range pressure sensor | |
KR101718281B1 (en) | Pressure sensor, method for measuring pressure and chiller system | |
CN118309836B (en) | Pipeline valve leakage amount estimation method and device, valve and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040917 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061018 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070604 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3969701 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |