JPH0921636A - Apparatus for monitoring behavior of ground and structure - Google Patents
Apparatus for monitoring behavior of ground and structureInfo
- Publication number
- JPH0921636A JPH0921636A JP17321295A JP17321295A JPH0921636A JP H0921636 A JPH0921636 A JP H0921636A JP 17321295 A JP17321295 A JP 17321295A JP 17321295 A JP17321295 A JP 17321295A JP H0921636 A JPH0921636 A JP H0921636A
- Authority
- JP
- Japan
- Prior art keywords
- behavior
- monitoring
- displacement
- measurement
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、のり面等の地盤や橋梁
等の建造物の変位挙動を監視し予測解析する地盤・建造
物挙動監視装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground / building behavior monitoring apparatus for monitoring and predicting and analyzing displacement behavior of ground such as slopes and buildings such as bridges.
【0002】[0002]
【従来の技術】造成工事や道路工事、ダム工事等の切土
のり面工事においては、地形・地質的な複雑さから難し
い工事が増えており、土砂崩壊などの災害に遭遇する可
能性が高くなっている。そこで、これら災害の発生を工
事中に予見することは、工事の安全管理面および工程の
円滑化を図る上で重要な課題といえる。2. Description of the Related Art In cut slope work such as construction work, road work, dam work, etc., the number of difficult works is increasing due to topographical and geological complexity, and there is a high possibility of encountering disasters such as sediment collapse. Has become. Therefore, foreseeing the occurrence of these disasters during construction can be said to be an important issue in terms of safety management aspects of construction and facilitation of the process.
【0003】のり面の工事中においてのり面観察を行う
方法には、目視による方法と伸縮計や地中傾斜計による
方法の2通りある。これらの方法のうち、すべり変位等
の兆候がない場合には、現場の目視によるのり面観察の
みに依存しているが、崩壊の兆候となるクラックや変化
が発生して、すべり面が特定できる場合には、その現場
に伸縮計や地中傾斜計を設置してその挙動を把握してい
るのが現状である。There are two methods for observing the slope during construction of the slope, a visual method and a method using an extensometer or an underground inclinometer. Of these methods, if there is no sign of slip displacement, etc., it relies only on visual observation of the slope surface, but the slip surface can be identified by the occurrence of cracks or changes that are signs of collapse. In that case, the current situation is to install an extensometer or an underground inclinometer at the site to grasp its behavior.
【0004】[0004]
【発明が解決しようとする課題】しかし、現場の目視に
よりのり面観察を行う方法は、目視を行う人により観察
結果にバラツキが生じ、また、のり面の微少な変化を把
握できないという問題がある。これに対し、伸縮計や地
中傾斜計などによりのり面観察を行う方法は、それらの
設置を行うために、削孔や配線等の大掛かりで手間のか
かる作業があり、また、計測においても計測頻度が高く
なると、時間と手間がかかる。しかも、データ整理を容
易にするためには、自動計測にしなくてはならないが、
コストがさらに高くなる。現在ののり面観察には、以上
のような問題点があり、計測精度が高く、位置、計測お
よびデータ整理が簡易な手法の実現が望まれている。However, the method of visually observing the sloped surface at the site has a problem that the person who performs the visual inspection causes variations in the observation results and that the minute change in the sloped surface cannot be grasped. . On the other hand, the method of observing the slope with an extensometer or an underground inclinometer requires large-scale work such as drilling and wiring to install them, and also in measurement. As the frequency increases, it takes time and effort. Moreover, in order to facilitate data organization, automatic measurement must be used,
The cost will be higher. The current slope surface observation has the above-mentioned problems, and it is desired to realize a method with high measurement accuracy and easy position, measurement and data organization.
【0005】本発明は、上記の課題を解決するものであ
って、地盤や建造物の変位を自動的に計測でき、変位挙
動の予測解析を行うことができる地盤・建造物挙動監視
装置を提供することを目的とするものである。The present invention is to solve the above problems and provides a ground / building behavior monitoring device capable of automatically measuring the displacement of the ground or a building and performing a predictive analysis of the displacement behavior. The purpose is to do.
【0006】[0006]
【課題を解決するための手段】そのために本発明は、地
盤や建造物の変位挙動を経時的に監視し予測解析する地
盤・建造物挙動監視装置であって、被監視点に設置され
るターゲットと、監視点から被監視点のターゲットまで
の距離と水平方向及び鉛直方向の角度を経時的に計測す
る測距・測角手段と、該測距・測角手段の測定データか
ら被監視点の座標値を算出して経時的な変位挙動の監視
を行う監視手段とを備えたことを特徴とするものであ
る。To this end, the present invention is a ground / building behavior monitoring apparatus for monitoring and predicting the displacement behavior of the ground or building over time, and a target installed at a monitored point. And distance measuring / angle measuring means for measuring the distance from the monitoring point to the target of the monitored point and the angles in the horizontal direction and the vertical direction with time, and the measured data of the distance measuring / angle measuring means And a monitoring means for calculating coordinate values and monitoring displacement behavior over time.
【0007】さらに測距・測角手段は、予め設定された
測定間隔毎に被監視点の測定を実行し、監視手段は、測
距・測角手段の測定データから被監視点の座標値を算出
する座標算出手段と、座標値データから被監視点の変位
挙動を求めて変位レベルを判定する判定手段と、該判定
手段の判定に従って警報を発報する警報手段と、前記座
標値データから変位挙動の予測解析を行う予測解析手段
とを備えたことを特徴とするものである。Further, the distance measuring / angle measuring means performs measurement of the monitored point at every preset measurement interval, and the monitoring means calculates the coordinate value of the monitored point from the measurement data of the distance measuring / angle measuring means. A coordinate calculating means for calculating, a determining means for determining the displacement level of the monitored point from the coordinate value data to determine the displacement level, an alarm means for issuing an alarm according to the determination of the determining means, and a displacement from the coordinate value data. It is characterized by comprising a predictive analysis means for predicting and analyzing behavior.
【0008】[0008]
【作用】本発明の地盤・建造物挙動監視装置では、被監
視点に設置されるターゲットと、監視点から被監視点の
ターゲットまでの距離と水平方向及び鉛直方向の角度を
経時的に計測する測距・測角手段と、該測距・測角手段
の測定データから被監視点の座標値を算出して経時的な
変位挙動の監視を行う監視手段とを備えたので、ターゲ
ットと測距・測角手段の設置により安易に経時的な変位
挙動の監視を行うことができる。In the ground / building behavior monitoring apparatus of the present invention, the target installed at the monitored point, the distance from the monitored point to the target at the monitored point, and the horizontal and vertical angles are measured with time. Since the distance measuring / angle measuring means and the monitoring means for calculating the coordinate value of the monitored point from the measured data of the distance measuring / angle measuring means to monitor the displacement behavior over time, the target and the distance measuring means are provided.・ Installation of angle measuring means makes it possible to easily monitor displacement behavior over time.
【0009】また、測距・測角手段は、予め設定された
測定間隔毎に被監視点の測定を実行し、監視手段は、測
距・測角手段の測定データから被監視点の座標値を算出
する座標算出手段と、座標値データから被監視点の変位
挙動を求めて変位レベルを判定する判定手段と、該判定
手段の判定に従って警報を発報する警報手段と、前記座
標値データから変位挙動の予測解析を行う予測解析手段
とを備えたので、リアルタイムに変位挙動のレベルを判
定して警報の発報を行ったり、将来の予測解析を行うこ
とができ、工事の安全性を確保できる。Further, the distance measuring / angle measuring means performs measurement of the monitored point at every preset measurement interval, and the monitoring means uses the coordinate data of the monitored point from the measured data of the distance measuring / angle measuring means. Coordinate determining means for calculating the displacement behavior of the monitored point from the coordinate value data, determining means for determining the displacement level, alarm means for issuing an alarm according to the determination of the determining means, and the coordinate value data Equipped with a predictive analysis means for performing predictive analysis of displacement behavior, it is possible to determine the level of displacement behavior in real time to issue an alarm and to perform future predictive analysis, ensuring construction safety. it can.
【0010】[0010]
【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明の地盤・建造物挙動監視装置の1
実施例を説明するための図であり、1はターゲット、2
は測距・測角機、3は走査駆動部、4は監視装置、5と
15は警報器、11は入力処理部、12は座標値演算
部、13は測定データ格納部、14は挙動判定処理部、
16は管理基準値、17は挙動予測解析部、18は出力
部、19は制御部を示す。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a ground / building behavior monitoring apparatus 1 according to the present invention.
FIG. 3 is a diagram for explaining an embodiment, where 1 is a target and 2
Is a distance measuring / angle measuring device, 3 is a scanning drive unit, 4 is a monitoring device, 5 and 15 are alarm devices, 11 is an input processing unit, 12 is a coordinate value calculation unit, 13 is a measured data storage unit, and 14 is behavior determination. Processing unit,
Reference numeral 16 is a management reference value, 17 is a behavior prediction analysis unit, 18 is an output unit, and 19 is a control unit.
【0011】図1(a)において、ターゲット1は、例
えばプリズムや反射シートのような光波を発信方向に反
射するものであり、のり面を面的にとらえるためにのり
面全体に設置される。一般にプリズムは、測距が70m
以上の場合に用いられ、70m未満では反射シートが用
いられる。また、プリズムでは、30°程度の傾き角度
まで対応でき、反射シートでは、15°程度の傾き角度
まで対応できる。測距・測角機2は、ターゲット1に向
けてレーザ光を発信してその反射光を検出することによ
り、ターゲット1までの斜め距離dと水平及び鉛直方向
との角度θ、φを測定するものであり、例えば三脚で位
置が固定された走査駆動部3の上に取り付けられ、走査
駆動部3により水平、鉛直(縦横)の方向に首振り駆動
される。したがって、予めターゲット1の設置方向を登
録して、その方向へ走査駆動部3を駆動制御することに
より、効率よくターゲット1の測距・測角を行うことが
できる。なお、このようなターゲット1と測距・測角機
2との組み合わせは、これまで、船舶の自己位置検出に
利用されている。監視装置4は、ターゲット1の設置方
向へ測距・測角機2のレーザ光が発信されるよう走査駆
動部3に制御信号を送り出し、測距・測角機2で測定さ
れた各ターゲット1の距離dと水平及び鉛直方向との角
度θ、φの各データを取り込んで、ターゲット1が設置
された被監視点であるのり面崩壊の監視、予知のための
処理を行う、例えばパソコンであり、変位挙動について
複数段のレベル判定を行って崩壊の危険が高くなったと
判断すると、警報器5よりレベルに応じて、例えば黄色
ライト、赤色ライト、ブザー、サイレン等により警報を
発報する。そのため、監視装置4には、測距・測角機2
から取り込んで座標値の演算処理等を行った測定データ
を格納する記憶手段、測定データについて警報判定処理
や崩壊予測解析等の各種処理を行う処理手段、キーボー
ドやディスプレイ、プリンタを備えている。そして、タ
ーゲット1を設置したときにはその位置情報(測定点、
又は監視点)、測定間隔(時間や分)、管理値となる判
定処理のための基準値等を設定、入力することにより、
測定間隔にしたがって測距・測角機2、走査駆動部3を
制御して、測定データを取り込み、判定、解析処理を実
行する。In FIG. 1A, a target 1 is a prism or a reflection sheet, for example, which reflects a light wave in the emission direction, and is installed on the entire surface of the paste in order to catch the paste surface in a planar manner. Generally, a prism has a distance of 70 m.
It is used in the above cases, and the reflection sheet is used when the length is less than 70 m. Further, the prism can handle an inclination angle of about 30 °, and the reflection sheet can handle an inclination angle of about 15 °. The distance / angle measuring device 2 emits a laser beam toward the target 1 and detects the reflected light to measure the angle θ, φ between the oblique distance d to the target 1 and the horizontal and vertical directions. It is mounted on the scanning drive unit 3 whose position is fixed by, for example, a tripod, and is pivotally driven by the scanning drive unit 3 in horizontal and vertical (vertical and horizontal) directions. Therefore, by registering the installation direction of the target 1 in advance and drivingly controlling the scan driving unit 3 in that direction, it is possible to efficiently perform distance measurement and angle measurement of the target 1. Note that such a combination of the target 1 and the distance measuring / angle measuring device 2 has been used so far for detecting the self-position of a ship. The monitoring device 4 sends a control signal to the scanning drive unit 3 so that the laser beam of the distance measuring / gonimeter 2 is emitted in the installation direction of the target 1, and each target 1 measured by the distance measuring / gonimeter 2 is measured. Of the distance d and the angles θ and φ between the horizontal direction and the vertical direction, and performs processing for monitoring and predicting slope failure, which is the monitored point where the target 1 is installed, such as a personal computer. When it is determined that the risk of collapse has become high by performing a plurality of levels of displacement behavior determination, the alarm device 5 issues an alarm according to the level, for example, by a yellow light, a red light, a buzzer, a siren, or the like. Therefore, the monitoring device 4 includes the distance measuring / angle measuring device 2
It is provided with a storage means for storing the measurement data obtained by performing the calculation processing of the coordinate values and the like, a processing means for performing various kinds of processing such as alarm determination processing and collapse prediction analysis on the measurement data, a keyboard, a display, and a printer. When the target 1 is installed, its position information (measurement point,
Or monitoring points), measurement intervals (hours and minutes), and setting and inputting reference values for judgment processing that are control values.
The distance / angle measuring device 2 and the scanning drive unit 3 are controlled in accordance with the measurement intervals, the measurement data is fetched, and the determination and analysis processes are executed.
【0012】監視装置の具体的なブロック構成例を示し
たのが図1(b)であり、予め設定された測定間隔にし
たがって、測定時間になると、制御部19は、各ターゲ
ット1の位置情報にしたがって逐一走査駆動部3に監視
点への駆動指令を送り出し、内部の各処理部や演算部等
の動作を制御する。これと同期して測距・測角機2から
入力処理部11で各ターゲット1の距離dと水平及び鉛
直方向との角度θ、φの各データを取り込む。このよう
に各ターゲット1の位置情報を登録して走査駆動部3を
駆動することにより、一様にxy方向に走査する計測に
比べて、無駄な動作や時間をなくし効率よく計測を行う
ことができる。入力処理部11では、例えば数秒間の時
間を使い複数回の測定データを取り込んで極端に測定値
が異なる異常データを除外(誤差消去)して平均化処理
を行うことにより、測定距離が150m離れても2mm
程度の範囲内に計測誤差を納めることができる。このよ
うにして平均化処理した測定データから座標値演算部1
2で各ターゲット1の座標値(x,y,z)を演算し、
測定データ格納部13に順次格納する。したがって、測
定データ格納部13には、各測定時間毎に(時系列
に)、各ターゲットの座標値が格納されることになる。FIG. 1B shows a concrete example of the block configuration of the monitoring device. When the measurement time comes according to the preset measurement interval, the control unit 19 controls the position information of each target 1. In accordance with this, a drive command to the monitoring point is sent to the scanning drive unit 3 one by one, and the operation of each processing unit and arithmetic unit inside is controlled. In synchronism with this, the input processing unit 11 takes in each data of the angles θ and φ between the distance d of each target 1 and the horizontal and vertical directions from the distance / angle measuring device 2. By thus registering the position information of each target 1 and driving the scan driving unit 3, it is possible to eliminate unnecessary operations and time and to perform efficient measurement, as compared with measurement in which scanning is performed uniformly in the xy directions. it can. In the input processing unit 11, for example, a measurement distance of 150 m is obtained by taking in measurement data of a plurality of times for several seconds and excluding (error erasing) abnormal data having extremely different measurement values to perform averaging processing. Even 2 mm
The measurement error can be kept within a certain range. From the measurement data thus averaged, the coordinate value calculation unit 1
2 calculates the coordinate value (x, y, z) of each target 1,
The measurement data is stored in the storage unit 13 in sequence. Therefore, the measurement data storage unit 13 stores the coordinate value of each target for each measurement time (in time series).
【0013】挙動判定処理部14は、例えばレジスタに
保持された管理基準値16に基づき各ターゲットの変位
√(x2 +y2 +z2 )を管理基準値と比較判定するこ
とによって、警報の発令状態に至っているか否かを判断
し、警報器15を動作させる。例えば施工段階の管理基
準値と地表に現れる地滑り現象に関し、光波測距機で
は、継続日数とその間の変位速度により、対応区分が5
mm以上/10日の場合には点検・要注意または観測強
化、5〜50mm以上/5日の場合には対策の検討、1
0〜100mm以上/1日の場合には警戒・応急対策、
100mm以上/1日の場合には厳重警戒・一時退避と
されている。したがって、このような基準に従えば、1
日前、5日前、10日前の変位との差を求めて、これら
の基準と比較することにより、どの対応区分に該当する
かを判断することができ、その判断に応じて赤色灯によ
る警報やサイレンによる警報等の使い分けを行うことに
より、現場に対応区分に応じた警報を発令することがで
きる。The behavior determination processing section 14 compares the displacement √ (x 2 + y 2 + z 2 ) of each target with the management reference value based on the management reference value 16 held in the register, for example, to issue an alarm. Then, the alarm device 15 is operated. For example, regarding the management reference value at the construction stage and the landslide phenomenon that appears on the surface of the earth, in the optical wave range finder, there are 5 corresponding categories depending on the number of continuous days and the displacement speed during that period.
In case of mm or more / 10 days, check / precaution or strengthen observation, if 5 to 50 mm or more / 5 days, consider measures 1
0-100 mm or more / Alert / emergency measures in case of 1 day,
In case of 100 mm or more / one day, it is considered as strict warning / temporary evacuation. Therefore, according to such criteria, 1
By determining the difference between the displacements 5 days ago, 5 days ago, and 10 days ago, and comparing them with these criteria, it is possible to determine which correspondence category is applicable, and depending on the determination, an alarm or siren with a red light is used. By properly using the warnings, etc., it is possible to issue warnings according to the corresponding classification at the site.
【0014】挙動予測解析部17は、時系列に蓄積した
測定データを使って、例えばひずみの経時変化や変位の
分布を求めて図表化したり、ひずみ時間速度や相対変位
等の情報を求めクリープ崩壊時間の予測を行ったりする
ものである。したがって、警報の発令状態に至った時点
でリアルタイムに判断する挙動判定処理部14に対し
て、挙動予測解析部17は、将来に発生する可能性のあ
る崩壊の予測を行うものであるので、日常の変位挙動を
把握しながら、その検討の要否の判断、指示に基づき実
行される。出力部18は、挙動予測解析部17で解析さ
れた各種予測図等を出力するものである。The behavior predicting / analyzing unit 17 uses the measurement data accumulated in time series to obtain, for example, a change over time of strain or a distribution of displacement for plotting, or information for strain time velocity, relative displacement, etc. for creep collapse. It is used to predict the time. Therefore, the behavior prediction / analysis unit 17 predicts a collapse that may occur in the future, with respect to the behavior determination processing unit 14 that makes a real-time determination when the alarm is issued, and therefore, the behavior prediction / analysis unit 17 predicts the collapse in daily life. It is executed based on the judgment and instruction of necessity of the examination while grasping the displacement behavior of. The output unit 18 outputs various prediction diagrams and the like analyzed by the behavior prediction / analysis unit 17.
【0015】次に、具体的な処理、作業の流れを説明す
る。図2は本発明の地盤・建造物挙動監視装置による測
定、監視処理の流れを説明するための図、図3は全体の
作業、処理の流れを説明するための図、図4は変位デー
タの編集出力例を示す図、図5及び図6は挙動予測解析
データの出力例を示す図である。Next, the specific processing and work flow will be described. 2 is a diagram for explaining the flow of measurement and monitoring processing by the ground / building behavior monitoring apparatus of the present invention, FIG. 3 is a diagram for explaining the overall work and processing flow, and FIG. 4 is for displacement data. FIG. 5 is a diagram showing an example of edited output, and FIGS. 5 and 6 are diagrams showing an example of output of behavior prediction analysis data.
【0016】まず、測定データの取り込みは、図2
(a)に示すように予め設定された測定時間になるのを
待って(ステップS11)、監視装置の制御部から被監
視点を指定することによって(ステップS12)、各監
視点の測定データを測距・測角機から入力処理部へ取り
込む(ステップS13)。これを全被監視点について繰
り返し実行する(ステップS14)。First, the measurement data is taken in as shown in FIG.
As shown in (a), after waiting for the preset measurement time (step S11), the control unit of the monitoring device designates the monitored point (step S12), so that the measurement data of each monitoring point is obtained. It is taken into the input processing unit from the distance / angle measuring device (step S13). This is repeated for all monitored points (step S14).
【0017】そして、取り込んだ測定データについて
は、図2(b)に示すように測定データの距離dと水平
及び鉛直方向との角度θ、φから各被監視点の座標値を
計算し(ステップS15)、設置時の座標値との長さを
計算することにより変位の計算を行う(ステップS1
6)。変位が求まると、1日前の変位との差から10〜
100mm以上/1日か否か等、管理基準値との比較を
行い(ステップS17)、管理基準値を越えている場合
には(ステップS18)、その内容に応じた警報の発令
を行う(ステップS19)。With respect to the measured data taken in, the coordinate value of each monitored point is calculated from the distance d of the measured data and the angles θ and φ between the horizontal and vertical directions as shown in FIG. S15), the displacement is calculated by calculating the length with the coordinate value at the time of installation (step S1).
6). When the displacement is obtained, it is 10 from the difference with the displacement one day ago.
It is compared with the management reference value such as whether it is 100 mm or more / one day (step S17), and when it exceeds the management reference value (step S18), an alarm is issued according to the content (step S17). S19).
【0018】以上が測定データの取り込みと挙動判定処
理である。全体の作業、処理の流れは、図3に示すよう
にまず、座標既知点(不動点)を2点以上設置する(ス
テップS21)。これは、機械位置を決定するための基
準点となるものであり、点数が増えれば測定精度を上げ
ることができる。次にターゲットを設置する(ステップ
S22)。のり面を面的にとらえるためには、のり面全
体にターゲットを設置し、測定距離が100mに対し、
3m以上の間隔で離すことが望ましい。さらに測距・測
角機を設置し(ステップS23)、基準点を視準するこ
とにより機械位置を決定する。しかる後、測定点(被監
視点)、管理基準値、測定間隔等の設定を行い(ステッ
プS24)、該設定に基づいた測定を開始する(ステッ
プS25)。測定を開始すると、測定データが管理基準
値をオーバーしたか否かの判断を行い(ステップS2
6)、オーバーすれば警報を発令して(ステップS2
7)、またステップS25に戻り測定を繰り返し実行す
るが、オーバーしない場合には、さらに工事が進行した
か否かの判断を行う(ステップS28)。工事が進行し
ていなければ、ステップS25に戻り測定を繰り返し実
行し、工事が進行していれば、切土の進捗に合わせてタ
ーゲットの増設、移設の検討が行われるので、ターゲッ
トの増設があるか否かを判断する(ステップS29)。
ターゲットの増設がある場合には、ターゲットを設置し
た後(ステップS30)、ステップS24の測定条件の
設定まで戻り、ターゲットの増設がない場合には、変位
挙動の検討実施の指示があるか否かを判断する(ステッ
プS31)。例えば1日毎にその日の計測作業が終了す
ると、今後の崩壊予測解析のために変位挙動の検討実施
の指示がなされる。変位挙動の検討実施の指示があれ
ば、変位データを編集して例えば図4(a)に示すよう
な変位量(スカラー量)による経時変化図や図4(b)
に示すような変位量をベクトルで表示した3次元的な変
位分布図等を出力し(ステップS32)、さらに得られ
た経時変化図から定常ひずみ速度を算定し、挙動の予測
解析を行って各種の予測図を出力し(ステップS32〜
S33)、指示がなければそのままステップS25に戻
り測定を繰り返し実行する。The above is the measurement data acquisition and behavior determination processing. As for the flow of the whole work and processing, as shown in FIG. 3, first, two or more coordinate known points (fixed points) are set (step S21). This is a reference point for determining the machine position, and if the number of points increases, the measurement accuracy can be improved. Next, the target is set (step S22). In order to capture the surface of the glue, a target is installed on the whole of the glue and the measurement distance is 100m.
It is desirable to separate them at intervals of 3 m or more. Further, a distance-measuring / angle-measuring device is installed (step S23), and the machine position is determined by collimating the reference point. Then, the measurement point (monitored point), the management reference value, the measurement interval, and the like are set (step S24), and the measurement based on the setting is started (step S25). When the measurement is started, it is judged whether or not the measurement data exceeds the control reference value (step S2
6) If it exceeds, an alarm is issued (step S2).
7) Then, the process returns to step S25 and repeats the measurement. If the measurement is not over, it is determined whether or not the construction has further proceeded (step S28). If the construction is not in progress, the procedure returns to step S25 to repeat the measurement, and if the construction is in progress, the target expansion or relocation will be considered in accordance with the progress of cutting, so the target expansion is required. It is determined whether or not (step S29).
If the target is added, after the target is installed (step S30), the process returns to the setting of the measurement conditions in step S24. If the target is not added, whether or not there is an instruction to conduct a displacement behavior study Is determined (step S31). For example, when the measurement work of the day is completed every day, an instruction to study the displacement behavior is given for future collapse prediction analysis. If there is an instruction to examine the displacement behavior, the displacement data can be edited and a temporal change diagram according to the displacement amount (scalar amount) as shown in FIG. 4A or FIG. 4B, for example.
A three-dimensional displacement distribution map or the like in which the displacement amount is displayed as a vector is output (step S32), the steady strain rate is calculated from the obtained time-dependent change diagram, and the behavior predictive analysis is performed to perform various analyzes. Of the prediction diagram (step S32-
S33), if there is no instruction, the process directly returns to step S25 to repeat the measurement.
【0019】挙動の予測解析では、例えば地すべり又は
斜面崩壊の発生時刻を予測してその予測図を出力する
が、この方法としては、上記のように概略予測と近接予
測と精密予測の3通りが知られている(斉藤迪孝著「実
証土質工学」技報堂出版株式会社 1992年1月30
日第1版第1刷発行 第155頁〜第160頁参照)。
このような予測の手法を使うことにより、例えば図5
(a)に示すような第2次クリープ領域での定常ひずみ
速度から求められる概略予測図や、図5(b)に示すよ
うな第3次クリープ領域における逆比例法則に基づいて
図表化された近接予測図、図6に示すような半対数図表
上での直線表示による精密予測図等を予測解析結果とし
て出力することができる。In the behavior predictive analysis, for example, the occurrence time of a landslide or a slope failure is predicted and a prediction map thereof is output. As this method, there are three methods of rough prediction, proximity prediction and precise prediction as described above. Known (Matataka Saito, "Demonstration Soil Engineering" Gihodo Publishing Co., Ltd. January 30, 1992)
(1st edition, 1st edition, pp. 155-160).
By using such a prediction method, for example, FIG.
A schematic prediction diagram obtained from the steady strain rate in the second creep region as shown in (a) and a diagram based on the inverse proportional law in the third creep region as shown in FIG. 5 (b) It is possible to output a proximity prediction diagram, a precision prediction diagram by linear display on a semi-logarithmic chart as shown in FIG. 6, and the like as a prediction analysis result.
【0020】図7は斜面崩壊予知を行う場合のターゲッ
トの配置例を示す図、図8はプリズムと光波測距・測角
機による測距・測角の例を説明するための図であり、2
1はターゲット、22はプリズム、23は測量用ポー
ル、24は測距・測角機、25はレーザー発信器、26
はレーザー受信器を示す。FIG. 7 is a diagram showing an example of arrangement of targets in the case of slope failure prediction, and FIG. 8 is a diagram for explaining an example of distance measurement / angle measurement by a prism and a lightwave distance measurement / angle measurement device. Two
1 is a target, 22 is a prism, 23 is a surveying pole, 24 is a distance-measuring / angle-measuring machine, 25 is a laser transmitter, 26
Indicates a laser receiver.
【0021】のり面のような斜面の崩壊予知を行う場合
には、図7に示すように斜面の地盤の状況等に応じてタ
ーゲット21が適宜配置され、先に説明したように測定
開始後の変位挙動を見ながら、要注意監視区域等の判断
の有無に応じて、それらの区域におけるターゲット21
の配置数を増減する。ターゲット21としては、例えば
図8に示すようにのり面に埋め込まれた測量用ポール2
3にプリズム22が取り付けられる。そして、このター
ゲット21に測距・測角機24のレーザー発信器からレ
ーザー光を発信し、その反射レーザー光を測距・測角機
24のレーザー受信器26で受信して距離dを測定す
る。そして、このときの測距・測角機24の水平方向の
角度θと鉛直方向の角度φと共に距離dが測定データと
して取り込まれる。When predicting the collapse of a slope such as a slope, the target 21 is appropriately arranged according to the condition of the ground on the slope as shown in FIG. 7, and after the start of measurement as described above. While observing the displacement behavior, the target 21 in those areas depending on whether or not there are judgments such as areas requiring attention
Increase or decrease the number of placed. As the target 21, for example, as shown in FIG. 8, the surveying pole 2 embedded in the paste surface is used.
A prism 22 is attached to 3. Then, laser light is emitted from the laser transmitter of the distance measuring / angle measuring device 24 to the target 21, and the reflected laser light is received by the laser receiver 26 of the distance measuring / angle measuring device 24 to measure the distance d. . Then, the distance d is taken in as measurement data together with the angle θ in the horizontal direction and the angle φ in the vertical direction of the distance measuring / angle measuring device 24 at this time.
【0022】なお、本発明は、上記の実施例に限定され
るものではなく、種々の変形が可能である。例えば上記
の実施例では、のり面崩壊予知装置として説明したが、
トンネル内の壁面の変位挙動やシールドトンネル掘進路
線における地上地盤の挙動、さらには橋梁等の床版や桁
の型枠(梁)等のコンクリート打設時における挙動の監
視等、広く地盤にかぎらず建造物の挙動監視にも同様に
適用できることはいうまでもない。さらに、光波による
測距・測角機を用いたが、超音波や電磁波などを用いて
もよいし、それにより地中等における光波では監視でき
ない部分の変位挙動の監視も可能になる。また、ターゲ
ットは、複数配置したが、1つであってもよいし、この
データを位置確認の情報として利用してもよいことはい
うまでもない。現場には、測距・測角機の測定データを
取り込みディスクや記憶カード等の記憶媒体に記憶する
簡易端末を配置し、ディスクや記憶カード等の記憶媒体
を事務所のコンピュータに持ち込んで予測解析等の処理
を行う、というように装置を分割構成としてもよい。It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, the slope collapse predicting device has been described,
The displacement behavior of the wall surface in the tunnel, the behavior of the ground ground in the shield tunnel excavation route, and the behavior of the floor slab of the bridge and the form of the girder (beam) at the time of placing concrete are not limited to a wide range of ground. It goes without saying that the same can be applied to the behavior monitoring of buildings. Furthermore, although the distance-measuring / angle-measuring device using light waves is used, ultrasonic waves, electromagnetic waves, or the like may be used, which makes it possible to monitor the displacement behavior of a portion in the ground or the like that cannot be monitored by light waves. Further, although a plurality of targets are arranged, it is needless to say that one target may be used and this data may be used as information for position confirmation. At the site, a simple terminal that captures the measurement data of the range finder / gonimeter and stores it in a storage medium such as a disk or storage card is placed, and the storage medium such as the disk or storage card is brought into the computer at the office for predictive analysis. The device may have a divided configuration, such as performing processing such as.
【0023】[0023]
【発明の効果】以上の説明から明らかなように、本発明
によれば、例えば土砂崩壊の可能性がある斜面にプリズ
ムや反射シート等の簡易なターゲットを設置して、光波
測距・測角機を用いてそのターゲットの変位挙動を自動
計測し、この変位挙動データをデータ処理装置(監視装
置)に自動収集して、斜面崩壊の危険性が高くなった場
合の自動的な警報発令や、変位挙動データによる斜面崩
壊時期の予測解析を1つのデータ処理装置で行うので、
切土掘削工事における土砂崩壊を事前に察知し、迅速な
警報発令で災害発生を防止でき、工事の安全管理に役立
て、工程の円滑化を図ることができる。しかも、ターゲ
ットとしては、崩壊性の切土のり面や地山の斜面に、プ
リズムを設置した測量用ポール等の支柱を複数配置する
が、ターゲットの重量は、1kg弱と軽量であり、かつ
設置方法は打ち込むだけなので、設置作業は容易であ
る。さらに、ターゲットの変位挙動は、距離dと水平方
向の角度θと鉛直方向の角度φからx,y,zの座標値
でリアルタイムに3次元自動計測されるので、計測点
数、計測点位置、計測間隔(何時間、何分間隔)、およ
び警報管理値等の測定条件を予めデータ処理装置にイン
プットし、計測を開始させれば、計測が終了するまで自
動処理とすることができ、計測の手間がかからず省力化
を図ることができる。さらに、簡易な計測システムであ
りながら現場状況に応じた自由度を有しているため、低
コストで適用しやすい装置を提供することができる。As is apparent from the above description, according to the present invention, a simple target such as a prism or a reflection sheet is installed on a slope where there is a possibility of landslide, and optical wave distance measurement / angle measurement is performed. Displacement behavior of the target is automatically measured using a machine, this displacement behavior data is automatically collected in a data processing device (monitoring device), and an automatic warning is issued when the risk of slope failure becomes high, Since the prediction analysis of the slope failure time based on the displacement behavior data is performed by one data processing device,
It is possible to detect sediment collapse during cutting excavation work in advance, prevent a disaster from occurring by promptly issuing a warning, use it for safety management of construction, and facilitate the process. Moreover, as the target, multiple pillars such as surveying poles with prisms are placed on the collapsible cut slope and the slope of the ground, but the weight of the target is a little less than 1 kg and it is installed. The installation work is easy because the method is just driven. Furthermore, the displacement behavior of the target is automatically three-dimensionally measured in real time from the distance d, the angle θ in the horizontal direction, and the angle φ in the vertical direction with coordinate values of x, y, z. If you input measurement conditions such as intervals (hours and minutes) and alarm control values to the data processing device in advance and start measurement, automatic processing can be performed until the measurement is completed. Labor saving can be achieved without taking the trouble. Furthermore, since it is a simple measurement system and has a degree of freedom according to the situation at the site, it is possible to provide a device that can be easily applied at low cost.
【図1】 本発明の地盤・建造物挙動監視装置の1実施
例を説明するための図である。FIG. 1 is a diagram for explaining one embodiment of a ground / building behavior monitoring apparatus of the present invention.
【図2】 本発明の地盤・建造物挙動監視装置による測
定、監視処理の流れを説明するための図である。FIG. 2 is a diagram for explaining the flow of measurement and monitoring processing by the ground / building behavior monitoring apparatus of the present invention.
【図3】 全体の作業、処理の流れを説明するための図
である。FIG. 3 is a diagram for explaining an overall work and a flow of processing.
【図4】 変位データの編集出力例を示す図である。FIG. 4 is a diagram showing an example of edited output of displacement data.
【図5】 挙動予測解析データの出力例を示す図であ
る。FIG. 5 is a diagram showing an output example of behavior prediction analysis data.
【図6】 挙動予測解析データの出力例を示す図であ
る。FIG. 6 is a diagram showing an output example of behavior prediction analysis data.
【図7】 斜面崩壊予知を行う場合のターゲットの配置
例を示す図である。FIG. 7 is a diagram showing an example of the arrangement of targets when predicting slope failure.
【図8】 プリズムと光波測距・測角機による測距・測
角の例を説明するための図である。FIG. 8 is a diagram for explaining an example of distance measurement / angle measurement by a prism and a lightwave distance measurement / angle measurement device.
1…ターゲット、2…測距・測角機、3…走査駆動部、
4…監視装置、5と15…警報器、11…入力処理部、
12…座標値演算部、13…測定データ格納部、14…
挙動判定処理部、16…管理基準値、17…挙動予測解
析部、18…出力部、19…制御部1 ... Target, 2 ... Distance / angle measuring device, 3 ... Scan drive unit,
4 ... Monitoring device, 5 and 15 ... Alarm device, 11 ... Input processing unit,
12 ... Coordinate value calculation unit, 13 ... Measurement data storage unit, 14 ...
Behavior determination processing unit, 16 ... Management reference value, 17 ... Behavior prediction analysis unit, 18 ... Output unit, 19 ... Control unit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 重行 東京都港区芝浦一丁目2番3号清水建設株 式会社内 (72)発明者 丹 博美 東京都港区芝浦一丁目2番3号清水建設株 式会社内 (72)発明者 和田 孝史 東京都港区芝浦一丁目2番3号清水建設株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeyuki Kono 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction Co., Ltd. (72) Inventor Hiromi Tan 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction company (72) Inventor Takashi Wada 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction company
Claims (3)
し予測解析する地盤・建造物挙動監視装置であって、被
監視点に設置されるターゲットと、監視点から被監視点
のターゲットまでの距離と水平方向及び鉛直方向の角度
を経時的に計測する測距・測角手段と、該測距・測角手
段の測定データから被監視点の座標値を算出して経時的
な変位挙動の監視を行う監視手段とを備えたことを特徴
とする建造物・地盤挙動監視装置。1. A ground / building behavior monitoring apparatus for observing and predicting displacement behavior of the ground or building over time, comprising a target installed at a monitored point and a target from the monitoring point to the monitored point. Distance measuring / angle measuring means for measuring the distance to and the angle in the horizontal direction and the vertical direction with time, and the coordinate value of the monitored point is calculated from the measured data of the distance measuring / angle measuring means to displace with time. A building / ground behavior monitoring device comprising: a monitoring means for monitoring the behavior.
間隔毎に被監視点の測定を実行することを特徴とする請
求項1記載の建造物・地盤挙動監視装置。2. The building / ground behavior monitoring apparatus according to claim 1, wherein the distance measuring / angle measuring means measures the monitored point at each preset measurement interval.
タから被監視点の座標値を算出する座標算出手段と、座
標値データから被監視点の変位挙動を求めて変位レベル
を判定する判定手段と、該判定手段の判定に従って警報
を発報する警報手段と、前記座標値データから変位挙動
の予測解析を行う予測解析手段とを備えたことを特徴と
する請求項1記載の建造物・地盤挙動監視装置。3. The monitoring means determines the displacement level by calculating the coordinate value of the monitored point from the measurement data of the distance measuring / angle measuring means and the displacement behavior of the monitored point from the coordinate value data. 2. The construction according to claim 1, further comprising: a determination unit that performs the determination, an alarm unit that issues an alarm according to the determination of the determination unit, and a prediction analysis unit that performs a prediction analysis of the displacement behavior from the coordinate value data. Object / ground behavior monitoring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17321295A JPH0921636A (en) | 1995-07-10 | 1995-07-10 | Apparatus for monitoring behavior of ground and structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17321295A JPH0921636A (en) | 1995-07-10 | 1995-07-10 | Apparatus for monitoring behavior of ground and structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0921636A true JPH0921636A (en) | 1997-01-21 |
Family
ID=15956208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17321295A Pending JPH0921636A (en) | 1995-07-10 | 1995-07-10 | Apparatus for monitoring behavior of ground and structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0921636A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000352529A (en) * | 1999-06-10 | 2000-12-19 | Techno Link:Kk | Apparatus for warning landslide or the like |
JP2002310648A (en) * | 2001-04-12 | 2002-10-23 | Sgs:Kk | Depression measuring method |
JP2004117072A (en) * | 2002-09-24 | 2004-04-15 | Eiji Kasanuki | Ground surface monitoring system |
JP2006234776A (en) * | 2005-02-28 | 2006-09-07 | Tokyo Electric Power Co Inc:The | Automatic surveying system, automatic surveying apparatus, automatic surveying method, and automatic surveying program |
JP2008175613A (en) * | 2007-01-17 | 2008-07-31 | Central Res Inst Of Electric Power Ind | Method, device and program for analyzing ground behavior |
JP2010151757A (en) * | 2008-12-26 | 2010-07-08 | Taisei Corp | Survey method using total station |
JP2012083237A (en) * | 2010-10-13 | 2012-04-26 | Japan Conservation Engineers Co Ltd | Slope deformation monitoring method using ground 3d laser scanner without installing target |
JP2014224765A (en) * | 2013-05-16 | 2014-12-04 | 三菱電機株式会社 | Laser length measuring device and laser length measuring method |
JP2017521647A (en) * | 2014-05-21 | 2017-08-03 | ユニバーサル シティ スタジオズ リミテッド ライアビリティ カンパニー | Tracking system and method for use during inspection of amusement park equipment |
JP2017211257A (en) * | 2016-05-25 | 2017-11-30 | 株式会社演算工房 | Displacement information display device |
JP2019066368A (en) * | 2017-10-03 | 2019-04-25 | 株式会社フジタ | System and method for detecting displacement of structure |
US10467481B2 (en) | 2014-05-21 | 2019-11-05 | Universal City Studios Llc | System and method for tracking vehicles in parking structures and intersections |
CN111450541A (en) * | 2014-05-21 | 2020-07-28 | 环球城市电影有限责任公司 | Automated optical tracking system for amusement park components |
JP2020159981A (en) * | 2019-03-28 | 2020-10-01 | 前田建設工業株式会社 | System and method for monitoring displacement state of ground |
JPWO2021199241A1 (en) * | 2020-03-31 | 2021-10-07 |
-
1995
- 1995-07-10 JP JP17321295A patent/JPH0921636A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000352529A (en) * | 1999-06-10 | 2000-12-19 | Techno Link:Kk | Apparatus for warning landslide or the like |
JP2002310648A (en) * | 2001-04-12 | 2002-10-23 | Sgs:Kk | Depression measuring method |
JP2004117072A (en) * | 2002-09-24 | 2004-04-15 | Eiji Kasanuki | Ground surface monitoring system |
JP2006234776A (en) * | 2005-02-28 | 2006-09-07 | Tokyo Electric Power Co Inc:The | Automatic surveying system, automatic surveying apparatus, automatic surveying method, and automatic surveying program |
JP2008175613A (en) * | 2007-01-17 | 2008-07-31 | Central Res Inst Of Electric Power Ind | Method, device and program for analyzing ground behavior |
JP2010151757A (en) * | 2008-12-26 | 2010-07-08 | Taisei Corp | Survey method using total station |
JP2012083237A (en) * | 2010-10-13 | 2012-04-26 | Japan Conservation Engineers Co Ltd | Slope deformation monitoring method using ground 3d laser scanner without installing target |
JP2014224765A (en) * | 2013-05-16 | 2014-12-04 | 三菱電機株式会社 | Laser length measuring device and laser length measuring method |
JP2017521647A (en) * | 2014-05-21 | 2017-08-03 | ユニバーサル シティ スタジオズ リミテッド ライアビリティ カンパニー | Tracking system and method for use during inspection of amusement park equipment |
CN111450541B (en) * | 2014-05-21 | 2021-05-11 | 环球城市电影有限责任公司 | Automated optical tracking system for amusement park components |
US10467481B2 (en) | 2014-05-21 | 2019-11-05 | Universal City Studios Llc | System and method for tracking vehicles in parking structures and intersections |
CN110478917A (en) * | 2014-05-21 | 2019-11-22 | 环球城市电影有限责任公司 | For tracking system and method used in investigation amusement park equipment |
CN111450541A (en) * | 2014-05-21 | 2020-07-28 | 环球城市电影有限责任公司 | Automated optical tracking system for amusement park components |
US10788603B2 (en) | 2014-05-21 | 2020-09-29 | Universal City Studios Llc | Tracking system and method for use in surveying amusement park equipment |
CN110478917B (en) * | 2014-05-21 | 2021-05-25 | 环球城市电影有限责任公司 | Tracking system and method for use in surveying amusement park equipment |
JP2017211257A (en) * | 2016-05-25 | 2017-11-30 | 株式会社演算工房 | Displacement information display device |
JP2019066368A (en) * | 2017-10-03 | 2019-04-25 | 株式会社フジタ | System and method for detecting displacement of structure |
JP2020159981A (en) * | 2019-03-28 | 2020-10-01 | 前田建設工業株式会社 | System and method for monitoring displacement state of ground |
JPWO2021199241A1 (en) * | 2020-03-31 | 2021-10-07 | ||
WO2021199241A1 (en) * | 2020-03-31 | 2021-10-07 | 日本電気株式会社 | Analysis device, analysis method, and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0921636A (en) | Apparatus for monitoring behavior of ground and structure | |
Montero et al. | Past, present and future of robotic tunnel inspection | |
Menendez et al. | Tunnel structural inspection and assessment using an autonomous robotic system | |
KR102458135B1 (en) | worker management system | |
WO2016006283A1 (en) | Structure maintenance management system | |
JP2013019202A (en) | Method for controlling finish height of concrete slab | |
KR20080021300A (en) | Structure diagnostic system by lidar and diagnostic method | |
CN216645248U (en) | Reinforcing bar interval detection device | |
Goszczyńska et al. | Application of the IADP acoustic emission method to automatic control of traffic on reinforced concrete bridges to ensure their safe operation | |
US20230258573A1 (en) | System, apparatus, and method for structural fault detection | |
KR20220023267A (en) | Bridge inspection method and system | |
CN112147627A (en) | Building structure and surface abnormal change detection method based on micro-motion attribute laser detection | |
JP2019158637A (en) | Tunnel construction management system and determination method | |
Delatte et al. | Application of nondestructive evaluation to subway tunnel systems | |
JP2002296244A (en) | Method and device for diagnosing concrete structure | |
JP2003119784A (en) | Pile driving system | |
JP3288045B2 (en) | Continuous monitoring of reinforcement in structures | |
JP2000045678A (en) | Heading collapse alarming system | |
JPH09318352A (en) | Apparatus and method for measuring hollow displacement in tunnel | |
KR102290181B1 (en) | Microseism monitoring system for sensing collapse of mine pit | |
JP2823396B2 (en) | Excavator automatic search equipment | |
JP2000045679A (en) | Heading collapse alarming system | |
JPH093895A (en) | Device for controlling penetration amount of pile driving | |
JPH11325901A (en) | Special measurement rivet for automatic tracking total station displacement observation system (with built-in corner prism) | |
JPH0526784A (en) | Central control method for malfunction generation in construction machine |