JP2002310648A - Depression measuring method - Google Patents

Depression measuring method

Info

Publication number
JP2002310648A
JP2002310648A JP2001114117A JP2001114117A JP2002310648A JP 2002310648 A JP2002310648 A JP 2002310648A JP 2001114117 A JP2001114117 A JP 2001114117A JP 2001114117 A JP2001114117 A JP 2001114117A JP 2002310648 A JP2002310648 A JP 2002310648A
Authority
JP
Japan
Prior art keywords
squat
target surface
measured
distance
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001114117A
Other languages
Japanese (ja)
Inventor
Tomio Inaba
富男 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGS KK
Original Assignee
SGS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGS KK filed Critical SGS KK
Priority to JP2001114117A priority Critical patent/JP2002310648A/en
Publication of JP2002310648A publication Critical patent/JP2002310648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Road Repair (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the effect of a change in the position of a laser ranging means regard; regarding the technique for measuring road surface depression, ground depression, or the like, by using a laser ranging means in a non- contacting manner. SOLUTION: According to this depression measuring method, the target surface of depression measurement is irradiated with laser light obliquely at a prescribed angle, change in the distance to a portion irradiated with the laser light is measured by the use of the laser ranging means by measuring reflected light from the target surface, and the amount of depression of the target surface is measured, based on the change in the distance detected by the ranging means. Each time the amount of depression of the target surface is measured, the position of the ranging means is measured, relative to an immovable point previously set in a non-depression area other than the target surface (step S11) and then the amount of depression of the target surface is measured (step S12).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、路面の沈下や地盤沈下
等を非接触で計測する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for non-contact measurement of settlement on a road surface, land subsidence, and the like.

【0002】[0002]

【従来の技術】既に供用されている道路、鉄道等の公共
交通構造物の真下を掘削して、立体交差等の新たな構造
物を構築する工事において、工事中及び供用後の既存構
造物の過度の不等沈下は、通過車両の安全確保に大きな
影響を及ぼし、人命に関わる災害発生の原因にもなりか
ねないため、沈下管理及びその対応は最優先で行われな
ければならない。従来、この種の管理は、既存通過交通
機関に及ぼす影響を考慮して、夜間等の交通量の少ない
時間帯に、一時的に交通を遮断して人海戦術で行われた
り、道路では路肩、中央分離帯等の通過交通に直接影響
を及ぼさない箇所に、反射プリズム等の視準点を設置し
て、定期的に計測を行う等で対応してきた。
2. Description of the Related Art In the construction of a new structure such as a grade separation by excavating just below a public transportation structure such as a road or a railway which has already been in service, the existing structure during and after construction has been constructed. Excessive unequal subsidence has a great effect on ensuring the safety of passing vehicles and may cause a disaster involving human life. Therefore, subsidence management and its response must be given top priority. Conventionally, this type of management has been carried out using human naval tactics by temporarily blocking traffic during low traffic hours, such as at night, in consideration of the impact on existing transit transportation, or on road shoulders. In addition, collimating points such as reflecting prisms are installed in places that do not directly affect passing traffic, such as the median strip, and measurements have been taken periodically.

【0003】しかし、これらの方法は、計測頻度や計測
箇所が限定されるという問題点を抱えており、通過交通
に左右されない沈下測定方法の確立が求められていた。
[0003] However, these methods have a problem that the measurement frequency and the measurement location are limited, and it has been required to establish a settlement measurement method that is not affected by passing traffic.

【0004】そこで、出願人は、車両が走行している道
路面や軌道敷の任意の場所を、車両を走行させながら連
続的に計測し、表面沈下の有無を迅速且つ正確に測定す
ることを目的として、特願平11−248945号の発
明を提案した。この技術は、路面等の沈下測定方法にお
いて、レーザー光を沈下測定対象面に所定の角度で斜め
に照射して、前記沈下測定対象面による反射光を測定す
ることによってレーザー光が照射される部位までの距離
の変化をレーザー測距手段を用いて測距し、このレーザ
ー測距手段で検出した距離の変化に基づいて前記沈下測
定対象面の沈下量を演算するようにしたものである。
[0004] Therefore, the applicant has continuously measured a road surface or an arbitrary place on a track on which the vehicle is running while running the vehicle, and quickly and accurately measure the presence or absence of surface subsidence. For the purpose, the invention of Japanese Patent Application No. 11-248945 was proposed. This technique is a method of measuring a squat on a road surface or the like, by irradiating a laser beam obliquely to a squat measurement target surface at a predetermined angle and measuring reflected light from the squat measurement target surface to thereby irradiate the laser light. The change in the distance to the target surface is measured using a laser distance measuring means, and the amount of settlement of the settlement measurement target surface is calculated based on the change in the distance detected by the laser distance measuring means.

【0005】[0005]

【発明が解決しようとする課題】しかし、トンネル掘削
の影響等により、各レーザー測距手段の位置そのものが
変化する場合がある。このようにして、レーザー測距手
段の位置そのものが変化してしまうと、測定対象面の沈
下量の測定は不正確なものとなってしまうという問題が
ある。従って、より高精度の測定を行うためには、各レ
ーザー測距手段自身の位置を正確に管理しておくことが
必要となる。
However, the position itself of each laser distance measuring means may change due to the influence of tunnel excavation or the like. If the position of the laser distance measuring means itself changes in this way, there is a problem that the measurement of the amount of settlement of the measurement target surface becomes inaccurate. Therefore, in order to perform more accurate measurement, it is necessary to accurately manage the position of each laser distance measuring means itself.

【0006】そこで、本発明においては、レーザー測距
手段の位置そのものを正確に確認してから測定対象面の
沈下量を計測する技術を提案するものである。
In view of the above, the present invention proposes a technique for accurately confirming the position of the laser distance measuring means itself and then measuring the amount of settlement of the surface to be measured.

【0007】[0007]

【課題を解決するための手段】本発明にかかる請求項1
の沈下測定方法は、レーザー光を沈下測定対象面に所定
の角度で斜めに照射して、前記沈下測定対象面による反
射光を測定することによってレーザー光が照射される部
位までの距離の変化をレーザー測距手段を用いて測距
し、このレーザー測距手段で検出した距離の変化に基づ
いて前記沈下測定対象面の沈下量を測定する沈下測定方
法において、沈下測定対象面の沈下量を測定する度に、
予め沈下測定対象面外の非沈降領域に設定された不動点
を基準として前記レーザー測距手段の位置を測定してか
ら(図6のステップS11)、前記レーザー測距手段に
よって沈下測定対象面の沈下量を測定する(図6のステ
ップS12)ことを特徴としている。これによって、レ
ーザー測距手段の位置そのものが変動しても不動点を基
準として位置の変動の有無を確認することができるの
で、変動が有った場合には補正して正確な測定ができる
のである。
Means for Solving the Problems Claim 1 according to the present invention.
The squat measurement method is to irradiate a laser beam obliquely at a predetermined angle to the squat measurement target surface, and measure the reflected light from the squat measurement target surface to measure the change in the distance to the part to be irradiated with the laser light. In the squat measurement method of measuring the squat amount of the squat measurement target surface based on a change in the distance detected by the laser distance measurement device, the squat amount of the squat measurement target surface is measured. Every time
After measuring the position of the laser ranging unit with reference to a fixed point set in a non-sinking region outside the squat measurement target surface in advance (step S11 in FIG. 6), the laser ranging unit measures the position of the squat measurement target surface. It is characterized in that the settlement amount is measured (step S12 in FIG. 6). With this, even if the position of the laser distance measuring means itself fluctuates, it is possible to confirm whether or not the position has fluctuated with reference to the fixed point. is there.

【0008】そして、請求項2の発明は、レーザー光を
沈下測定対象面に所定の角度で斜めに照射して、前記沈
下測定対象面による反射光を測定することによってレー
ザー光が照射される部位までの距離の変化を測定する複
数のレーザー測距手段を用いて、これらのレーザー測距
手段で検出した沈下測定対象面までの距離の変化に基づ
いて前記沈下測定対象面の沈下量を測定する沈下測定方
法において、予め沈下測定対象面外の非沈降領域に設定
された不動点を基準として前記各レーザー測距手段の位
置を順次測定して(図7のステップS21〜ステップS
26)から、前記レーザー測距手段によって沈下測定対
象面の沈下量を測定する(図7のステップS27)こと
を特徴としている。これによって、一つのレーザー測距
手段ではカバーできない広い範囲の沈下を測定すること
ができる。しかも、各レーザー測距手段は一つの不動点
を基準にして順次位置が測定されているので、測定対象
面の全体的な沈下を効果的に測定することができるので
ある。
According to a second aspect of the present invention, a laser beam is radiated obliquely at a predetermined angle to a squat measurement target surface, and the reflected light from the squat measurement target surface is measured to irradiate the laser light. Using a plurality of laser distance measuring means for measuring a change in distance to the squat measurement target surface, the squat amount of the squat measurement target surface is measured based on a change in the distance to the squat measurement target surface detected by the laser distance measuring means. In the squat measurement method, the positions of the respective laser distance measuring means are sequentially measured with reference to a fixed point set in a non-sink area outside the squat measurement target surface in advance (steps S21 to S in FIG. 7).
26), the squat amount of the squat measurement target surface is measured by the laser distance measuring means (step S27 in FIG. 7). This makes it possible to measure a wide range of squat which cannot be covered by one laser distance measuring means. In addition, since each laser distance measuring means measures the position sequentially with reference to one fixed point, it is possible to effectively measure the overall subsidence of the measurement target surface.

【0009】そして、請求項3の発明では、レーザー光
を沈下測定対象面に所定の角度で斜めに照射して、前記
沈下測定対象面による反射光を測定することによってレ
ーザー光が照射される部位までの距離の変化を測定する
複数のレーザー測距手段を用いて、これらのレーザー測
距手段で検出した沈下測定対象面までの距離の変化に基
づいて前記沈下測定対象面の沈下量を測定する沈下測定
方法において、沈下測定対象面の沈下量を測定する度に
(図8のステップS31)、予め沈下測定対象面外の非
沈降領域に設定された不動点を基準として前記各レーザ
ー測距手段の位置を順次測定して(図8のステップS3
2〜ステップS37)から、前記レーザー測距手段によ
って沈下測定対象面の沈下量を測定する(図8のステッ
プS38)ので、一つのレーザー測距手段ではカバーで
きない広い範囲の沈下を測定することができる。さら
に、レーザー測距手段の位置そのものが変動しても不動
点を基準として位置の変動の有無を確認することができ
るので、変動が有った場合には補正して正確な測定がで
きるのである。
According to the third aspect of the present invention, the laser beam is radiated obliquely at a predetermined angle to the squat measurement target surface, and the reflected light from the squat measurement target surface is measured to thereby irradiate the laser light. Using a plurality of laser distance measuring means for measuring a change in distance to the squat measurement target surface, the squat amount of the squat measurement target surface is measured based on a change in the distance to the squat measurement target surface detected by the laser distance measuring means. In the squat measurement method, each time the amount of squat on the squat measurement target surface is measured (step S31 in FIG. 8), each of the laser distance measuring means is determined with reference to a fixed point set in a non-sink region outside the squat measurement target surface in advance. Are sequentially measured (step S3 in FIG. 8).
From step 2 to step S37), the squat amount of the squat measurement target surface is measured by the laser distance measuring means (step S38 in FIG. 8), so that a wide range of squat which cannot be covered by one laser distance measuring means can be measured. it can. Furthermore, even if the position of the laser distance measuring means itself changes, the presence or absence of the position change can be confirmed based on the fixed point, so that if there is a change, correct measurement can be performed. .

【0010】[0010]

【発明の実施の形態】以下に、本発明にかかる沈下測定
方法に用いる装置の実施の形態を、図1に基づいて詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an apparatus used for a settlement measurement method according to the present invention will be described below in detail with reference to FIG.

【0011】既設の道路の地下に、斜めに交差するトン
ネルを掘削する場合に、その掘削による道路の路面沈下
の影響を監視する場合を例にとって説明する。図1にお
いて、Rは既設の道路であり、Tはその地下に掘削され
るトンネルである。そして、トンネルTと交差する部分
の路面が沈下する可能性があるので、トンネルと交差す
る範囲の沈下を、本発明によって監視するものとする。
A description will be given of an example in which a diagonally crossing tunnel is excavated under the existing road, and the influence of the excavation on the road surface subsidence is monitored. In FIG. 1, R is an existing road, and T is a tunnel excavated under the road. Then, since there is a possibility that the road surface intersecting with the tunnel T may sink, the settlement of the area intersecting with the tunnel T is monitored by the present invention.

【0012】図2において、1はレーザー測距手段とし
ての測量機であり、レーザー光線を照射して反射光を測
定し、反射点までの距離を測定して距離信号を出力する
測距機能を備えている。また、この測量機1は、モータ
ドライブ機構と、このモータドライブ機構を用いて、レ
ーザー光の照射角度を指定された方位角・俯角に設定す
る角度設定機能と、現在の照射角度を電気信号として出
力する角度信号出力機能と、通信回線を介して別途計測
室に設置された計測コンピュータ3との通信を行う通信
機能とを備えている。この通信機能は、必要に応じてR
S−232C規格からRS−422規格等の適切な規格
の信号に変換して伝送する機能をも含んだものであり、
有線通信でも無線通信でもよい。
In FIG. 2, reference numeral 1 denotes a surveying instrument as laser distance measuring means, which has a distance measuring function of irradiating a laser beam, measuring reflected light, measuring a distance to a reflecting point, and outputting a distance signal. ing. Further, the surveying instrument 1 has a motor drive mechanism, an angle setting function for setting the irradiation angle of the laser beam to a designated azimuth angle / depression angle using the motor drive mechanism, and a current irradiation angle as an electric signal. It has an angle signal output function to output and a communication function to communicate with a measurement computer 3 separately installed in a measurement room via a communication line. This communication function can
It also includes a function of converting from the S-232C standard to a signal of an appropriate standard such as the RS-422 standard and transmitting the signal.
Wired communication or wireless communication may be used.

【0013】図3に示したように、上記測量機は防雨構
造の監視室内に設置されている。この監視室は、図3の
(A)に示したように、道路に面した2面がガラス面と
されている。ガラス面の枠による死角は狭いため、道路
面に設定された各ポイントを計測することができる。ま
た、図3の(B)に示したように、監視室に近接した部
分(例えば2m以内の部分)は死角となるため、監視室
は道路の端から2m程度離して設置する。そして、一つ
の測量機は半径35m以内の路面を、5.0m×3.5
mメッシュのポイント(計60ポイント)の沈下を計測
することができるので、隣り合う測量機の計測範囲が少
しずつ重なり合うように設定する。なお、以上の数値は
一例であり、状況に応じて適宜設定することは言うまで
もない。
As shown in FIG. 3, the surveying instrument is installed in a monitoring room having a rain-proof structure. As shown in FIG. 3A, the monitoring room has two glass surfaces facing the road. Since the blind spot due to the frame on the glass surface is narrow, each point set on the road surface can be measured. In addition, as shown in FIG. 3B, a portion close to the monitoring room (for example, a portion within 2 m) becomes a blind spot, and thus the monitoring room is installed at a distance of about 2 m from the end of the road. Then, one surveying instrument measures the road surface within a radius of 35m by 5.0m × 3.5.
Since the settlement of m mesh points (total of 60 points) can be measured, the measurement ranges of the adjacent surveying instruments are set so as to slightly overlap each other. Note that the above numerical values are merely examples, and it goes without saying that they are set as appropriate according to the situation.

【0014】図1に示したように、以上のような測量機
1が、測定対象領域を網羅すべく複数(例えば8台)設
置されている。そして、図5に示したように、各測量機
1A〜1Hは、RS−232CとRS−422との信号
変換機能を備えた通信機能を介して計測コンピュータ3
に接続されている。この計測コンピュータ3は、各測量
機で検出した距離の変化に基づいて路面の沈下量を演算
する演算手段と、沈下量の測定値を時系列データとして
蓄積するデータ蓄積手段と、蓄積された時系列データを
統計処理する処理手段と、処理手段による処理結果に基
づいて沈下特性を判断する判断手段とを備えている。そ
して、前記計測コンピュータ3にて処理されたデータ
は、有線通信もしくは無線通信による通信機能を介して
別途管理事務所に設置された処理コンピュータに伝送さ
れる。これらの通信機能としては、RS−232C規格
やRS−422規格等の通信規格を適宜選択するとよ
い。
As shown in FIG. 1, a plurality of (for example, eight) surveying instruments 1 as described above are provided so as to cover a measurement target area. Then, as shown in FIG. 5, each of the surveying instruments 1A to 1H communicates with the measurement computer 3 via a communication function having a signal conversion function between RS-232C and RS-422.
It is connected to the. The measurement computer 3 includes a calculation unit that calculates the amount of settlement of the road surface based on a change in the distance detected by each surveying instrument, a data storage unit that stores the measured value of the amount of settlement as time-series data, The apparatus includes processing means for statistically processing the series data, and determining means for determining settlement characteristics based on the processing result of the processing means. The data processed by the measurement computer 3 is transmitted to a processing computer separately set up in a management office via a communication function by wire communication or wireless communication. As these communication functions, communication standards such as the RS-232C standard and the RS-422 standard may be appropriately selected.

【0015】図1において、S1,S2,S3,S4は
トンネルの掘削工事の影響を受けない場所(測定対象面
外の非沈下点)に設置した不動点であり、例えばプリズ
ムを設置しておく。
In FIG. 1, S1, S2, S3, and S4 are fixed points installed at a location not affected by tunnel excavation work (a non-sinking point outside the surface to be measured). For example, a prism is installed. .

【0016】次に、上記構成において、本発明を用いた
沈下量の演算方法を、図1を参照して説明する。まず、
インターバルタイマ等において設定された沈下量測定の
タイミングになっているか否かを確認して、沈下量測定
のタイミングであれば以下の計測を開始する。第1の測
量機1Aで第1の不動点S1を視準して角度と距離を計
測し、次に、前記第1の測量機1Aで第2の測量機1B
のプリズムを視準して角度と距離を計測し、第2の測量
機1Bで第1の測量機1Aのプリズムを視準して角度と
距離を計測する。このようにして順次計測し、最後に、
第4の測量機1Dで第3の測量機1Cのプリズムを視準
して角度と距離を計測した後、第4の測量機1Dで第2
の不動点S2を視準して角度と距離を計測する。この一
連の計測によって、第1の不動点S1と第2の不動点S
2を基準とした第1の測量機1A〜第4の測量機1Dを
位置を確定することができるのである。
Next, a method of calculating the amount of settlement using the present invention in the above configuration will be described with reference to FIG. First,
It is checked whether or not the timing of the settlement amount measurement set in the interval timer or the like has come. If the timing of the settlement amount measurement has been reached, the following measurement is started. The first surveying instrument 1A collimates the first fixed point S1 to measure the angle and the distance, and then the first surveying instrument 1A measures the second surveying instrument 1B.
The second surveying instrument 1B measures the angle and the distance by collimating the prism of the first surveying instrument 1A. Measure sequentially in this way, and finally,
After measuring the angle and the distance by collimating the prism of the third surveying instrument 1C with the fourth surveying instrument 1D, the second surveying instrument 1D measures the second angle.
The angle and the distance are measured by collimating the fixed point S2. By this series of measurements, the first fixed point S1 and the second fixed point S1
The positions of the first surveying instrument 1A to the fourth surveying instrument 1D with reference to 2 can be determined.

【0017】既設道路Rの反対側においても、同様にし
て、第3の不動点S3と第4の不動点S4を基準にし
て、第5〜第8の測量機1E,1F,1G,1Hの位置
を計測する。これらの位置データは計測コンピュータ3
へ伝送し保存しておく。
Similarly, on the opposite side of the existing road R, the fifth to eighth surveying instruments 1E, 1F, 1G, and 1H are similarly set based on the third fixed point S3 and the fourth fixed point S4. Measure the position. These position data are stored in the measurement computer 3
And save it.

【0018】以上のようにして、各測量機の位置を確認
した後に、路面の計測を行う。これは、図1に示したよ
うに、路面にメッシュ状に設定された各ポイントにそれ
ぞれ担当する測量機からレーザー光線を斜めに照射し、
反射光を測定して各ポイント(Pa)までの基準距離
(La)を測定しておく。しかる後に計測を開始する。
なお、季節変動や温度条件等によって監視室の構造体の
熱膨張/収縮が発生すると、実際の路面の沈下が無くて
も、測量機1による計測値(反射光による計測距離)が
基準距離と異なった値となってしまうこともあるので、
前記基準距離(La)は、季節変動や温度条件等を加味
して、種々の条件に対応できるように複数種類設定して
おくとよい。
After confirming the position of each surveying instrument as described above, the road surface is measured. This is, as shown in FIG. 1, the oblique irradiation of a laser beam from a surveying instrument in charge of each point set in a mesh on the road surface,
The reference distance (La) to each point (Pa) is measured by measuring the reflected light. After a while, measurement is started.
If thermal expansion / contraction of the monitoring room structure occurs due to seasonal fluctuations, temperature conditions, etc., the measured value (measured distance by reflected light) measured by the surveying instrument 1 is equal to the reference distance even if there is no actual settlement of the road surface. Since the value may be different,
The reference distance (La) may be set to a plurality of types so as to be able to cope with various conditions in consideration of seasonal fluctuations, temperature conditions, and the like.

【0019】図4において、前記測量機1による計測値
(反射光による計測距離)がLsであるときの沈下量Δ
Hは次式で求める。 ΔH=(Ls−La)×sin θ なお、レーザーの照射角度はθaとする。このようにし
て、ポイントPaにおける路面の沈下量を、距離の変化
量と傾斜角度より求めるのである。そして、別のポイン
トPb,Pc,・・・・・における路面の沈下量をそれ
ぞれ求めることができるのである。8台の測量機によっ
て全てのポイントの沈下量を計測して、計測コンピュー
タ3に蓄積するとともに管理事務所の処理コンピュータ
へ伝送し、計測コンピュータ及び処理コンピュータの画
面で路面の沈下量をグラフィカルに表示することができ
る。また、予め設定された沈下量を越えた場合には、通
信機能を介して警報を出力することもできる。このよう
な警報機能によって、特定の人もしくは特定の受信機に
異常な沈降を知らせて対策を講じることも可能になる。
In FIG. 4, the subsidence amount Δ when the measured value (measured distance by reflected light) by the surveying instrument 1 is Ls.
H is obtained by the following equation. ΔH = (Ls−La) × sin θ Note that the laser irradiation angle is θa. In this way, the amount of settlement of the road surface at the point Pa is obtained from the amount of change in the distance and the inclination angle. .. Can be obtained respectively at different points Pb, Pc,.... The amount of settlement of all points is measured by eight surveying instruments, stored in the measurement computer 3 and transmitted to the processing computer of the management office, and the amount of settlement of the road surface is graphically displayed on the screen of the measurement computer and the processing computer can do. Further, when the amount of sinking exceeds a preset amount, an alarm can be output via a communication function. Such an alarm function also makes it possible to notify a specific person or a specific receiver of abnormal sinking and take measures.

【0020】なお、路面の沈下の進行と比較すると、車
両の通行による瞬間的な路面の上下振動等は極めて短時
間の変化であるので、計測値から短時間の変化を排除す
ることによって、車両の通行による瞬間的な路面の上下
振動等の影響を取り除いた、実際の路面の沈下量を抽出
して計測することができるのである。このように、路面
の沈下量には、通過車両による弾性沈下もあるので、毎
回の計測値の変化が、路面の沈下によるものか、それ以
外の外乱によるものかを判定する必要がある。
In comparison with the progress of the settlement of the road surface, the instantaneous vertical vibration of the road surface due to the traffic of the vehicle is a very short-time change. It is possible to extract and measure the actual amount of subsidence of the road surface from which the influence of the instantaneous vertical vibration of the road surface due to the passage of traffic has been removed. As described above, since the amount of settlement of the road surface includes the elastic settlement caused by the passing vehicle, it is necessary to determine whether the change in the measured value every time is caused by the settlement of the road surface or by other disturbance.

【0021】上記構成の沈下測定装置によれば、車両の
通行量の多い道路であっても、通行を禁止したり制限し
たりすることなく、無人で連続的に計測できるので、車
両の通行等の影響を取り除いた路面の沈下を継続して観
測することができ、事故の予防や、補修時期の予測が可
能となり、計画的で且つ安全な道路管理が可能となるの
である。そして、路面の沈降を計測する前に、測量機の
沈降や位置変動がないかを確認するので、正確な路面の
沈降の計測が可能になったのである。
According to the squat measurement device having the above structure, even on a road with a large traffic volume, unmanned and continuous measurement can be performed without prohibiting or restricting traffic. It is possible to continuously observe the settlement of the road surface from which the influence of the road has been removed, prevent accidents and predict the repair time, and enable planned and safe road management. Then, before measuring the subsidence of the road surface, it is checked whether there is any subsidence or positional change of the surveying instrument, so that it is possible to accurately measure the subsidence of the road surface.

【0022】また、路面だけでなく、地盤の沈下や建物
の沈下等を非接触で離れた位置から無人で連続的に正確
に計測することが可能となるのである。
Further, not only the road surface but also the land subsidence and the building subsidence can be measured continuously and accurately from a remote location without contact.

【0023】[0023]

【発明の効果】本発明によれば、複数のレーザー測距手
段を用いて広い範囲の沈下測定ができるとともに、予め
沈下測定対象面外の非沈降領域に設定された不動点を基
準としてレーザー測距手段の位置の変動がないかを確認
してから測定対象面の沈下量を計測できるので、正確な
計測が可能となった。
According to the present invention, a wide range of squat measurement can be performed by using a plurality of laser distance measuring means, and laser measurement is performed based on a fixed point set in advance in a non-sink region outside the squat measurement target surface. Since it is possible to measure the settlement amount of the surface to be measured after confirming whether the position of the distance means has changed, accurate measurement has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる沈下測定方法を説明する平面配
置図である。
FIG. 1 is a plan view illustrating a settlement method according to the present invention.

【図2】前記計測方法を説明する側面図である。FIG. 2 is a side view illustrating the measuring method.

【図3】前記計測方法に用いる監視室の説明図である。FIG. 3 is an explanatory diagram of a monitoring room used for the measurement method.

【図4】前記測定方法の計測原理を説明する図である。FIG. 4 is a diagram illustrating a measurement principle of the measurement method.

【図5】前記測定方法に用いる系統図である。FIG. 5 is a system diagram used for the measurement method.

【図6】請求項1の測定方法に対応したフローチャート
である。
FIG. 6 is a flowchart corresponding to the measuring method of claim 1;

【図7】請求項2の測定方法に対応したフローチャート
である。
FIG. 7 is a flowchart corresponding to the measuring method of claim 2;

【図8】請求項3の測定方法に対応したフローチャート
である。
FIG. 8 is a flowchart corresponding to the measuring method of claim 3;

【符号の説明】[Explanation of symbols]

1 測量機 1A,1B,1C,1D 測量機 1E,1F,1G,1H 測量機 10 測距機能 3 計測コンピュータ S1,S2,S3,S4 不動点 R 既設道路 T トンネル DESCRIPTION OF SYMBOLS 1 Surveying instrument 1A, 1B, 1C, 1D Surveying instrument 1E, 1F, 1G, 1H Surveying instrument 10 Distance measuring function 3 Measurement computer S1, S2, S3, S4 Fixed point R Existing road T Tunnel

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】レーザー光を沈下測定対象面に所定の角度
で斜めに照射して、前記沈下測定対象面による反射光を
測定することによってレーザー光が照射される部位まで
の距離の変化をレーザー測距手段を用いて測距し、この
レーザー測距手段で検出した距離の変化に基づいて前記
沈下測定対象面の沈下量を測定する沈下測定方法におい
て、沈下測定対象面の沈下量を測定する度に、予め沈下
測定対象面外の非沈降領域に設定された不動点を基準と
して前記レーザー測距手段の位置を測定してから、前記
レーザー測距手段によって沈下測定対象面の沈下量を測
定することを特徴とする沈下測定方法。
1. A method for irradiating a laser beam to a squat measurement target surface at an oblique angle at a predetermined angle, and measuring reflected light from the squat measurement target surface to determine a change in a distance to a laser beam irradiation portion. In a squat measurement method of measuring a distance using a distance measuring unit and measuring a squat amount of the squat measurement target surface based on a change in the distance detected by the laser distance measuring unit, the squat amount of the squat measurement target surface is measured. Each time, the position of the laser ranging means is measured with reference to a fixed point set in a non-sinking area outside the squat measurement target surface in advance, and then the squat amount of the squat measurement target surface is measured by the laser ranging means. A settlement measurement method.
【請求項2】レーザー光を沈下測定対象面に所定の角度
で斜めに照射して、前記沈下測定対象面による反射光を
測定することによってレーザー光が照射される部位まで
の距離の変化を測定する複数のレーザー測距手段を用い
て、これらのレーザー測距手段で検出した沈下測定対象
面までの距離の変化に基づいて前記沈下測定対象面の沈
下量を測定する沈下測定方法において、予め沈下測定対
象面外の非沈降領域に設定された不動点を基準として前
記各レーザー測距手段の位置を順次測定してから、前記
レーザー測距手段によって沈下測定対象面の沈下量を測
定することを特徴とする沈下測定方法。
2. A method of measuring a change in a distance to a part to be irradiated with laser light by irradiating a laser light obliquely onto a surface to be measured for squatting at a predetermined angle and measuring light reflected by the surface to be sunk. In a squat measurement method for measuring the amount of squat on the squat measurement target surface based on a change in the distance to the squat measurement target surface detected by these laser distance measurement devices, After sequentially measuring the position of each of the laser ranging means with reference to a fixed point set in a non-sinking area outside the measurement target surface, measuring the settlement amount of the settlement measurement target surface by the laser ranging means. Characteristic settlement measurement method.
【請求項3】レーザー光を沈下測定対象面に所定の角度
で斜めに照射して、前記沈下測定対象面による反射光を
測定することによってレーザー光が照射される部位まで
の距離の変化を測定する複数のレーザー測距手段を用い
て、これらのレーザー測距手段で検出した沈下測定対象
面までの距離の変化に基づいて前記沈下測定対象面の沈
下量を測定する沈下測定方法において、沈下測定対象面
の沈下量を測定する度に、予め沈下測定対象面外の非沈
降領域に設定された不動点を基準として前記各レーザー
測距手段の位置を順次測定してから、前記レーザー測距
手段によって沈下測定対象面の沈下量を測定することを
特徴とする沈下測定方法。
3. A change in the distance to a portion to be irradiated with the laser beam is measured by irradiating the surface of the squat measurement object obliquely at a predetermined angle with the laser beam and measuring the reflected light from the squat measurement object surface. In the squat measurement method of measuring the squat amount of the squat measurement target surface based on a change in the distance to the squat measurement target surface detected by these laser distance measurement devices, Each time the sinking amount of the target surface is measured, the position of each of the laser distance measuring means is sequentially measured with reference to a fixed point set in advance in a non-sinking area outside the target surface of the sinking measurement. A squat measurement method characterized by measuring the amount of squat on a squat measurement target surface.
JP2001114117A 2001-04-12 2001-04-12 Depression measuring method Pending JP2002310648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114117A JP2002310648A (en) 2001-04-12 2001-04-12 Depression measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114117A JP2002310648A (en) 2001-04-12 2001-04-12 Depression measuring method

Publications (1)

Publication Number Publication Date
JP2002310648A true JP2002310648A (en) 2002-10-23

Family

ID=18965245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114117A Pending JP2002310648A (en) 2001-04-12 2001-04-12 Depression measuring method

Country Status (1)

Country Link
JP (1) JP2002310648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007657A (en) * 2009-06-26 2011-01-13 Sooki:Kk Displacement measuring method
JP2017101416A (en) * 2015-11-30 2017-06-08 西日本高速道路エンジニアリング四国株式会社 Pot hole generation preventing method
JP7357115B2 (en) 2018-03-01 2023-10-05 株式会社エムアールサポート Surveying system, surveying method and installation equipment for the surveying system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921636A (en) * 1995-07-10 1997-01-21 Shimizu Corp Apparatus for monitoring behavior of ground and structure
JP2001021355A (en) * 1999-07-12 2001-01-26 Sgs:Kk Surveying device and surveying method in pipe jacking method
JP2001073316A (en) * 1999-09-02 2001-03-21 Sgs:Kk Settlement measuring method and settlement measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921636A (en) * 1995-07-10 1997-01-21 Shimizu Corp Apparatus for monitoring behavior of ground and structure
JP2001021355A (en) * 1999-07-12 2001-01-26 Sgs:Kk Surveying device and surveying method in pipe jacking method
JP2001073316A (en) * 1999-09-02 2001-03-21 Sgs:Kk Settlement measuring method and settlement measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007657A (en) * 2009-06-26 2011-01-13 Sooki:Kk Displacement measuring method
JP2017101416A (en) * 2015-11-30 2017-06-08 西日本高速道路エンジニアリング四国株式会社 Pot hole generation preventing method
JP7357115B2 (en) 2018-03-01 2023-10-05 株式会社エムアールサポート Surveying system, surveying method and installation equipment for the surveying system

Similar Documents

Publication Publication Date Title
US10384604B2 (en) Advanced warning and risk evasion system and method
US20050203697A1 (en) Automatic verification of sensing devices
US7584047B2 (en) Method and apparatus for detecting object
CN203165208U (en) Traffic management system based on Internet of things and dynamic 3D GIS
WO2020021282A1 (en) Determining position of a vehicle on a rail
CN103065465A (en) Traffic management system based on internet of things or dynamic three dimensional (3D) geographic information system (GIS) and method thereof
US7187302B2 (en) Assessing the accuracy of road-side systems
AU2002367462A1 (en) Assessing the accuracy of road-side systems
JP4355869B2 (en) Settlement measurement method and settlement measurement device
JP3909294B2 (en) Settlement measurement method
JP3942518B2 (en) Road surface measuring device
JPH09138280A (en) Monitoring apparatus
JP2002310648A (en) Depression measuring method
JP3912780B2 (en) Displacement measurement method such as slope
JP5308930B2 (en) Displacement measurement method
JP4335769B2 (en) Movement amount measuring method using non-prism distance measuring means
JP4059832B2 (en) Road section measuring device and road section measuring method
JPH11325901A (en) Special measurement rivet for automatic tracking total station displacement observation system (with built-in corner prism)
RU2681451C1 (en) Safety in the railway crossing ensuring method
RU2774323C1 (en) Method for determining the state of the ground line, a control and alarm system for its implementation and a device for interrogation and collection of information on the state of the ground line for the control and alarm system
Wong et al. The correlation between the noise and vibration induced by a bridge movement joint
WO2018060700A1 (en) Monitoring system
JP2005128671A (en) System for recording vehicle travel, and vehicle traffic accident notifying system
KR20230102492A (en) A water level measurement device and a real-time water level monitoring system to prevent flood damage
Bushnell et al. Microwave air gap-bridge clearance sensor test, evaluation, and implementation report

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907