JPH0921569A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH0921569A
JPH0921569A JP16961995A JP16961995A JPH0921569A JP H0921569 A JPH0921569 A JP H0921569A JP 16961995 A JP16961995 A JP 16961995A JP 16961995 A JP16961995 A JP 16961995A JP H0921569 A JPH0921569 A JP H0921569A
Authority
JP
Japan
Prior art keywords
compressor
layer separation
refrigerant
outside air
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16961995A
Other languages
Japanese (ja)
Other versions
JP3641850B2 (en
Inventor
Koichi Kita
宏一 北
Ryuzaburo Yajima
龍三郎 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP16961995A priority Critical patent/JP3641850B2/en
Publication of JPH0921569A publication Critical patent/JPH0921569A/en
Application granted granted Critical
Publication of JP3641850B2 publication Critical patent/JP3641850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator capable of eliminating a two-layer separation when refrigerant and lubricating oil are two-layer separated in a compressor. SOLUTION: The refrigerator comprises a bypass tube for connecting the discharge tube 5 extended from a compressor 1 to the bottom 3A of the oil reservoir 3 of the compressor 1, a solenoid valve 6 provided at the bypass tube, and valve switching means for opening the valve 6 when two-layer separation occurs and closing the valve 6 when no two-layer separation occurs. When the two-layer separation occurs, the valve 6 is opened, the refrigerant stored in the bottom 3A of the reservoir 3 of the compressor 1 is fed from the bypass tube to the tube 5 to reduce the refrigerant amount in the compressor, thereby eliminating the two-layer separation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、冷媒との相溶性
が実質的に無くて冷媒よりも比重が小さい油を圧縮機の
潤滑油として使用する冷凍機に関し、詳しくは圧縮機内
での冷媒と油との二層分離を解消することができる冷凍
機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator that uses oil having substantially no compatibility with a refrigerant and a specific gravity smaller than that of the refrigerant as lubricating oil for a compressor. The present invention relates to a refrigerator that can eliminate two-layer separation from oil.

【0002】[0002]

【従来の技術】従来、冷媒に対して相溶性の無い油を冷
凍機に使用する場合、図8(A)に黒い点で示したよう
に、油中に所定の冷媒分率以上の冷媒が溶解すると、油
と冷媒とが二層に別れる二層分離が発生する。そして、
このとき、(冷媒の比重)>(油の比重)であるなら
ば、下層は油濃度がきわめて低い冷媒リッチ層になる。
2. Description of the Related Art Conventionally, when an oil that is incompatible with a refrigerant is used in a refrigerator, as shown by a black dot in FIG. When dissolved, a two-layer separation occurs where the oil and refrigerant split into two layers. And
At this time, if (specific gravity of refrigerant)> (specific gravity of oil), the lower layer becomes a refrigerant rich layer having an extremely low oil concentration.

【0003】二層分離が発生する運転モードとしては、
起動(寝込み起動)や発停やデフロスなどと言った過渡的
に液バックが生じるモードがある。そして、冷凍機の圧
縮機の油溜まり部で二層分離が生じると、条件によって
は図8(B)に示すように、二層分離面Dが給油口Sを越
える。すると、給油口Sからは油が吸い込まれずに、下
層の液冷媒リッチ層Rの冷媒が給油口Sから吸い込まれ
て圧縮機Cの摺動部に供給される。すると、圧縮機Cの
潤滑不良が発生して、摺動部摩擦や焼付が生じる問題が
ある。
As an operation mode in which the two-layer separation occurs,
There are modes in which liquid back occurs transiently, such as startup (sleep activation), start / stop, and defrost. Then, when the two-layer separation occurs in the oil sump of the compressor of the refrigerator, the two-layer separation surface D crosses the oil supply port S depending on conditions, as shown in FIG. 8 (B). Then, the oil in the lower liquid refrigerant rich layer R is sucked in through the oil supply port S and is supplied to the sliding portion of the compressor C without oil being sucked in through the oil supply port S. Then, there is a problem that the lubrication failure of the compressor C occurs, causing friction and seizure of the sliding portion.

【0004】[0004]

【発明が解決しようとする課題】そこで、この発明の目
的は、冷媒と潤滑油とが圧縮機内で二層分離したとき
に、この二層分離を解消して摺動部摩擦や焼き付きを防
止することができる冷凍機を提供することにある。
SUMMARY OF THE INVENTION Therefore, when the refrigerant and the lubricating oil are separated into two layers in the compressor, the object of the present invention is to eliminate this two-layer separation and prevent sliding portion friction and seizure. It is to provide a refrigerator that can do the above.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、冷媒よりも比重が小さく、か
つ、上記冷媒との相溶性が実質的に無い油を圧縮機1の
潤滑油として用いている冷凍機において、冷媒と潤滑油
とが圧縮機1内で二層に分離していることを検出する二
層分離検出手段8と、圧縮機1に連なる冷媒回路の冷媒
用配管5,11,16と上記圧縮機1の油溜まり部3の底
部3Aとを接続するバイパス配管2と、上記バイパス配
管2に設けられたバイパス弁6と、上記二層分離検出手
段8が上記二層分離を検出したときに上記バイパス弁6
を開ける一方、上記二層分離検出手段8が上記二層分離
を検出しないときに上記バイパス弁6を閉じるバイパス
弁開閉手段10とを備えたことを特徴としている。
In order to achieve the above object, the invention of claim 1 lubricates the compressor 1 with oil having a specific gravity smaller than that of the refrigerant and substantially incompatible with the refrigerant. In a refrigerator used as oil, two-layer separation detecting means 8 for detecting that the refrigerant and the lubricating oil are separated into two layers in the compressor 1, and a refrigerant pipe of a refrigerant circuit connected to the compressor 1. 5, 11, 16 and the bypass pipe 2 that connects the bottom portion 3A of the oil sump portion 3 of the compressor 1, the bypass valve 6 provided in the bypass pipe 2, and the two-layer separation detecting means 8 The bypass valve 6 when the layer separation is detected
On the other hand, a bypass valve opening / closing means 10 for closing the bypass valve 6 when the two-layer separation detecting means 8 does not detect the two-layer separation is provided.

【0006】請求項1の発明によれば、上記バイパス弁
開閉手段10は、上記二層分離検出手段8が二層分離を
検出したときに上記バイパス弁6を開ける。すると、上
記圧縮機1の油溜まり部3の底部3Aに溜まっている冷
媒が上記バイパス配管2を通って冷媒回路の冷媒用配管
5に流れる。従って、圧縮機底部3での二層分離面が低
下する。また、圧縮機1内の冷媒量が減少するから、二
層分離が解消される。したがって、圧縮機1の潤滑不足
や焼付を防止することができる。なお、高圧ドームタイ
プの圧縮機では、冷媒は油溜り部の底部から冷媒用配管
に圧力差により自動的に供給される。低圧ドームタイプ
の圧縮機ではポンプが使用される。
According to the first aspect of the present invention, the bypass valve opening / closing means 10 opens the bypass valve 6 when the two-layer separation detecting means 8 detects the two-layer separation. Then, the refrigerant accumulated in the bottom portion 3A of the oil sump portion 3 of the compressor 1 flows into the refrigerant pipe 5 of the refrigerant circuit through the bypass pipe 2. Therefore, the two-layer separation surface at the compressor bottom 3 is reduced. Moreover, since the amount of the refrigerant in the compressor 1 is reduced, the two-layer separation is eliminated. Therefore, insufficient lubrication and seizure of the compressor 1 can be prevented. In the high-pressure dome type compressor, the refrigerant is automatically supplied to the refrigerant pipe from the bottom of the oil sump due to the pressure difference. A pump is used in a low pressure dome type compressor.

【0007】また、請求項2の発明は、冷媒よりも比重
が小さく、かつ、上記冷媒との相溶性が実質的に無い油
を圧縮機1の潤滑油として用いている冷凍機において、
冷媒と潤滑油とが圧縮機1内で二層に分離していること
を検出する二層分離検出手段21と、上記二層分離検出
手段21の出力に基づき、上記二層分離検出手段21が
二層分離を検出したときから、上記二層分離検出手段2
1が二層分離を検出しなくなった後まで上記圧縮機1を
連続運転させる圧縮機連続運転手段23とを備えたこと
を特徴としている。
The invention according to claim 2 is a refrigerator in which oil having a specific gravity smaller than that of a refrigerant and substantially incompatible with the refrigerant is used as lubricating oil for the compressor 1.
Based on the output of the two-layer separation detecting means 21 for detecting that the refrigerant and the lubricating oil are separated into two layers in the compressor 1, the two-layer separation detecting means 21 is From the time when the two-layer separation is detected, the above-mentioned two-layer separation detecting means 2
1 is provided with a compressor continuous operation means 23 for continuously operating the compressor 1 after the two-layer separation is no longer detected.

【0008】請求項2の発明によれば、上記圧縮機連続
運転手段23は、上記二層分離検出手段21が二層分離
を検出したときに上記二層分離検出手段21が二層分離
を検出しなくなる後まで上記圧縮機1を連続運転させ
る。圧縮機1を発停させずに連続運転させることによっ
て、圧縮機1から冷媒を吐出させて圧縮機1内の冷媒量
を減少させることができる。従って、圧縮機1内の二層
分離を解消し、圧縮機1の底に冷媒が溜まることを防止
できるから、圧縮機1の潤滑不足や焼き付きを防止でき
る。
According to the second aspect of the present invention, the compressor continuous operation means 23 detects the two-layer separation when the two-layer separation detecting means 21 detects the two-layer separation. The compressor 1 is continuously operated until after that. By continuously operating the compressor 1 without starting and stopping, the refrigerant can be discharged from the compressor 1 and the amount of the refrigerant in the compressor 1 can be reduced. Therefore, the separation of the two layers in the compressor 1 can be eliminated, and the refrigerant can be prevented from accumulating at the bottom of the compressor 1, so that insufficient lubrication and seizure of the compressor 1 can be prevented.

【0009】また、請求項3の発明は、冷媒よりも比重
が小さく、かつ、上記冷媒との相溶性が実質的に無い油
を圧縮機1の潤滑油として用いている冷凍機において、
外気温度を検出する外気温センサ31と、上記外気温セ
ンサ31から上記外気温度を表す信号を受けて、上記外
気温度が低いほど、圧縮機1の起動時に上記圧縮機1を
長く連続運転させる圧縮機連続運転手段33とを備えて
いることを特徴としている。
Further, the invention of claim 3 is a refrigerator in which oil having a specific gravity smaller than that of the refrigerant and substantially incompatible with the refrigerant is used as lubricating oil for the compressor 1.
An outside air temperature sensor 31 that detects an outside air temperature and a signal indicating the outside air temperature from the outside air temperature sensor 31 are received, and the lower the outside air temperature, the longer the compressor 1 is continuously operated when the compressor 1 starts up. And a machine continuous operation means 33.

【0010】請求項3の発明によれば、上記圧縮機連続
運転手段33は、外気温センサ31から外気温度を表す
信号を受けて、上記外気温度が低いほど、圧縮機1の起
動時に圧縮機1を長く連続運転させる。この連続運転に
よって、圧縮機1内の冷媒量を減少させて、二層分離を
解消することができる。また、外気温度が低いほど冷媒
温度が低くて二層分離し易くなるので、外気温度が低い
ほど連続運転時間を長くすることによって、二層分離の
解消を十分に行うことができる。
According to the third aspect of the invention, the compressor continuous operation means 33 receives a signal indicating the outside air temperature from the outside air temperature sensor 31, and the lower the outside air temperature is, the more the compressor 1 is started up. 1 is continuously operated for a long time. By this continuous operation, the amount of refrigerant in the compressor 1 can be reduced and the two-layer separation can be eliminated. Further, the lower the outside air temperature, the lower the refrigerant temperature and the easier the two-layer separation. Therefore, the longer the continuous operation time is, the longer the outside air temperature is, and thus the two-layer separation can be sufficiently eliminated.

【0011】また、請求項4の発明は、冷媒よりも比重
が小さく、かつ、上記冷媒との相溶性が実質的に無い油
を圧縮機1の潤滑油として用いている冷凍機において、
外気温度を検出する外気温センサ42と、上記外気温セ
ンサ42から上記外気温度を表す信号を受けて、上記外
気温度が低いほど、発停運転時での膨張弁15の開度を
非発停運転時での膨張弁15の開度に比べて小さくする
膨張弁制御手段45とを備えたことを特徴としている。
Further, the invention of claim 4 is a refrigerator in which oil having a specific gravity smaller than that of the refrigerant and substantially incompatible with the refrigerant is used as lubricating oil for the compressor 1.
In response to the outside air temperature sensor 42 that detects the outside air temperature and the signal that indicates the outside air temperature from the outside air temperature sensor 42, the opening degree of the expansion valve 15 during the start / stop operation is not stopped when the outside air temperature is lower. An expansion valve control means 45 for reducing the opening degree of the expansion valve 15 during operation is provided.

【0012】請求項4の発明によれば、上記膨張弁制御
手段45は、上記外気温センサ42から外気温度を表す
信号を受けて、上記外気温度が低いほど、発停運転時で
の膨張弁15の開度を非発停運転時での膨張弁15の開
度に比べて小さくする。膨張弁15を絞ることによっ
て、過熱度が高くなって、冷媒温度が高くなり、冷媒に
潤滑油が溶けやすくなる。また、膨張弁15を絞ること
によって、圧縮機1に帰ってくる液冷媒の量も減る。し
たがって、圧縮機1内での二層分離を解消でき、圧縮機
1の潤滑不足を防ぐことができる。
According to the fourth aspect of the invention, the expansion valve control means 45 receives the signal indicating the outside air temperature from the outside air temperature sensor 42, and the lower the outside air temperature, the more the expansion valve during start-stop operation. The opening degree of 15 is made smaller than the opening degree of the expansion valve 15 at the time of non-stop operation. By throttling the expansion valve 15, the degree of superheat increases, the temperature of the refrigerant increases, and the lubricating oil easily dissolves in the refrigerant. Further, by throttling the expansion valve 15, the amount of liquid refrigerant returning to the compressor 1 is also reduced. Therefore, the two-layer separation in the compressor 1 can be eliminated, and insufficient lubrication of the compressor 1 can be prevented.

【0013】また、請求項5の発明は、冷媒よりも比重
が小さく、かつ、上記冷媒との相溶性が実質的に無い油
を圧縮機1の潤滑油として用いている冷凍機において、
冷媒と潤滑油とが圧縮機1内で二層に分離していること
を検出する二層分離検出手段51と、上記二層分離検出
手段51の出力に基づき、上記二層分離検出手段51が
二層分離を検出したときに、圧縮機1を駆動する電源の
駆動周波数を二層分離を検出しなかったときの駆動周波
数よりも上昇させて、上記二層分離検出手段51が上記
二層分離を検出しなくなるまで、上記上昇させた駆動周
波数で圧縮機1を連続運転する圧縮機制御手段55とを
備えていることを特徴としている。
The invention according to claim 5 is a refrigerator in which oil having a specific gravity smaller than that of the refrigerant and substantially incompatible with the refrigerant is used as lubricating oil for the compressor 1.
The two-layer separation detecting means 51 for detecting that the refrigerant and the lubricating oil are separated into two layers in the compressor 1, and the two-layer separation detecting means 51 based on the output of the two-layer separation detecting means 51. When the two-layer separation is detected, the drive frequency of the power source for driving the compressor 1 is made higher than the drive frequency when the two-layer separation is not detected, and the two-layer separation detecting means 51 causes the two-layer separation to be performed. It is characterized in that it is provided with a compressor control means 55 for continuously operating the compressor 1 at the increased drive frequency until no longer detected.

【0014】請求項5の発明によれば、上記圧縮機制御
手段55は、上記二層分離検出手段51が上記二層分離
を検出したときに、二層分離を検出しないときよりも、
圧縮機1を駆動する電源の駆動周波数を上昇させて、上
記上昇させた駆動周波数で圧縮機1を連続運転させる。
この上昇させた駆動周波数での圧縮機1の連続運転によ
って、圧縮機1内の冷媒を早く排出することができる。
従って、圧縮機1内の二層分離を早く解消することがで
きる。したがって、圧縮機1に冷媒のみが供給されるこ
とを防いで、圧縮機1の潤滑不足や焼き付きを防ぐこと
ができる。
According to the fifth aspect of the present invention, the compressor control means 55 is more effective when the two-layer separation detecting means 51 detects the two-layer separation than when it does not detect the two-layer separation.
The drive frequency of the power supply for driving the compressor 1 is increased, and the compressor 1 is continuously operated at the increased drive frequency.
The continuous operation of the compressor 1 at this increased drive frequency allows the refrigerant in the compressor 1 to be quickly discharged.
Therefore, the two-layer separation in the compressor 1 can be eliminated quickly. Therefore, it is possible to prevent only the refrigerant from being supplied to the compressor 1 and prevent insufficient lubrication and seizure of the compressor 1.

【0015】[0015]

【発明の実施の形態】以下、この発明を図示の形態例に
より詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.

【0016】〔第1例〕図1(A)に、この発明の冷凍
機の第1例の制御系の基本構成を示す。また、図2(A)
に、この第1例の圧縮機1回りの構成を示す。この第1
例の冷凍機は、圧縮機1の潤滑油として、冷媒よりも比
重が小さく、かつ、上記冷媒との相溶性が実質的に無い
油を圧縮機1の潤滑油として使用している。なお、上記
圧縮機1は、モータMとこのモータMによって駆動され
る駆動部Aと、この駆動部Aに油を供給するための給油
口1Aとを有している。
[First Example] FIG. 1A shows a basic configuration of a control system of a first example of the refrigerator of the present invention. Also, FIG. 2 (A)
The structure around the compressor 1 of the first example is shown in FIG. This first
The refrigerator of the example uses, as the lubricating oil of the compressor 1, an oil having a specific gravity smaller than that of the refrigerant and having substantially no compatibility with the refrigerant as the lubricating oil of the compressor 1. The compressor 1 has a motor M, a drive unit A driven by the motor M, and an oil supply port 1A for supplying oil to the drive unit A.

【0017】図2(A)に示すように、この第1例は、バ
イパス配管2Aを備えている。このバイパス配管2A
は、圧縮機1の油溜まり部3の底部3Aと圧縮機1から
延びている吐出配管5とを接続している。また、このバ
イパス配管2Aには、バイパス弁としての電磁弁6が設
けられている。また、この電磁弁6の下流側には流量調
節用キャピラリ7が設けられている。なお、11は吸入
配管であり、12はアキュムレータである。また、L1
は油リッチ層であり、L2は液冷媒リッチ層である。
As shown in FIG. 2A, this first example includes a bypass pipe 2A. This bypass piping 2A
Connects the bottom portion 3A of the oil sump portion 3 of the compressor 1 and the discharge pipe 5 extending from the compressor 1. Further, the bypass pipe 2A is provided with a solenoid valve 6 as a bypass valve. Further, a flow rate adjusting capillary 7 is provided on the downstream side of the electromagnetic valve 6. In addition, 11 is an intake pipe and 12 is an accumulator. Also, L1
Is an oil rich layer, and L2 is a liquid refrigerant rich layer.

【0018】また、図1(A)に示すように、この第1例
は、制御系として二層分離検出部8とバイパス回路電磁
弁制御回路10とを備えている。上記二層分離検出部8
は、圧縮機1内の二層分離を検出するものである。そし
て、上記バイパス回路電磁弁制御回路10は、上記二層
分離検出部8が二層分離を検出すると上記電磁弁6を開
ける一方、二層分離検出部8が二層分離を検出しないと
きに電磁弁6を閉じる。
Further, as shown in FIG. 1 (A), this first example comprises a two-layer separation detecting section 8 and a bypass circuit solenoid valve control circuit 10 as a control system. The two-layer separation detector 8
Is for detecting a two-layer separation in the compressor 1. Then, the bypass circuit solenoid valve control circuit 10 opens the solenoid valve 6 when the two-layer separation detecting unit 8 detects the two-layer separation, while the two-layer separation detecting unit 8 does not detect the two-layer separation. Close valve 6.

【0019】上記構成の冷凍機は、図3下段左に一点鎖
線で示すように、起動時に圧縮機1の給油口1Aでの油
濃度が低下して二層分離が発生すると、上記二層分離検
出部8が二層分離を検出する。すると、上記電磁弁制御
回路10が電磁弁6を開けて、上記バイパス配管2を連
通させる。すると、このバイパス配管2を通って、圧縮
機1の油溜まり部3の底部3Aから吐出配管5に冷媒が
流れる。すると、上記油溜まり部3での冷媒が少なくな
り、図3下段左に一点鎖線で示すように、給油口1Aで
の油の濃度が急速に上昇して、冷媒の溶解域に達して二
層分離が解消される。上記一点鎖線で示したこの例での
油濃度推移と、図3下段左に破線で示した従来例の油濃
度推移とを比較すれば分かるように、この例によれば、
二層分離が発生してから解消させるまでの時間を従来例
に比べて5分の1以下にすることができる。したがっ
て、この例によれば、起動時の二層分離を速やかに解消
することができる。従って、給油口1Aから冷媒が吸い
込まれることを防止でき、圧縮機1の摺動部の摩耗や焼
き付きを防止することができる。
In the refrigerator having the above-described structure, when the oil concentration at the oil supply port 1A of the compressor 1 is lowered at the time of start-up and two-layer separation occurs, the two-layer separation occurs, as indicated by the one-dot chain line in the lower left of FIG. The detection unit 8 detects the two-layer separation. Then, the solenoid valve control circuit 10 opens the solenoid valve 6 to communicate the bypass pipe 2. Then, the refrigerant flows from the bottom portion 3A of the oil sump portion 3 of the compressor 1 to the discharge pipe 5 through the bypass pipe 2. Then, the amount of the refrigerant in the oil sump portion 3 decreases, and the concentration of the oil in the oil supply port 1A increases rapidly as shown by the alternate long and short dash line in the lower left of FIG. Separation is eliminated. As can be seen by comparing the oil concentration transition in this example shown by the above-mentioned one-dot chain line with the oil concentration transition in the conventional example shown by the broken line on the lower left of FIG. 3, according to this example,
The time from the occurrence of separation of two layers to the elimination thereof can be reduced to one fifth or less as compared with the conventional example. Therefore, according to this example, it is possible to quickly eliminate the two-layer separation at the time of startup. Therefore, it is possible to prevent the refrigerant from being sucked from the oil supply port 1A, and to prevent the sliding portion of the compressor 1 from being worn or seized.

【0020】図3上段は、上記起動時の圧縮機内の油温
の推移を示している。一点鎖線はこの例での油温の推移
を示しており、破線は従来例での油温の推移を示してい
る。また、図3上段の実線は、圧縮機1の高圧ドーム内
の圧力によって決まる冷媒の飽和温度の推移を示してい
る。図3上段を参照しても分かるように、一点鎖線で示
したこの例の油温は、起動後2分以下で冷媒飽和温度を
越えるのに対して、破線で示した従来例の油温は起動後
10分経過しないと冷媒飽和温度を越えることができな
かった。
The upper part of FIG. 3 shows the transition of the oil temperature in the compressor at the time of starting. The alternate long and short dash line shows the transition of the oil temperature in this example, and the broken line shows the transition of the oil temperature in the conventional example. The solid line in the upper part of FIG. 3 shows the transition of the saturation temperature of the refrigerant, which is determined by the pressure inside the high-pressure dome of the compressor 1. As can be seen by referring to the upper part of FIG. 3, the oil temperature of this example shown by the alternate long and short dash line exceeds the refrigerant saturation temperature within 2 minutes after startup, whereas the oil temperature of the conventional example shown by the broken line is The refrigerant saturation temperature could not be exceeded within 10 minutes after the start.

【0021】この例によれば、圧縮機1の油溜り部3に
溜まった液冷媒を物理的に冷媒循環系内に排出するか
ら、単に二層分離を回避できるのみならず、起動時の冷
媒循環系内の冷媒不足を解消でき、圧縮機1のウォーム
アップを促進できる。したがって、速暖性を向上させる
ことができる利点がある。
According to this example, since the liquid refrigerant accumulated in the oil sump portion 3 of the compressor 1 is physically discharged into the refrigerant circulation system, not only the two-layer separation can be avoided but also the refrigerant at the time of start-up. The shortage of the refrigerant in the circulation system can be eliminated, and the warm-up of the compressor 1 can be promoted. Therefore, there is an advantage that the quick heating property can be improved.

【0022】なお、この例では、圧縮機1として高圧ド
ームタイプを使用したので、油溜まり部3の底部から配
管5に圧力差によって自動的に冷媒を供給できたが、圧
縮機1を低圧ドームタイプにした場合にはポンプが使用
される。また、この第1例では、図2(A)に示すよう
に、バイパス配管2を吐出配管5に接続したが、図2
(B)に示すように、バイパス配管2‐Bを熱交換器13
と膨張弁15とを接続している液ライン16に接続して
もよい。さらには、図2(C)に示すように、アキュムレ
ータ12に接続されている吸入配管11にバイパス配管
2‐Cを接続してもよい。
In this example, since the high-pressure dome type compressor was used as the compressor 1, the refrigerant could be automatically supplied from the bottom of the oil sump 3 to the pipe 5 by the pressure difference. When typed, a pump is used. Further, in this first example, as shown in FIG. 2 (A), the bypass pipe 2 was connected to the discharge pipe 5.
As shown in (B), connect the bypass pipe 2-B to the heat exchanger 13
And the expansion valve 15 may be connected to the liquid line 16. Further, as shown in FIG. 2 (C), the bypass pipe 2-C may be connected to the suction pipe 11 connected to the accumulator 12.

【0023】〔第2例〕次に、図1(B)にこの発明の
冷凍機の第2例の制御系の構成を示す。尚、この第2例
の圧縮機および圧縮機回りの配管の構成は、図2(A)に
示したバイパス配管2を備えていない点だけが第1例と
異なっている。したがって、この第2例は、制御系の構
成について重点的に説明する。
[Second Example] Next, FIG. 1B shows the configuration of a control system of a second example of the refrigerator of the present invention. The configuration of the compressor and the piping around the compressor of the second example differs from the first example only in that the bypass piping 2 shown in FIG. 2 (A) is not provided. Therefore, in this second example, the configuration of the control system will be mainly described.

【0024】図1(B)に示すように、この第2例は、制
御系の構成として、二層分離検出部21と通常制御回路
22と二層分離対策制御回路23とを備えている。この
二層分離対策制御回路23が圧縮機連続運転手段を構成
している。
As shown in FIG. 1B, the second example includes a two-layer separation detecting section 21, a normal control circuit 22, and a two-layer separation countermeasure control circuit 23 as a control system configuration. The two-layer separation countermeasure control circuit 23 constitutes a compressor continuous operation means.

【0025】上記二層分離検出部21は、冷媒と潤滑油
とが圧縮機1内で二層に分離していることを検出する。
また、上記二層分離対策制御回路23は、二層分離検出
部21からの出力に基づいて、二層分離検出部21が上
記二層分離を検出したときに、圧縮機1を連続運転さ
せ、この連続運転を上記二層分離検出部21が二層分離
を検出しなくなった時刻t1からさらにΔt時間だけ経
過した時刻まで続ける。
The two-layer separation detecting section 21 detects that the refrigerant and the lubricating oil are separated into two layers in the compressor 1.
Further, the two-layer separation countermeasure control circuit 23 causes the compressor 1 to continuously operate when the two-layer separation detecting unit 21 detects the two-layer separation based on the output from the two-layer separation detecting unit 21, This continuous operation is continued from the time t 1 when the two-layer separation detecting unit 21 no longer detects the two-layer separation until the time when Δt time has elapsed.

【0026】上記構成の冷凍機は、図4下段左に示すよ
うに、起動時に、給油口1Aでの油の濃度が低下して二
層分離が発生すると、二層分離検出部21が上記二層分
離を検出する。すると、上記二層分離対策制御回路23
は、上記二層分離検出部21から上記二層分離が発生し
たことを表す信号を受けて、圧縮機1を連続運転する。
この連続運転の継続時間は二層分離が解消される時刻t
1からさらにΔt時間だけ経過した時刻(起動開始時刻か
ら10分目)まで続けられる。
In the refrigerator having the above-described structure, as shown in the lower left of FIG. 4, when the oil concentration at the oil supply port 1A decreases and two-layer separation occurs, the two-layer separation detector 21 causes the two-layer separation detector 21 to Detect layer separation. Then, the two-layer separation countermeasure control circuit 23
Receives a signal indicating that the two-layer separation has occurred from the two-layer separation detection unit 21 and continuously operates the compressor 1.
The duration of this continuous operation is the time t when the two-layer separation is resolved.
It is continued until the time (10 minutes from the start time) when Δt time has passed from 1 further.

【0027】このように、この例によれば、起動時に二
層分離が発生すると圧縮機1を発停運転させずに圧縮機
1を強制的に連続運転させる。このことによって、圧縮
機1内から冷媒を速やかに排出することができる。した
がって、圧縮機1内の冷媒濃度を速やかに減少させて二
層分離を解消することができ、給油口1Aでの油の濃度
を上昇させることができる。したがって、圧縮機1の潤
滑不足を未然に防止できる。
As described above, according to this example, when the two-layer separation occurs at the time of startup, the compressor 1 is forcibly operated continuously without starting and stopping the operation of the compressor 1. As a result, the refrigerant can be quickly discharged from the compressor 1. Therefore, the refrigerant concentration in the compressor 1 can be promptly reduced to eliminate the two-layer separation, and the oil concentration at the oil supply port 1A can be increased. Therefore, insufficient lubrication of the compressor 1 can be prevented in advance.

【0028】また、この連続運転は、圧縮機1の駆動周
波数を60Hzに設定している。この60Hzの駆動周
波数は、図4上段に破線で示したように、この圧縮機1
の標準の駆動周波数40Hzに比べて20Hzだけ高い
周波数である。このように、圧縮機1を標準よりも高い
周波数で駆動することによって、圧縮機1から冷媒をよ
り速やかに排出することができる。したがって、より速
やかに二層分離を解消することができる。
In this continuous operation, the drive frequency of the compressor 1 is set to 60 Hz. This drive frequency of 60 Hz, as shown by the broken line in the upper part of FIG.
The drive frequency is 20 Hz higher than the standard drive frequency of 40 Hz. In this way, by driving the compressor 1 at a frequency higher than the standard, the refrigerant can be discharged from the compressor 1 more quickly. Therefore, the two-layer separation can be eliminated more quickly.

【0029】また、この例によれば、従来例の冷媒配管
系統を複雑化させることなく、制御系統の変更だけで、
二層分離を回避することができるから、コストアップを
招くことなく圧縮機の信頼性を向上させることができ
る。
Further, according to this example, it is possible to simply change the control system without complicating the conventional refrigerant piping system.
Since the separation of the two layers can be avoided, the reliability of the compressor can be improved without increasing the cost.

【0030】なお、図4上段に一点鎖線で示したのは圧
縮機1内での油温であり、実線で示したのはドーム内圧
力で決まる冷媒の飽和温度である。時刻t1において、
油温が飽和温度に達している。
The dashed line in the upper part of FIG. 4 shows the oil temperature in the compressor 1, and the solid line shows the saturation temperature of the refrigerant determined by the dome internal pressure. At time t1,
The oil temperature has reached the saturation temperature.

【0031】〔第3例〕次に、図1(C)にこの発明の冷
凍機の第3例の制御系の構成を示す。この第3例の圧縮
機および圧縮機回りの配管の構成は、図2(A)に示した
バイパス配管2を備えていない点だけが第1例と異なっ
ている。したがって、この第3例は、制御系の構成につ
いて重点的に説明する。
[Third Example] Next, FIG. 1C shows the configuration of a control system of a third example of the refrigerator of the present invention. The configuration of the compressor and the pipes around the compressor of the third example is different from that of the first example only in that the bypass pipe 2 shown in FIG. 2 (A) is not provided. Therefore, this third example will focus on the configuration of the control system.

【0032】図1(C)に示すように、この第3例は、制
御系の構成として、外気温センサ31と運転モード検出
部32と連続運転時間算出部33と二層分離対策制御回
路34と通常制御回路35を備えている。上記外気温セ
ンサ31は外気温度を検出して、この外気温度を表す信
号を連続運転時間算出部33に出力する。また、上記運
転モード検出部32は、この冷凍機が冷房運転および暖
房運転のいずれを行っているのかを検出して、この検出
を表す運転検出信号を連続運転時間算出部33に出力す
る。そして、上記連続運転時間算出部33は、上記外気
温センサ31からの信号と上記運転検出信号とを受け
て、上記圧縮機1を連続運転させる時間Tを算出する。
この算出において、上記外気温度が低いほど連続運転時
間Tを長く設定し、また、冷房運転時よりも暖房運転時
に上記連続運転時間Tを長く設定する。そして、この算
出部33は、算出した連続運転時間Tを表す信号を二層
分離対策制御回路34に出力する。すると、対策制御回
路34は、上記連続運転時間Tだけ圧縮機1を連続運転
して、圧縮機1内で発生した二層分離を無くすることが
できるようにする。たとえば、上記連続運転時間Tを外
気温度に応じて図6に示すように設定し、この設定した
運転時間を冷房運転時であるのか暖房運転時であるのか
に応じて修正を加えるようにしてもよい。
As shown in FIG. 1C, in this third example, the control system has an outside air temperature sensor 31, an operation mode detection unit 32, a continuous operation time calculation unit 33, and a two-layer separation countermeasure control circuit 34. And a normal control circuit 35. The outside air temperature sensor 31 detects the outside air temperature and outputs a signal indicating the outside air temperature to the continuous operation time calculation unit 33. Further, the operation mode detection unit 32 detects whether the refrigerator is performing the cooling operation or the heating operation, and outputs an operation detection signal indicating this detection to the continuous operation time calculation unit 33. Then, the continuous operation time calculation unit 33 receives the signal from the outside air temperature sensor 31 and the operation detection signal, and calculates the time T during which the compressor 1 is continuously operated.
In this calculation, the lower the outside temperature is, the longer the continuous operation time T is set, and the longer the continuous operation time T is during the heating operation than during the cooling operation. Then, the calculation unit 33 outputs a signal representing the calculated continuous operation time T to the two-layer separation countermeasure control circuit 34. Then, the countermeasure control circuit 34 continuously operates the compressor 1 for the continuous operation time T so that the two-layer separation generated in the compressor 1 can be eliminated. For example, the continuous operation time T may be set as shown in FIG. 6 according to the outside air temperature, and the set operation time may be corrected depending on whether it is during cooling operation or heating operation. Good.

【0033】そして、この対策制御回路34は、上記連
続運転が終了したときに、連続運転が終了したことを表
す信号を通常制御回路35に出力する。すると、この通
常制御回路35は、圧縮機1の発停を含んだ通常の圧縮
機制御を実行する。
Then, the countermeasure control circuit 34 outputs a signal indicating that the continuous operation is completed to the normal control circuit 35 when the continuous operation is completed. Then, the normal control circuit 35 executes normal compressor control including start / stop of the compressor 1.

【0034】この例によれば、連続運転時間算出部33
は、外気温度と冷暖運転モードに対応して、二層分離を
解消できるような圧縮機連続運転時間Tを設定するか
ら、圧縮機1の潤滑不足を解消して摩耗や焼付を防止す
ることができる。
According to this example, the continuous operation time calculating unit 33
Sets the compressor continuous operation time T that can eliminate the two-layer separation in accordance with the outside air temperature and the cooling / heating operation mode, so that it is possible to eliminate insufficient lubrication of the compressor 1 and prevent wear and seizure. it can.

【0035】また、この例によれば、従来例の冷媒配管
系統を複雑化させることなく、制御系統の変更だけで、
二層分離を回避することができるから、コストアップを
招くことなく圧縮機の信頼性を向上させることができ
る。
Further, according to this example, by simply changing the control system without complicating the conventional refrigerant piping system,
Since the separation of the two layers can be avoided, the reliability of the compressor can be improved without increasing the cost.

【0036】〔第4例〕次に、この発明の第4例の制御
系の構成を図1(D)に示す。この第4例は、発停モー
ド判断部41と外気温度センサ42と通常膨張弁制御回
路43と発停時膨張弁制御回路45を備えている。ま
た、この第4例の冷媒循環系は、第2例と同じ圧縮機1
および圧縮機1回りの冷媒配管を備えている。さらに、
この例の冷媒循環系は、図2(B)に示すように圧縮機1
に接続されている熱交換器13と、この熱交換器13に
接続されている電動膨張弁15を備えている。
[Fourth Example] Next, FIG. 1D shows the configuration of the control system of the fourth example of the present invention. The fourth example includes a start / stop mode determination unit 41, an outside air temperature sensor 42, a normal expansion valve control circuit 43, and a start / stop expansion valve control circuit 45. The refrigerant circulation system of the fourth example is the same as the compressor 1 of the second example.
And a refrigerant pipe around the compressor 1. further,
The refrigerant circulation system of this example has a compressor 1 as shown in FIG.
The heat exchanger 13 connected to the heat exchanger 13 and the electric expansion valve 15 connected to the heat exchanger 13 are provided.

【0037】上記構成の冷凍機は、まず、上記発停モー
ド判断部41が冷凍機が発停モードであるか否かを判断
する。そして、この発停モード判断部41が、冷凍機が
発停モードでなくて通常運転モードであると判断したと
きには、発停モード判断部41は、上記通常膨張弁制御
回路43に通常運転モード信号を出力する。すると、上
記通常膨張弁制御回路43は、電動膨張弁15にパルス
信号を出力して電動膨張弁15の開度を通常運転におい
て定められている膨張弁開度にする。
In the refrigerator having the above structure, first, the start / stop mode determination unit 41 determines whether the refrigerator is in the start / stop mode. When the start / stop mode determination unit 41 determines that the refrigerator is not in the start / stop mode but in the normal operation mode, the start / stop mode determination unit 41 notifies the normal expansion valve control circuit 43 of the normal operation mode signal. Is output. Then, the normal expansion valve control circuit 43 outputs a pulse signal to the electric expansion valve 15 to set the opening degree of the electric expansion valve 15 to the expansion valve opening degree determined in the normal operation.

【0038】一方、上記発停モード判断部41が、冷凍
機が発停モードであると判断したときは、発停モード判
断部41は上記発停時膨張弁制御回路45に発停モード
信号を出力する。すると、発停時膨張弁制御回路45
は、上記電動膨張弁15にパルス信号を出力して電動膨
張弁15の開度を通常運転時での膨張弁15の開度に比
べて小さくする。具体的には、図5に示すように、通常
運転時での電動膨張弁開度は、電動膨張弁15に120
パルスを出力しているときの電動膨張弁開度である。そ
して、この120パルスでの電動膨張弁開度において二
層分離が発生したときには、発停時膨張弁制御回路45
は、電動膨張弁15の開度が100パルスでの電動膨張
弁開度になるように電動膨張弁15を絞る。電動膨張弁
15を絞ると、過熱度が大きくなって冷媒温度が高くな
るから、冷媒の溶解度を向上させることができる上に、
圧縮機1に戻ってくる液冷媒量も少なくなる。したがっ
て、二層分離を解消することができる。したがって、給
油口1Aでの油濃度を上げることができ、圧縮機1の潤
滑不足や焼き付きを防止することができる。
On the other hand, when the start / stop mode determination unit 41 determines that the refrigerator is in the start / stop mode, the start / stop mode determination unit 41 sends a start / stop mode signal to the start / stop expansion valve control circuit 45. Output. Then, the start-stop expansion valve control circuit 45
Outputs a pulse signal to the electric expansion valve 15 to make the opening of the electric expansion valve 15 smaller than the opening of the expansion valve 15 during normal operation. Specifically, as shown in FIG. 5, the electric expansion valve opening degree during normal operation is 120
It is the opening degree of the electric expansion valve when outputting a pulse. When the two-layer separation occurs at the electric expansion valve opening degree with 120 pulses, the start-stop expansion valve control circuit 45
Squeezes the electric expansion valve 15 so that the opening of the electric expansion valve 15 becomes the electric expansion valve opening at 100 pulses. When the electric expansion valve 15 is throttled, the degree of superheat increases and the temperature of the refrigerant increases, so that the solubility of the refrigerant can be improved and
The amount of liquid refrigerant returned to the compressor 1 also decreases. Therefore, the two-layer separation can be eliminated. Therefore, the oil concentration at the oil supply port 1A can be increased, and insufficient lubrication or seizure of the compressor 1 can be prevented.

【0039】また、この例では、上記発停時膨張弁制御
回路45は、上記外気温センサ42からの外気温度を表
す信号に応じて、上記膨張弁15の開度を小さくする量
を修正する。つまり、上記発停時膨張弁制御回路45は
外気温度が高いほど上記膨張弁15の開度を小さくする
量を少なめにシフトする。その理由は、外気温度が高い
ほど、同じ電動膨張弁開度であっても冷媒の温度が高く
なるからである。この外気温度の高低に応じた電動膨張
弁開度絞り量の調節によって、電動膨張弁15の絞り過
ぎおよび開き過ぎを防止することができる。
Further, in this example, the on-off-time expansion valve control circuit 45 corrects the amount by which the opening degree of the expansion valve 15 is reduced in response to a signal representing the outside air temperature from the outside air temperature sensor 42. . That is, the start-stop expansion valve control circuit 45 shifts the amount by which the opening degree of the expansion valve 15 is made smaller as the outside air temperature becomes higher. The reason is that the higher the outside air temperature, the higher the temperature of the refrigerant even if the opening degree of the electric expansion valve is the same. It is possible to prevent the electric expansion valve 15 from being excessively throttled and opened too much by adjusting the electric expansion valve opening throttle amount according to the level of the outside air temperature.

【0040】また、この例によれば、従来例の冷媒配管
系統を複雑化させることなく、制御系統の変更だけで、
二層分離を回避することができるから、コストアップを
招くことなく圧縮機の信頼性を向上させることができ
る。
Further, according to this example, the control system is simply changed without complicating the refrigerant piping system of the conventional example.
Since the separation of the two layers can be avoided, the reliability of the compressor can be improved without increasing the cost.

【0041】〔第5例〕次に、図1(E)にこの発明の冷
凍機の第5例の制御系の構成を示す。この第5例は、二
層分離検出部51と外気温センサ52と通常制御回路5
3と二層分離対策制御回路55とを備えている。上記二
層分離対策制御回路55は、圧縮機周波数‐オン時間算
出部56と対策運転部57とを有している。また、この
第5例は、上記第2例と同様の圧縮機1および圧縮機回
りの冷媒回路を有している。
[Fifth Example] Next, FIG. 1 (E) shows the configuration of a control system of a fifth example of the refrigerator of the present invention. In this fifth example, the two-layer separation detector 51, the outside air temperature sensor 52, and the normal control circuit 5 are included.
3 and a two-layer separation countermeasure control circuit 55. The two-layer separation countermeasure control circuit 55 has a compressor frequency-on time calculation unit 56 and a countermeasure operation unit 57. Further, the fifth example has the same compressor 1 and the refrigerant circuit around the compressor as in the second example.

【0042】上記構成の冷凍機の動作を、図7を参照し
ながら説明する。まず、起動時には、圧縮機1の給油口
1Aでの油の濃度は約80wt%であり、冷媒の溶解域に
あるから二層分離は発生していない。したがって、上記
二層分離検出部51は二層分離を検出しない。したがっ
て、二層分離検出部51は通常制御回路53に二層分離
が発生していないことを表す信号を出力する。そして、
通常制御回路53は圧縮機1を通常運転する。つまり、
制御回路53は圧縮機1を通常の周波数で運転し、か
つ、図7の下段左に示すように、圧縮機1をオンオフさ
せる通常の発停制御を実行する。
The operation of the refrigerator having the above structure will be described with reference to FIG. First, at start-up, the oil concentration at the oil supply port 1A of the compressor 1 is about 80 wt%, and since it is in the refrigerant dissolution region, two-layer separation has not occurred. Therefore, the two-layer separation detector 51 does not detect the two-layer separation. Therefore, the two-layer separation detector 51 outputs a signal indicating that the two-layer separation has not occurred to the normal control circuit 53. And
The normal control circuit 53 normally operates the compressor 1. That is,
The control circuit 53 operates the compressor 1 at a normal frequency, and executes a normal start / stop control for turning on / off the compressor 1 as shown in the lower left of FIG. 7.

【0043】次に、給油口1Aでの油の濃度が低下して
約30%になると、二層分離検出部51は圧縮機1内で
冷媒と油とが二層に分離する二層分離を検出し、二層分
離が発生したことを表す信号を上記二層分離対策制御回
路55に出力する。また、この対策制御回路55には、
外気温センサ52から外気温度を表す温度信号が入力さ
れる。すると、この対策制御回路55の算出部56は、
上記温度信号が表す外気温度に応じて、図6に示すよう
に、圧縮機1の対策運転時間つまり連続運転時間を決定
する。さらに、上記算出部56は、上記二層分離検出部
51からの出力信号に基づいて、圧縮機1の駆動周波数
を通常運転時の駆動周波数に比べて所定の割合だけ上昇
させる。たとえば、通常運転時の駆動周波数が40Hz
であれば上記対策運転時の駆動周波数を60Hzにす
る。
Next, when the oil concentration at the oil supply port 1A decreases to about 30%, the two-layer separation detecting section 51 performs two-layer separation in which the refrigerant and the oil are separated into two layers in the compressor 1. A signal indicating that the two-layer separation has occurred is output to the two-layer separation countermeasure control circuit 55. In addition, the countermeasure control circuit 55 includes
A temperature signal representing the outside air temperature is input from the outside air temperature sensor 52. Then, the calculation unit 56 of the countermeasure control circuit 55
As shown in FIG. 6, the countermeasure operating time of the compressor 1, that is, the continuous operating time is determined according to the outside air temperature represented by the temperature signal. Further, the calculation unit 56 increases the drive frequency of the compressor 1 by a predetermined ratio as compared with the drive frequency during normal operation, based on the output signal from the two-layer separation detection unit 51. For example, the drive frequency during normal operation is 40 Hz
If so, the drive frequency during the above countermeasure operation is set to 60 Hz.

【0044】このように、圧縮機1の駆動周波数を上昇
させた上で圧縮機1を外気温度で決まっている連続運転
時間だけ連続運転することによって、圧縮機1から排出
させる冷媒量を増大させる。これにより、図7の中程に
示すように、給油口1Aでの油の濃度を速やかに増大さ
せることができ、二層分離面を上昇させて、ついには油
濃度を冷媒の溶解域に到達させるから、二層分離を解消
することができる。したがって、圧縮機1の給油口1A
から冷媒が吸い込まれることを防いで圧縮機1の摩耗や
焼付を防止できる。
In this way, by increasing the drive frequency of the compressor 1 and then continuously operating the compressor 1 for a continuous operation time determined by the outside air temperature, the amount of refrigerant discharged from the compressor 1 is increased. . As a result, as shown in the middle of FIG. 7, the oil concentration at the oil supply port 1A can be rapidly increased, the two-layer separation surface is raised, and finally the oil concentration reaches the melting region of the refrigerant. Therefore, the two-layer separation can be eliminated. Therefore, the filler port 1A of the compressor 1
It is possible to prevent the refrigerant from being sucked from the compressor 1 and prevent the compressor 1 from being worn or seized.

【0045】そして、上記二層分離が解消されると、上
記二層分離検出部51は二層分離を検出しなくなるか
ら、通常制御回路53に二層分離が発生していないこと
を表す信号を出力する。すると、通常制御回路53は圧
縮機1を通常の駆動周波数で運転するとともに強制連続
運転を解除してオンとオフとを含んだ通常運転に復帰さ
せる。
When the two-layer separation is eliminated, the two-layer separation detection section 51 no longer detects the two-layer separation, so that the normal control circuit 53 outputs a signal indicating that the two-layer separation has not occurred. Output. Then, the normal control circuit 53 operates the compressor 1 at the normal drive frequency, cancels the forced continuous operation, and returns to the normal operation including ON and OFF.

【0046】この例によれば、従来例の冷媒配管系統を
複雑化させることなく、制御系統の変更だけで、二層分
離を回避することができるから、コストアップを招くこ
となく圧縮機の信頼性を向上させることができる。
According to this example, since the two-layer separation can be avoided only by changing the control system without complicating the refrigerant piping system of the conventional example, the reliability of the compressor can be increased without increasing the cost. It is possible to improve the sex.

【0047】[0047]

【発明の効果】以上より明らかなように、請求項1の発
明の冷凍機は、冷媒と潤滑油とが圧縮機内で二層に分離
していることを検出する二層分離検出手段と、圧縮機に
連なる冷媒回路の冷媒用配管と上記圧縮機の油溜まり部
の底部とを接続するバイパス配管と、上記バイパス配管
に設けられたバイパス弁と、上記二層分離検出手段が上
記二層分離を検出したときに上記バイパス弁を開ける一
方、上記二層分離検出手段が上記二層分離を検出しない
ときに上記バイパス弁を閉じるバイパス弁開閉手段とを
備えている。
As is apparent from the above, the refrigerator according to the invention of claim 1 has a two-layer separation detecting means for detecting that the refrigerant and the lubricating oil are separated into two layers in the compressor; Bypass pipe connecting the refrigerant pipe of the refrigerant circuit connected to the machine and the bottom of the oil sump of the compressor, the bypass valve provided in the bypass pipe, the two-layer separation detection means for the two-layer separation When the detection is made, the bypass valve is opened, and when the two-layer separation detecting means does not detect the two-layer separation, the bypass valve opening / closing means is provided to close the bypass valve.

【0048】したがって、請求項1の発明によれば、上
記バイパス弁開閉手段は、上記二層分離検出手段が二層
分離を検出したときに上記バイパス弁を開ける。する
と、上記圧縮機の油溜まり部の底部に溜まっている冷媒
が上記バイパス配管を通って冷媒回路の冷媒用配管に流
れる。したがって、圧縮機底部での二層分離面が低下す
る。また、圧縮機内の冷媒量が減少するから、二層分離
が解消される。したがって、圧縮機の潤滑不足や焼付を
防止することができる。
Therefore, according to the first aspect of the invention, the bypass valve opening / closing means opens the bypass valve when the two-layer separation detecting means detects the two-layer separation. Then, the refrigerant accumulated at the bottom of the oil sump of the compressor flows through the bypass pipe to the refrigerant pipe of the refrigerant circuit. Therefore, the two-layer separation surface at the bottom of the compressor is reduced. Further, since the amount of refrigerant in the compressor is reduced, the two-layer separation is eliminated. Therefore, insufficient lubrication and seizure of the compressor can be prevented.

【0049】また、請求項2の発明は、冷媒と潤滑油と
が圧縮機内で二層に分離していることを検出する二層分
離検出手段と、上記二層分離検出手段が二層分離を検出
したときに、少なくとも上記二層分離検出手段が二層分
離を検出しなくなる後まで上記圧縮機を連続運転させる
圧縮機連続運転手段とを備えている。
In the invention of claim 2, the two-layer separation detecting means for detecting that the refrigerant and the lubricating oil are separated into two layers in the compressor, and the two-layer separation detecting means for separating the two layers. When it is detected, at least the two-layer separation detecting means is provided with a compressor continuous operation means for continuously operating the compressor until after the two-layer separation detection means stops detecting the two-layer separation.

【0050】したがって、請求項2の発明によれば、上
記圧縮機連続運転手段は、上記二層分離検出手段が二層
分離を検出したときに上記二層分離検出手段が二層分離
を検出しなくなるまで上記圧縮機を連続運転させる。圧
縮機を発停させずに連続運転させることによって、圧縮
機から冷媒を吐出させて圧縮機内の冷媒量を減少させる
ことができる。したがって、圧縮機内の二層分離を解消
し、圧縮機の底に冷媒が溜まることを防止できるから、
圧縮機の潤滑不足や焼き付きを防止できる。
Therefore, according to the invention of claim 2, in the compressor continuous operation means, the two-layer separation detecting means detects the two-layer separation when the two-layer separation detecting means detects the two-layer separation. The compressor is continuously operated until it runs out. By continuously operating the compressor without starting and stopping, it is possible to discharge the refrigerant from the compressor and reduce the amount of the refrigerant in the compressor. Therefore, it is possible to eliminate the two-layer separation in the compressor, it is possible to prevent the refrigerant from accumulating at the bottom of the compressor,
Insufficient lubrication and seizure of the compressor can be prevented.

【0051】また、請求項3の発明は、外気温度を検出
する外気温センサと、上記外気温センサから上記外気温
度を表す信号を受けて、上記外気温度が低いほど、圧縮
機の起動時に上記圧縮機を長く連続運転させる圧縮機連
続運転手段とを備えている。したがって、請求項3の発
明によれば、上記圧縮機連続運転手段は、外気温センサ
から外気温度を表す信号を受けて、上記外気温度が低い
ほど、圧縮機の起動時に圧縮機を長く連続運転させる。
この連続運転によって、圧縮機内の冷媒量を減少させ
て、二層分離を解消することができる。また、外気温度
が低いほど冷媒温度が低くて二層分離し易くなるので、
外気温度が低いほど連続運転時間を長くすることによっ
て、二層分離の解消を確実に行うことができる。
According to a third aspect of the present invention, the outside air temperature sensor for detecting the outside air temperature and a signal indicating the outside air temperature from the outside air temperature sensor are received, and the lower the outside air temperature is, the more the above-mentioned condition occurs when the compressor is started. And a compressor continuous operation means for continuously operating the compressor for a long time. Therefore, according to the third aspect of the invention, the compressor continuous operation means receives the signal representing the outside air temperature from the outside air temperature sensor, and the lower the outside air temperature, the longer the continuous operation of the compressor at the time of starting the compressor. Let
By this continuous operation, the amount of refrigerant in the compressor can be reduced and the two-layer separation can be eliminated. Also, the lower the outside air temperature, the lower the refrigerant temperature and the easier it is to separate into two layers.
The longer the continuous operation time as the outside air temperature is lower, the more reliable separation of the two layers can be achieved.

【0052】また、請求項4の発明は、外気温度を検出
する外気温センサと、上記外気温センサから上記外気温
度を表す信号を受けて、上記外気温度が低いほど、発停
運転時での膨張弁の開度を非発停運転時での膨張弁の開
度に比べて小さくする膨張弁制御手段とを備えている。
Further, according to the invention of claim 4, the outside air temperature sensor for detecting the outside air temperature and the signal representing the outside air temperature from the outside air temperature sensor are received, and the lower the outside air temperature, the more the start / stop operation is performed. And an expansion valve control means for making the opening of the expansion valve smaller than the opening of the expansion valve during non-stop operation.

【0053】したがって、請求項4の発明によれば、上
記膨張弁制御手段は、上記外気温センサから外気温度を
表す信号を受けて、上記外気温度が低いほど、発停運転
時での膨張弁の開度を非発停運転時での膨張弁の開度に
比べて小さくする。膨張弁を絞ることによって、過熱度
が高くなって、冷媒温度が高くなり、冷媒に潤滑油が溶
けやすくなる。また、膨張弁を絞ることによって、圧縮
機に帰ってくる液冷媒の量も減る。したがって、圧縮機
内での二層分離を解消でき、圧縮機の潤滑不足を防ぐこ
とができる。
Therefore, according to the fourth aspect of the present invention, the expansion valve control means receives the signal indicating the outside air temperature from the outside air temperature sensor, and the lower the outside air temperature, the more the expansion valve during start-stop operation. The opening of the expansion valve is made smaller than the opening of the expansion valve during non-stop operation. By throttling the expansion valve, the degree of superheat increases, the temperature of the refrigerant increases, and the lubricating oil easily dissolves in the refrigerant. Also, by throttling the expansion valve, the amount of liquid refrigerant returning to the compressor is also reduced. Therefore, it is possible to eliminate the two-layer separation in the compressor and prevent insufficient lubrication of the compressor.

【0054】また、請求項5の発明は、冷媒と潤滑油と
が圧縮機内で二層に分離していることを検出する二層分
離検出手段と、上記二層分離検出手段が上記二層分離を
検出したときに、圧縮機を駆動する電源の駆動周波数を
上昇させて、上記二層分離検出手段が上記二層分離を検
出しなくなるまで、上記上昇させた駆動周波数で圧縮機
を連続運転する圧縮機制御手段とを備えている。
According to a fifth aspect of the present invention, the two-layer separation detecting means for detecting that the refrigerant and the lubricating oil are separated into two layers in the compressor, and the two-layer separation detecting means for separating the two layers. When detecting the, the drive frequency of the power source for driving the compressor is increased, and the compressor is continuously operated at the increased drive frequency until the two-layer separation detecting means no longer detects the two-layer separation. And a compressor control means.

【0055】したがって、請求項5の発明によれば、上
記圧縮機制御手段は、上記二層分離検出手段が上記二層
分離を検出したときに、上記二層分離検出手段からの出
力に基づいて圧縮機を駆動する電源の駆動周波数を二層
分離を検出しなかったときの駆動周波数よりも上昇させ
て、上記上昇させた駆動周波数で圧縮機を連続運転させ
る。この上昇させた駆動周波数での圧縮機の連続運転に
よって、圧縮機内の冷媒を早く排出することができる。
したがって、圧縮機内の二層分離を早く解消することが
できる。したがって、圧縮機に冷媒のみが供給されるこ
とを防いで、圧縮機の潤滑不足や焼き付きを防ぐことが
できる。
Therefore, according to the invention of claim 5, the compressor control means is based on the output from the two-layer separation detecting means when the two-layer separation detecting means detects the two-layer separation. The drive frequency of the power source for driving the compressor is made higher than the drive frequency when the two-layer separation is not detected, and the compressor is continuously operated at the increased drive frequency. By continuously operating the compressor at this increased drive frequency, the refrigerant in the compressor can be quickly discharged.
Therefore, the two-layer separation in the compressor can be eliminated quickly. Therefore, it is possible to prevent only the refrigerant from being supplied to the compressor and prevent insufficient lubrication or seizure of the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1(A)はこの発明の冷凍機の第1例の構成
を示すブロック図であり、図1(B)は第2例の構成を示
すブロック図であり、図1(C)は第3例の構成を示すブ
ロック図であり、図1(D)は第4例の構成を示すブロッ
ク図であり、図1(E)は第5例の構成を示すブロック図
である。
1 (A) is a block diagram showing a configuration of a first example of a refrigerator of the present invention, FIG. 1 (B) is a block diagram showing a configuration of a second example, and FIG. ) Is a block diagram showing the configuration of the third example, FIG. 1 (D) is a block diagram showing the configuration of the fourth example, and FIG. 1 (E) is a block diagram showing the configuration of the fifth example.

【図2】 図2(A)は第1例の要部構造を示す冷媒配
管図であり、図2(B)は第1例の変形例の配管図であ
り、図2(C)はもう1つの変形例の配管図である。
FIG. 2 (A) is a refrigerant piping diagram showing a main part structure of a first example, FIG. 2 (B) is a piping diagram of a modified example of the first example, and FIG. 2 (C) is another. It is a piping diagram of one modification.

【図3】 上記第1例および従来例によって起動時に時
間の経過にしたがって二層分離が解消される様子を示す
図である。
FIG. 3 is a diagram showing a manner in which the two-layer separation is resolved over time at the time of startup in the first example and the conventional example.

【図4】 上記第2例によって、起動時の二層分離が時
間の経過とともに解消される様子を示す図である。
FIG. 4 is a diagram showing a manner in which the two-layer separation at the time of startup is resolved with the passage of time by the second example.

【図5】 上記第4例において、電動弁の開度を絞れば
絞るほど圧縮機内の給油口での油の濃度を高くすること
ができることを示す図である。
FIG. 5 is a diagram showing that in the fourth example, as the opening degree of the motor-operated valve is reduced, the oil concentration at the oil supply port in the compressor can be increased.

【図6】 上記第5例において、外気温度が低いほど圧
縮機の連続運転時間を長くする様子を示す図である。
FIG. 6 is a diagram showing how the continuous operation time of the compressor is lengthened as the outside air temperature decreases in the fifth example.

【図7】 上記第5例の運転タイムチャートである。FIG. 7 is an operation time chart of the fifth example.

【図8】 図8(A)は温度と冷媒分率に対する二層分離
域を示す二層分離線図であり、図8(B)は圧縮機内での
二層分離状態を示す模式図である。
FIG. 8 (A) is a two-layer separation diagram showing a two-layer separation region with respect to temperature and refrigerant fraction, and FIG. 8 (B) is a schematic diagram showing a two-layer separation state in the compressor. .

【符号の説明】[Explanation of symbols]

1…圧縮機、M…モータ、A…駆動部、1A…給油口、
2…バイパス配管、3…油溜まり部、3A…底部、5…
吐出配管、6…電磁弁、7…キャピラリ、8,21,5
1…二層分離検出部、10…バイパス回路電磁弁制御回
路、11…吸入配管、12…アキュムレータ、13…熱
交換器、15…電動膨張弁、16…液ライン、22…対
策制御回路、23,55…二層分離対策制御回路、31,
42,52…外気温センサ、32…運転モード検出部、
33…連続運転時間算出部、34…二層分離対策制御回
路、35,53…通常制御回路、41…発停モード判断
部、43…通常膨張弁制御回路、45…発停時膨張弁制
御回路、56…圧縮機周波数‐オン時間算出部、57…
対策運転部。
1 ... Compressor, M ... Motor, A ... Drive part, 1A ... Refueling port,
2 ... Bypass piping, 3 ... Oil sump, 3A ... Bottom, 5 ...
Discharge pipe, 6 ... Solenoid valve, 7 ... Capillary, 8, 21, 5
DESCRIPTION OF SYMBOLS 1 ... Two-layer separation detection part, 10 ... Bypass circuit Solenoid valve control circuit, 11 ... Suction piping, 12 ... Accumulator, 13 ... Heat exchanger, 15 ... Electric expansion valve, 16 ... Liquid line, 22 ... Countermeasure control circuit, 23 55, two-layer separation countermeasure control circuit, 31,
42, 52 ... Outside air temperature sensor, 32 ... Operating mode detector,
33 ... Continuous operation time calculation unit, 34 ... Two-layer separation countermeasure control circuit, 35, 53 ... Normal control circuit, 41 ... Start / stop mode determination unit, 43 ... Normal expansion valve control circuit, 45 ... Start / stop expansion valve control circuit , 56 ... Compressor frequency-ON time calculation unit, 57 ...
Countermeasure driving department.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷媒よりも比重が小さく、かつ、上記冷
媒との相溶性が実質的に無い油を圧縮機(1)の潤滑油と
して用いている冷凍機において、 冷媒と潤滑油とが圧縮機(1)内で二層に分離しているこ
とを検出する二層分離検出手段(8)と、 圧縮機(1)に連なる冷媒回路の冷媒用配管(5,11,1
6)と上記圧縮機(1)の油溜まり部(3)の底部(3A)と
を接続するバイパス配管(2)と、 上記バイパス配管(2)に設けられたバイパス弁(6)と、 上記二層分離検出手段(8)が上記二層分離を検出したと
きに上記バイパス弁(6)を開ける一方、上記二層分離検
出手段(8)が上記二層分離を検出しないときに上記バイ
パス弁(6)を閉じるバイパス弁開閉手段(10)とを備え
たことを特徴とする冷凍機。
1. A refrigerating machine in which an oil having a specific gravity smaller than that of a refrigerant and substantially incompatible with the refrigerant is used as a lubricating oil of a compressor (1), the refrigerant and the lubricating oil are compressed. Two-layer separation detecting means (8) for detecting separation into two layers in the machine (1), and refrigerant pipes (5, 11, 1) of a refrigerant circuit connected to the compressor (1).
6) and a bypass pipe (2) connecting the bottom (3A) of the oil sump (3) of the compressor (1), a bypass valve (6) provided in the bypass pipe (2), The two-layer separation detecting means (8) opens the bypass valve (6) when the two-layer separation is detected, while the two-layer separation detecting means (8) does not detect the two-layer separation. A refrigerator comprising a bypass valve opening / closing means (10) for closing (6).
【請求項2】 冷媒よりも比重が小さく、かつ、上記冷
媒との相溶性が実質的に無い油を圧縮機(1)の潤滑油と
して用いている冷凍機において、 冷媒と潤滑油とが圧縮機(1)内で二層に分離しているこ
とを検出する二層分離検出手段(21)と、 上記二層分離検出手段(21)の出力に基づき、上記二層
分離検出手段(21)が二層分離を検出したときから、上
記二層分離検出手段(21)が二層分離を検出しなくなっ
た後まで上記圧縮機(1)を連続運転させる圧縮機連続運
転手段(23)とを備えたことを特徴とする冷凍機。
2. A refrigerating machine in which oil having a specific gravity smaller than that of a refrigerant and substantially incompatible with the refrigerant is used as a lubricating oil of a compressor (1), the refrigerant and the lubricating oil are compressed. A two-layer separation detecting means (21) for detecting separation into two layers in the machine (1), and the two-layer separation detecting means (21) based on the output of the two-layer separation detecting means (21). The continuous operation means (23) for continuously operating the compressor (1) from when the two-layer separation is detected by the two-layer separation detection means (21) until the two-layer separation detection means (21) stops detecting the two-layer separation. A refrigerator characterized by being provided.
【請求項3】 冷媒よりも比重が小さく、かつ、上記冷
媒との相溶性が実質的に無い油を圧縮機(1)の潤滑油と
して用いている冷凍機において、 外気温度を検出する外気温センサ(31)と、 上記外気温センサ(31)から上記外気温度を表す信号を
受けて、上記外気温度が低いほど、圧縮機(1)の起動時
に上記圧縮機(1)を長く連続運転させる圧縮機連続運転
手段(33)とを備えていることを特徴とする冷凍機。
3. An outside air temperature for detecting an outside air temperature in a refrigerator using oil having a specific gravity smaller than that of the refrigerant and substantially incompatible with the refrigerant as a lubricating oil of the compressor (1). By receiving a signal indicating the outside air temperature from the sensor (31) and the outside air temperature sensor (31), the lower the outside air temperature, the longer the continuous operation of the compressor (1) when the compressor (1) is started. A refrigerator comprising a compressor continuous operation means (33).
【請求項4】 冷媒よりも比重が小さく、かつ、上記冷
媒との相溶性が実質的に無い油を圧縮機(1)の潤滑油と
して用いている冷凍機において、 外気温度を検出する外気温センサ(42)と、 上記外気温センサ(42)から上記外気温度を表す信号を
受けて、上記外気温度が低いほど、発停運転時での膨張
弁(15)の開度を非発停運転時での膨張弁(15)の開度
に比べて小さくする膨張弁制御手段(45)とを備えたこ
とを特徴とする冷凍機。
4. An outside air temperature for detecting an outside air temperature in a refrigerator that uses oil having a specific gravity smaller than that of a refrigerant and substantially incompatible with the refrigerant as a lubricating oil of a compressor (1). In response to the sensor (42) and a signal indicating the outside air temperature from the outside air temperature sensor (42), the lower the outside air temperature is, the more the opening degree of the expansion valve (15) during the start / stop operation is changed to the non-start / stop operation. A refrigerator comprising: an expansion valve control means (45) for reducing the opening degree of the expansion valve (15) in time.
【請求項5】 冷媒よりも比重が小さく、かつ、上記冷
媒との相溶性が実質的に無い油を圧縮機(1)の潤滑油と
して用いている冷凍機において、 冷媒と潤滑油とが圧縮機(1)内で二層に分離しているこ
とを検出する二層分離検出手段(51)と、 上記二層分離検出手段(51)の出力に基づき、上記二層
分離検出手段(51)が二層分離を検出したときに、圧縮
機(1)を駆動する電源の駆動周波数を二層分離を検出し
なかったときの駆動周波数よりも上昇させて、上記二層
分離検出手段(51)が上記二層分離を検出しなくなるま
で、上記上昇させた駆動周波数で圧縮機(1)を連続運転
する圧縮機制御手段(55)とを備えていることを特徴と
する冷凍機。
5. A refrigerating machine using oil having a specific gravity smaller than that of a refrigerant and having substantially no compatibility with the refrigerant as a lubricating oil of a compressor (1), wherein the refrigerant and the lubricating oil are compressed. Two-layer separation detecting means (51) for detecting separation into two layers in the machine (1), and the two-layer separation detecting means (51) based on the output of the two-layer separation detecting means (51). When the two-layer separation is detected, the drive frequency of the power source for driving the compressor (1) is made higher than the drive frequency when the two-layer separation is not detected, and the two-layer separation detecting means (51). And a compressor control means (55) for continuously operating the compressor (1) at the increased drive frequency until the two-layer separation is no longer detected.
JP16961995A 1995-07-05 1995-07-05 refrigerator Expired - Fee Related JP3641850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16961995A JP3641850B2 (en) 1995-07-05 1995-07-05 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16961995A JP3641850B2 (en) 1995-07-05 1995-07-05 refrigerator

Publications (2)

Publication Number Publication Date
JPH0921569A true JPH0921569A (en) 1997-01-21
JP3641850B2 JP3641850B2 (en) 2005-04-27

Family

ID=15889863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16961995A Expired - Fee Related JP3641850B2 (en) 1995-07-05 1995-07-05 refrigerator

Country Status (1)

Country Link
JP (1) JP3641850B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336907A (en) * 2005-05-31 2006-12-14 Toshiba Kyaria Kk Refrigerating cycle device
JP2016211774A (en) * 2015-05-07 2016-12-15 ダイキン工業株式会社 Freezer
JP2017150753A (en) * 2016-02-25 2017-08-31 ダイキン工業株式会社 Refrigerator
JP2021071258A (en) * 2019-10-31 2021-05-06 ダイキン工業株式会社 Refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336907A (en) * 2005-05-31 2006-12-14 Toshiba Kyaria Kk Refrigerating cycle device
JP4652131B2 (en) * 2005-05-31 2011-03-16 東芝キヤリア株式会社 Refrigeration cycle equipment
JP2016211774A (en) * 2015-05-07 2016-12-15 ダイキン工業株式会社 Freezer
JP2017150753A (en) * 2016-02-25 2017-08-31 ダイキン工業株式会社 Refrigerator
JP2021071258A (en) * 2019-10-31 2021-05-06 ダイキン工業株式会社 Refrigerator
WO2021085330A1 (en) * 2019-10-31 2021-05-06 ダイキン工業株式会社 Refrigeration device
US11828510B2 (en) 2019-10-31 2023-11-28 Daikin Industries, Ltd. Refrigeration apparatus

Also Published As

Publication number Publication date
JP3641850B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP2865707B2 (en) Refrigeration equipment
US7143594B2 (en) Control method for operating a refrigeration system
US4854130A (en) Refrigerating apparatus
US5182919A (en) Oil recovery system for closed type centrifugal refrigerating machine
JPH0730961B2 (en) Method and device for preventing compressor failure
JPH0921569A (en) Refrigerator
JP5033400B2 (en) Method for reducing load of oil-cooled screw compressor and oil-cooled screw compressor
JP2000320936A (en) Safety unit for refrigeration cycle
JP2000346502A (en) Refrigerating device
JP2010185458A (en) Method of operating screw compressor
JP4250320B2 (en) Operation method of oil-cooled compression refrigerator
CN116222023A (en) Compressor oil return system and control method thereof
JP4195120B2 (en) Air conditioner
JP3425278B2 (en) refrigerator
JP3635720B2 (en) refrigerator
JPH06129721A (en) Air-conditioning device
JP2001289519A (en) Refrigerating apparatus
JPH109690A (en) Refrigerator
JP7412639B2 (en) heat source unit
JPH05172077A (en) Refrigerant compressor
JPH08313077A (en) Air conditioner
JPH09133439A (en) Method and device for controlling accumulator
JP4326274B2 (en) Refrigeration circuit
JPH0218447Y2 (en)
JPH0222874B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees