JP4335769B2 - Movement amount measuring method using non-prism distance measuring means - Google Patents

Movement amount measuring method using non-prism distance measuring means Download PDF

Info

Publication number
JP4335769B2
JP4335769B2 JP2004252720A JP2004252720A JP4335769B2 JP 4335769 B2 JP4335769 B2 JP 4335769B2 JP 2004252720 A JP2004252720 A JP 2004252720A JP 2004252720 A JP2004252720 A JP 2004252720A JP 4335769 B2 JP4335769 B2 JP 4335769B2
Authority
JP
Japan
Prior art keywords
measurement
prism
measurement object
change
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004252720A
Other languages
Japanese (ja)
Other versions
JP2006071356A (en
Inventor
富男 稲葉
Original Assignee
株式会社ソーキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソーキ filed Critical 株式会社ソーキ
Priority to JP2004252720A priority Critical patent/JP4335769B2/en
Publication of JP2006071356A publication Critical patent/JP2006071356A/en
Application granted granted Critical
Publication of JP4335769B2 publication Critical patent/JP4335769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machines For Laying And Maintaining Railways (AREA)

Description

本発明は、軌道のレールの横方向のずれや垂直方向の沈下/上昇などの変位を、非接触で計測する技術に関するものである。   The present invention relates to a technique for measuring a displacement such as a lateral shift of a track rail and a vertical settlement / rise in a non-contact manner.

ここでいうノンプリズム測距手段とは、いわゆるノンプリズムトータルステーションと称されている測距装置のように、赤外線やレーザー等の電磁波を対象物に照射して、対象物で反射して帰ってくるまでの時間、あるいは位相差を計測することによって、対象物までの距離を計測する技術を用いた装置であり、特に、対象物に反射プリズム等の特定のターゲットを設置しなくても計測可能なものをいう。前記ノンプリズムトータルステーション等は、対象物を視準したときの方位角も計測することによって、対象物までの距離、方角を3次元的に計測できる。
このようなノンプリズムトータルステーションを用いて路面の沈下等の変位を、非接触で計測する技術が提案されている。(例えば、特許文献1参照)
The non-prism distance measuring means here refers to a distance measuring device called a so-called non-prism total station, which irradiates the object with electromagnetic waves such as infrared rays and lasers, and returns by reflecting on the object. This is a device that uses the technology to measure the distance to the object by measuring the time until or the phase difference, and in particular it can be measured without installing a specific target such as a reflecting prism on the object Say things. The non-prism total station or the like can measure the distance and direction to the object in a three-dimensional manner by measuring the azimuth angle when the object is collimated.
There has been proposed a technique for measuring displacement such as road subsidence in a non-contact manner using such a non-prism total station. (For example, see Patent Document 1)

特開2001−073316号公報JP 2001-073316 A

ところが、上述したような従来の計測方法は、路面等のほぼ水平な面の垂直方向の変位(沈下)は計測可能であるが、水平方向の横ずれ等の変位は計測できなかった。   However, the conventional measuring method as described above can measure the vertical displacement (sinking) of a substantially horizontal surface such as a road surface, but cannot measure the displacement such as the lateral displacement in the horizontal direction.

そこで、本発明は、計測対象物の変位を2次元的もしくは3次元的に計測できる技術を提案して、レールの横ずれ等も非接触で計測可能とすることを目的としてなされたものである。
Therefore, the present invention proposes a technique capable of measuring the displacement of a measurement object in a two-dimensional or three-dimensional manner, and aims to make it possible to measure a lateral displacement of a rail without contact.

本発明の請求項1にかかるノンプリズム測距手段による移動量計測方法は、
測定対象物を視準可能な位置に設置したノンプリズム測距手段を用いて、前記測定対象物の位置変化を測定するノンプリズム測距手段を用いた移動量計測方法であって、
前記測定対象物と一体で位置変化し、互いに非平行な2つの測定対象面を設定し、
前記ノンプリズム測距手段によって前記2つの測定対象面までの距離変化を測定することによって、
前記測定対象物の次元的な位置変化を測定するように構成した。
また、請求項2では、
測定対象物を視準可能な位置に設置したノンプリズム測距手段を用いて、前記測定対象物 の位置変化を測定するノンプリズム測距手段を用いた移動量計測方法であって、
前記測定対象物と一体で位置変化し、互いに非平行な3つの測定対象面を設定し、
前記ノンプリズム測距手段によって前記3つの測定対象面までの距離変化を測定すること によって、
前記測定対象物の3次元的な位置変化を測定するように構成した。
I that move quantity measuring method in the non-prism distance measuring device according to claim 1 of the present invention,
Using non-prism distance measuring means set up the object to be measured collimation possible positions, a moving quantity measuring method using the non-prism distance measuring means for measuring a change in position of the measurement object,
Change the position integrally with the measurement object, set two measurement object surfaces that are non-parallel to each other,
By measuring the change in distance to the two measurement target surfaces by the non-prism distance measuring means,
The measurement object was configured to measure a two- dimensional change in position.
In claim 2,
Using a non-prism distance measuring means installed at a position where a measurement object can be collimated, a movement amount measuring method using a non-prism distance measuring means for measuring a change in position of the measurement object ,
Change the position integrally with the measurement object, set three measurement object surfaces that are non-parallel to each other,
By measuring the distance change to the three measurement target surfaces by the non-prism distance measuring means ,
The measurement object is configured to measure a three-dimensional change in position.

本発明のノンプリズム測距手段による移動量計測方法によれば、測定対象物と一体で位置変化し、互いに非平行な2つもしくは3つの測定対象面を設定できる測定対象物であれば、前記測定対象物の2次元的もしくは3次元的な位置変化を計測することができるので、レール等の横方向のずれや垂直方向の沈下/上昇をも非接触で計測することができるので、高度な安全管理を容易に行うことができる。
According to by that move quantity measuring method in the non-prism distance measuring means of the present invention, and the position change by the object integrated, there by the object that can be set to non-parallel two or three object surface to each other For example, since it is possible to measure a two-dimensional or three-dimensional positional change of the measurement object, it is possible to measure a lateral displacement of a rail or the like and a vertical settlement / rise as well without contact. Advanced safety management can be easily performed.

以下に、本発明にかかるノンプリズム測距手段による移動量計測方法を、その実施の形態を示した図面に基づいて詳細に説明する。
図1において、
前記測定対象物Aと一体で位置変化し、互いに非平行な2つの測定対象面を設定する。具体例としては、前記測定対象物Aを直方体としてX軸に垂直な平面X(垂直面)と、Z軸に垂直な平面Z(水平面)とを2つの測定対象面とする。測定対象物が、互いに非平行な2つの測定対象面を持っていない場合には、前記測定対象物に、互いに非平行な2つの平面を持った物体を付設し、前記物体の平面を測定対象面とする。
前記測定対象物Aを視準可能な位置に、ノンプリズム測距手段としてのノンプリズムトータルステーションを設置し、このノンプリズムトータルステーションで初期状態における前記測定対象面X,Zを視準し、その方向と距離を記憶する。
前記測定対象物Aが、破線で示した初期状態における位置から実線で示した位置に移動した場合、ノンプリズムトータルステーションの視準方向を前記初期状態と同一方向に固定した状態では、前記測定対象面Xまでの距離がLxだけ変化し、前記測定対象面Zまでの距離がLzだけ変化する。
この場合、前記測定対象面Xと視準方向とのなす角をθxとし、前記測定対象面Zと視準方向とのなす角をθzとすると、前記測定対象物AのX軸方向への移動量Dx=Lx・sinθx、前記測定対象物AのZ軸方向への移動量Dz=Lz・sinθzとして求めることができる。(図7参照)
Hereinafter, by that move quantity measuring method in the non-prism distance measuring device according to the present invention will be described in detail with reference to the drawings showing embodiments thereof.
In FIG.
The position of the measurement object A is changed integrally with the measurement object A, and two measurement object surfaces that are not parallel to each other are set. As a specific example, the measurement object A is a rectangular parallelepiped, and a plane X (vertical surface) perpendicular to the X axis and a plane Z (horizontal plane) perpendicular to the Z axis are two measurement object surfaces. Measurement object, if you do not have a non-parallel two surfaces to be measured from each other, the measurement object, and attached objects that have non-parallel two planes together, measured the plane of the object A surface.
A non-prism total station as a non-prism distance measuring means is installed at a position where the measurement object A can be collimated. The non-prism total station collimates the measurement target surfaces X and Z in an initial state, Remember the distance.
When the measurement object A moves from the position in the initial state indicated by the broken line to the position indicated by the solid line, the measurement object surface is in a state where the collimation direction of the non-prism total station is fixed in the same direction as the initial state. distance for each X is changed by Lx, distance of the to the measurement target surface Z changes by Lz.
In this case, if the angle between the measurement target surface X and the collimation direction is θx, and the angle between the measurement target surface Z and the collimation direction is θz, the measurement target A moves in the X-axis direction. The amount Dx = Lx · sin θx, and the amount of movement Dz of the measurement object A in the Z-axis direction can be obtained as Dz = Lz · sin θz. (See Figure 7)

このようにして、測定対象物AのX軸方向の移動量(水平方向のずれ量)と、Z軸方向の移動量(沈下量)からなる2次元移動量を計測する。
なお、前記測定対象物AのY軸に垂直な平面Y(垂直面)も測定対象面として設定して、その平面までの距離の変化を測定すれば、測定対象物AのX軸方向の移動量と、Z軸方 向の移動量とに加えて、Y軸方向の移動量(水平方向のずれ量)も計測できるので、測定 対象物Aの3次元移動量を計測できる。
このとき、ノンプリズムトータルステーションの視準方向を前記初期状態と同一方向に固定した状態で、前記測定対象面Xまでの距離がLxだけ変化し、前記測定対象面Yまでの距離がLyだけ変化し、前記測定対象面Zまでの距離がLzだけ変化するとする。そして、前記測定対象面Xと視準方向とのなす角をθxとし、前記測定対象面Yと視準方向とのなす角をθyとし、前記測定対象面Zと視準方向とのなす角をθzとすると、前記測定対象物AのX軸方向への移動量Dx=Lx・sinθx、前記測定対象物AのY軸方向への移動量Dy=Ly・sinθy、前記測定対象物AのZ軸方向への移動量Dz=Lz・ sinθzとして求めることができる。
このようにして、2次元的な移動量もしくは3次元的な移動量を計測することができるのである。
なお、レール(軌道)の測定のように、レールの長手方向の移動量は計測する必要が少ない場合で、沈下量と横方向へのずれの測定を重視する場合には、測定対象面は2面でよい。
In this way, the two-dimensional movement amount consisting of the movement amount of the measuring object A in the X-axis direction (horizontal shift amount) and the movement amount in the Z-axis direction (sinking amount) is measured.
If the plane Y (vertical plane) perpendicular to the Y axis of the measurement object A is also set as the measurement object plane and the change in the distance to the plane is measured, the measurement object A moves in the X axis direction. the amount, in addition to the amount of movement of Z-axis direction, movement amount in the Y-axis direction because (horizontal shift amount) can also be measured, can be measured three-dimensional movement of the measurement object a.
At this time, in a state in which the collimation direction and fixed to the initial state in the same direction of non-prism total station, distance of the to the measurement target surface X is changed by Lx, distance of the to the measurement target surface Y only Ly change, distance of the to the measurement target surface Z is to be changed by Lz. An angle between the measurement target surface X and the collimation direction is θx, an angle between the measurement target surface Y and the collimation direction is θy, and an angle between the measurement target surface Z and the collimation direction is Assuming θz, the movement amount Dx = Lx · sin θx of the measurement object A in the X-axis direction, the movement amount Dy = Ly · sinθy of the measurement object A in the Y-axis direction, the Z-axis of the measurement object A The amount of movement in the direction Dz = Lz · sin θz can be obtained.
In this way, a two-dimensional movement amount or a three-dimensional movement amount can be measured.
Note that when the amount of movement in the longitudinal direction of the rail is not required to be measured as in the measurement of the rail (track), and the emphasis is on the measurement of the amount of settlement and the deviation in the lateral direction, the measurement target surface is 2 In terms of surface.

図2は、鉄道の軌道の工事中の管理もしくは運用中の軌道の管理のために、敷設されたレールの位置変化(変位)を連続的に計測し、安全な運用に供することを目的とした測定方法の実施例の説明図である。   The purpose of Fig. 2 is to continuously measure the positional change (displacement) of the installed rails for the management of railway tracks during construction or track management, and to provide safe operation. It is explanatory drawing of the Example of a measuring method.

この実施例においては、レールと枕木の変位を測定し、以下の6項目について確認を行う。
・ 沈下
・ 横移動
・ 横断方向の高低差
・ 縦断方向の高低差
・ 軌間長
・ 通り
In this embodiment, the displacement of rails and sleepers is measured, and the following six items are confirmed.
・ Subsidence ・ Lateral movement ・ Crossing direction height difference ・ Longitudinal direction height difference ・ Gauge length ・ Street

図2において、
A1、A2はレール、A3は枕木であり、これらが測定対象物の軌道である。
1は前記軌道を視準し得る位置(具体例としては、電柱上。)に設置された自動追尾式ノンプリズムトータルステーション(Trimble 5600 DR200+)である。
2は計測室に設置されたパーソナルコンピュータ、3は前記ノンプリズムトータルステーションのぞれぞれに設置された専用インターフェイスボックス、4は前記ノンプリズムトータルステーション1と前記パーソナルコンピュータ2とを接続したRS−422規格等の通信路、6は前記パーソナルコンピュータ2と外部の監視システムとを接続する通信手段、7は前記計測室に設置された安定化電源である。その他、必要に応じて、避雷器やプリンタ等を設置する。
In FIG.
A1 and A2 are rails, and A3 is a sleeper. These are the tracks of the measurement object.
Reference numeral 1 denotes an automatic tracking non-prism total station (Trimble 5600 DR200 +) installed at a position (specifically, on a utility pole) where the trajectory can be collimated.
2 is a personal computer installed in the measurement room, 3 is a dedicated interface box installed in each of the non-prism total stations, and 4 is an RS-422 standard in which the non-prism total station 1 and the personal computer 2 are connected. And the like, 6 is a communication means for connecting the personal computer 2 and an external monitoring system, and 7 is a stabilized power supply installed in the measurement room. In addition, lightning arresters and printers will be installed as necessary.

平面配置を示した図3のように、4台のノンプリズムトータルステーション1、1、1、1を、それぞれの位置の電柱に設置する。
上記4台のノンプリズムトータルステーションによる計測範囲は600mの区間とする。
また、測定対象面としては、図4、5に示したように、レールの側面(ほぼ垂直な面)と、枕木の表面(ほぼ水平な面)とを設定する。
また、計測時間間隔は1時間に1回計測する。
As shown in FIG. 3 showing the planar arrangement, four non-prism total stations 1, 1, 1, 1 are installed on the utility poles at the respective positions.
The measurement range by the four non-prism total stations is 600m.
Further, as shown in FIGS. 4 and 5, the rail side surface (substantially vertical surface) and the sleeper surface (substantially horizontal surface) are set as the measurement target surface.
The measurement time interval is measured once per hour.

実際の測定においては、軌道にプリズム等の特別なターゲットを使用せずかつ、列車等の通行規制も行わずに軌道を使用しながら自動計測を行う。
測定状況および結果は通信回線を介して、別の場所のコンピュータにて常時受信し解析を行う。
In actual measurement, automatic measurement is performed while using a track without using a special target such as a prism on the track and without restricting traffic such as a train.
The measurement status and results are always received and analyzed by a computer in another location via a communication line.

次に、図6に示した計測フローチャートに基づいて計測手順を説明する。
ステップS1においては、測定の基準となる基準点を軌道とは別の位置に設定する。
ステップS2においては、ノンプリズムトータルステーションを軌道の近くの電柱の上に設置する。
ステップS3においては、ノンプリズムトータルステーションとパソコンとを通信路で接続する。
ステップS4においては、前記基準点を視準してその位置を記憶する。
ステップS5においては、レールの側面と枕木の表面とを視準してその方向と距離とを計測する。この計測は、連続して複数回(例えば2〜10回)行い、それらのデータのうち、所定の範囲以上に突出した異常なデータは除外する。
ステップS6においては、計測したデータを前記パーソナルコンピュータに取り込んで記憶する。このとき、前記ステップS5において除外した異常データ以外の正常データの平均を有効データとして使用する。
Next, a measurement procedure will be described based on the measurement flowchart shown in FIG.
In step S1, a reference point serving as a measurement reference is set at a position different from the trajectory.
In step S2, a non-prism total station is installed on a power pole near the track.
In step S3, the non-prism total station and the personal computer are connected via a communication path.
In step S4, the reference point is collimated and its position is stored.
In step S5, the side surface of the rail and the surface of the sleeper are collimated and the direction and distance are measured. This measurement is continuously performed a plurality of times (for example, 2 to 10 times), and abnormal data protruding beyond a predetermined range is excluded from those data.
In step S6, the measured data is taken into the personal computer and stored. At this time, the average of normal data other than the abnormal data excluded in step S5 is used as valid data.

ステップS7においては、前記取り込んだ有効データを解析して、基準点を基準にした位置データを算出してパーソナルコンピュータのディスプレイ上に表示する。このとき、前回の計測結果とは異なる色で表示する。また、前回の計測データとの差を算出して数値表示も行う。
このとき、前述した手順と同様にして、前記レールの側面が横方向(ほぼ水平方向)にずれた変位量と、枕木の表面が上下方向にずれた変位量とを算出する。
レールの側面はノンプリズムトータルステーションによる計測に関しては、ほぼ垂直面と見なすことができ、枕木の表面はノンプリズムトータルステーションによる計測に関しては、ほぼ水平面と見なすことができる。
なお、初期状態からの変位が所定の範囲を超えた場合には警報を出力するようにするとよい。
In step S7, the fetched effective data is analyzed, and position data based on the reference point is calculated and displayed on the display of the personal computer. At this time, it is displayed in a color different from the previous measurement result. Also, the difference from the previous measurement data is calculated, and the numerical value is displayed.
At this time, similarly to the procedure described above, a displacement amount in which the side surface of the rail is displaced in the lateral direction (substantially horizontal direction) and a displacement amount in which the surface of the sleeper is displaced in the vertical direction are calculated.
The side surface of the rail can be regarded as a substantially vertical surface when measured by the non-prism total station, and the surface of the sleeper can be regarded as a substantially horizontal surface when measured by the non-prism total station.
Note that an alarm may be output when the displacement from the initial state exceeds a predetermined range.

ステップS8においては、時間経過を監視して、設定された所定の計測間隔、例えば1時間が経過するとステップS5へ戻って計測を繰り返す。また、設定された所定の校正間隔、例えば24時間が経過するとステップS4へ戻って基準点の視準から繰り返す。   In step S8, the passage of time is monitored, and when a predetermined measurement interval that has been set, for example, 1 hour has passed, the process returns to step S5 to repeat the measurement. In addition, when a predetermined calibration interval, for example, 24 hours has elapsed, the process returns to step S4 and repeats from the collimation of the reference point.

計測室には、パーソナルコンピュータ等の機器に電源を供給するための無停電装置や、落雷からの事故を防止するための避雷対策装置等を備えている。   The measurement room is equipped with an uninterruptible device for supplying power to devices such as personal computers, a lightning protection device for preventing accidents from lightning, and the like.

なお、前記ノンプリズムトータルステーションの性能は以下の通りである。
角度測定 3秒(水平・垂直とも)
最小角度表示 1秒
距離測定 ノンプリズム
2〜200m ±(3mm+3ppm)
200〜400m ±(5mm+3ppm)
自動レベル補正機構 ±5分
自動視準可能範囲 1.0度
自動視準距離 標準RMT 1.5〜300m
サーチ範囲 水平 360度
垂直 +60〜-30度
データ入出力 RS232C双方向
電源 DC12V
使用温度範囲 -20〜+50℃
重量 7.5kg
外形寸法 (W×D×H mm) 195×195×350
The performance of the non-prism total station is as follows.
Angle measurement 3 seconds (both horizontal and vertical)
Minimum angle display 1 second distance measurement Non-prism
2 ~ 200m ± (3mm + 3ppm)
200 ~ 400m ± (5mm + 3ppm)
Automatic level correction mechanism ± 5 minutes Automatic collimation possible range 1.0 degree automatic collimation distance Standard RMT 1.5-300m
Search range Horizontal 360 degrees
Vertical +60 to -30 degrees data input / output RS232C bidirectional power supply DC12V
Operating temperature range -20 ~ + 50 ℃
Weight 7.5kg
External dimensions (W x D x H mm) 195 x 195 x 350

また、前記通信路を介して、ノンプリズムトータルステーション側の作業者とパーソナルコンピュータ側の作業者とが会話できるように、インターホン機能を備えるとよい。
また、必要に応じて、自動整準台の上にノンプリズムトータルステーションを設置しても良い。
In addition, an interphone function may be provided so that an operator on the non-prism total station side and an operator on the personal computer side can communicate with each other via the communication path.
If necessary, a non-prism total station may be installed on the automatic leveling table.

前記パーソナルコンピュータは、図6に示した計測フローチャートに準じた動作をするソフトウェアがインストールされている。該ソフトウエアは以下の機能を含んでいる。
(1) 処理ソフト
・モード選択 プリズムモード、ノンプリズムモード計測機能
・計測開始 連続計測、任意時間開始、正時開始に対応
・計測器台数 1台のパソコンで6台まで接続可能
・計測時間 40〜120秒/1測点 (軌道面、計測回数、方法等による)
・計測間隔 通常は1時間に1計測
・計測回数 1測点あたりの計測回数は、1〜10回の任意設定
・不採用データ 通過車両等による異常データの不採用判断値設定
・有効データ 複数の計測データより信頼値を取り出す抽出機能
・伝送機能 NTT回線で自動送信
The personal computer is installed with software that operates in accordance with the measurement flowchart shown in FIG. The software includes the following functions.
(1) Processing software / mode selection Prism mode, non-prism mode measurement function / Measurement start Supports continuous measurement, arbitrary time start, and hour start. 120 seconds / 1 station (depending on raceway surface, number of measurements, method, etc.)
・ Measurement interval Normally 1 measurement per hour ・ Number of measurements The number of measurements per measurement point is arbitrarily set to 1 to 10 ・ Non-adopted data ・ Non-adopted data setting for abnormal data due to passing vehicles etc. ・ Valid data Extraction function and transmission function to extract confidence values from measured data Automatic transmission via NTT line

(2) データ分析・表示ソフト
・平面表示 初期値からの沈下量表示(単位は任意設定)
・縦横断表示 縦横断表示
・経時変化表示 1、7、30日の経時時間変化グラフ作成
・沈下量一覧表 基準日からの沈下量一覧表表示
・日報表示 計測データからの沈下量、高さ、縦横断図作成
・月報表示 計測ポイント毎の沈下量一覧表作成(月単位)
・伝送機能 計測ソフトからの自動受信、データ更新
・データ異常時 電話連絡機能(3箇所まで)
(2) Data analysis / display software / planar display Sinking amount display from initial value (unit is arbitrarily set)
・ Vertical cross-sectional display Vertical cross-sectional display ・ Time-dependent change display Time-dependent graph creation for 1, 7 and 30 days ・ Subsidence amount list Subsidence amount list display from the standard date ・ Daily report display Subsidence amount, height from measurement data Vertical cross section creation / monthly report display Subsidence amount list creation for each measurement point (monthly)
・ Transmission function Automatic reception from measurement software, data update ・ Telephone communication function when data is abnormal (up to 3 locations)

本発明のノンプリズムトータルステーションによる移動量計測方法を応用すると、軌道や、橋梁等の構造物の変位を2次元的もしくは3次元的に監視することができる。
また、本発明の方法は、一定視準角度における対象面までの距離を計測することによって、対象面の位置変化を計測するものであるので、本発明に用いるノンプリズム測距手段としては視準角度を計測する機能は必須ではない。
By applying by that move quantity measuring method in the non-prism total station of the present invention, it is possible to track and monitor the displacement of the structure of bridges and the like two-dimensionally or three-dimensionally.
Further, since the method of the present invention measures the change in the position of the target surface by measuring the distance to the target surface at a constant collimation angle, the non-prism distance measuring means used in the present invention is a collimation. The function of measuring the angle is not essential.

本発明にかかるノンプリズム測距手段による移動量計測方法の説明図である。Is an explanatory view of I that move quantity measuring method in the non-prism distance measuring device according to the present invention. 本発明に用いるシステムブロック図である。It is a system block diagram used for the present invention. 実施例の平面配置図である。It is a plane arrangement view of an example. 実施例の要部の側面図である。It is a side view of the principal part of an Example. 実施例の要部の平面図である。It is a top view of the principal part of an Example. 実施例のフローチャートである。It is a flowchart of an Example. 移動量計算の説明図である。It is explanatory drawing of movement amount calculation.

符号の説明Explanation of symbols

A1、A2 レール、測定対象物
A3 枕木、測定対象物
1 自動追尾式ノンプリズムトータルステーション
2 パーソナルコンピュータ
3 専用インターフェイスボックス
4 通信路
6 通信手段
A1, A2 Rail, measurement object A3 Sleeper, measurement object 1 Automatic tracking non-prism total station 2 Personal computer 3 Dedicated interface box 4 Communication path 6 Communication means

Claims (2)

測定対象物を視準可能な位置に設置したノンプリズム測距手段を用いて、前記測定対象物の位置変化を測定するノンプリズム測距手段を用いた移動量計測方法であって、
前記測定対象物と一体で位置変化し、互いに非平行な2つの測定対象面を設定し、
前記ノンプリズム測距手段によって前記2つの測定対象面までの距離変化を測定することによって、
前記測定対象物の次元的な位置変化を測定するノンプリズム測距手段を用いた移動量計測方法。
Using non-prism distance measuring means set up the object to be measured collimation possible positions, a moving quantity measuring method using the non-prism distance measuring means for measuring a change in position of the measurement object,
Change the position integrally with the measurement object, set two measurement object surfaces that are non-parallel to each other,
By measuring the change in distance to the two measurement target surfaces by the non-prism distance measuring means,
Moving quantity measuring method using the non-prism distance measuring means for measuring the two-dimensional position changes of the measurement object.
測定対象物を視準可能な位置に設置したノンプリズム測距手段を用いて、前記測定対象物の位置変化を測定するノンプリズム測距手段を用いた移動量計測方法であって、
前記測定対象物と一体で位置変化し、互いに非平行な3つの測定対象面を設定し、
前記ノンプリズム測距手段によって前記3つの測定対象面までの距離変化を測定することによって、
前記測定対象物の3次元的な位置変化を測定するノンプリズム測距手段を用いた移動量計測方法。
Using a non-prism distance measuring means installed at a position where a measurement object can be collimated, a movement amount measuring method using a non-prism distance measuring means for measuring a change in position of the measurement object,
Change the position integrally with the measurement object, set three measurement object surfaces that are non-parallel to each other,
By measuring the distance change to the three measurement target surfaces by the non-prism distance measuring means,
A moving amount measuring method using non-prism distance measuring means for measuring a three-dimensional position change of the measurement object.
JP2004252720A 2004-08-31 2004-08-31 Movement amount measuring method using non-prism distance measuring means Active JP4335769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004252720A JP4335769B2 (en) 2004-08-31 2004-08-31 Movement amount measuring method using non-prism distance measuring means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004252720A JP4335769B2 (en) 2004-08-31 2004-08-31 Movement amount measuring method using non-prism distance measuring means

Publications (2)

Publication Number Publication Date
JP2006071356A JP2006071356A (en) 2006-03-16
JP4335769B2 true JP4335769B2 (en) 2009-09-30

Family

ID=36152161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004252720A Active JP4335769B2 (en) 2004-08-31 2004-08-31 Movement amount measuring method using non-prism distance measuring means

Country Status (1)

Country Link
JP (1) JP4335769B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766569B2 (en) * 2007-04-02 2011-09-07 計測ネットサービス株式会社 Railway track displacement measuring device with cleaning function
JP6121250B2 (en) * 2013-05-20 2017-04-26 綜合計測株式会社 Trajectory error measurement system
JP2016035145A (en) * 2014-08-01 2016-03-17 株式会社建設システム Program, mobile terminal, information processing method and information processing system
CN105387843B (en) * 2015-10-13 2018-01-02 中国十七冶集团有限公司 A kind of alpine region subgrade cross section measuring method
CN109850182B (en) * 2018-10-31 2022-04-19 中国飞机强度研究所 Novel three-dimensional displacement measuring device and measuring method
WO2023127037A1 (en) * 2021-12-27 2023-07-06 日本電気株式会社 Information processing device, information processing method, and computer-readable medium

Also Published As

Publication number Publication date
JP2006071356A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
Zhang et al. Crane pose estimation using UWB real-time location system
Stiros et al. Response of a historical short-span railway bridge to passing trains: 3-D deflections and dominant frequencies derived from Robotic Total Station (RTS) measurements
CN101962925B (en) Method for efficiently measuring three-dimensional coordinates of track based on track precise control net
Chen et al. Railway track irregularity measuring by GNSS/INS integration
CN103821054B (en) INS (inertial navigation system) and total station combination-based track geometrical state measurement system and method
CN101306691B (en) Track curve parameter measuring device and method
CN102953304B (en) Precision measurement control method of metro track structure construction
EP2769173B1 (en) Automated track surveying and ballast replacement
CN105155372B (en) A kind of track geometric parameter measurement method being applied in combination with total powerstation based on INS/GNSS
Monsberger et al. Distributed fiber optic shape sensing along shotcrete tunnel linings: Methodology, field applications, and monitoring results
CN107815935B (en) Real-time monitoring method and system for geometric state of high-speed railway track
CN105043263A (en) Displacement detection system and displacement detection method for railway equipment
CN104703905A (en) Guide rail straightness measuring system for elevator installations
CN109373997A (en) Underground engineering autonomous positioning method based on GIS map fusion
Sánchez et al. Estimating the accuracy of track-surveying trolley measurements for railway maintenance planning
JP2007120178A (en) Bridge-monitoring system, bridge-monitoring method, and its program
GB2562414A (en) Determining position of a vehicle on a rail
JP4335769B2 (en) Movement amount measuring method using non-prism distance measuring means
CN106114553A (en) The photoelectricity dynamic measurement method that a kind of railway detection car platform rocks
JP2011031710A (en) High train safety control system using ground and on-vehicle observation data
Moschas et al. High accuracy measurement of deflections of an electricity transmission line tower
JP3909294B2 (en) Settlement measurement method
US8855967B1 (en) Surface data measurement system and method
Engstrand Railway surveying-A case study of the GRP 5000
CN103512507A (en) Rail-gauge measuring method of large-span steel rail

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4335769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250