JP2017150753A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2017150753A
JP2017150753A JP2016034227A JP2016034227A JP2017150753A JP 2017150753 A JP2017150753 A JP 2017150753A JP 2016034227 A JP2016034227 A JP 2016034227A JP 2016034227 A JP2016034227 A JP 2016034227A JP 2017150753 A JP2017150753 A JP 2017150753A
Authority
JP
Japan
Prior art keywords
oil
temperature
refrigerating machine
refrigerant
machine oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016034227A
Other languages
Japanese (ja)
Other versions
JP6736910B2 (en
JP2017150753A5 (en
Inventor
田中 勝
Masaru Tanaka
勝 田中
平良 繁治
Shigeji Taira
繁治 平良
知之 配川
Tomoyuki Haikawa
知之 配川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2016034227A priority Critical patent/JP6736910B2/en
Priority to PCT/JP2017/006607 priority patent/WO2017146100A1/en
Publication of JP2017150753A publication Critical patent/JP2017150753A/en
Priority to SA518392247A priority patent/SA518392247B1/en
Publication of JP2017150753A5 publication Critical patent/JP2017150753A5/ja
Application granted granted Critical
Publication of JP6736910B2 publication Critical patent/JP6736910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)
  • Compressor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator that can suppress an increase in viscosity resistance in a sliding portion of a compressor and can improve performance.SOLUTION: A refrigerator includes a refrigeration cycle in which a compressor, a condenser, an expansion mechanism and an evaporator are connected annularly. In the refrigerator, a condensation temperature may reach 46°C or higher. The condensation temperature is a temperature that causes a refrigerant circulating in the refrigeration cycle to be condensed. Refrigerating machine oil for lubricating the compressor is filled in the refrigeration cycle. The refrigerating machine oil is oil of which separation temperature is higher than the condensation temperature. The separation temperature is a temperature that causes a mixture of the refrigerating machine oil and the refrigerant to be separated into the refrigerating machine oil and the refrigerant. Since the separation temperature is higher than the condensation temperature, separation of the refrigerant circulating in the refrigeration cycle from the refrigerating machine oil is suppressed.SELECTED DRAWING: Figure 1

Description

本発明は、冷媒の凝縮する温度が比較的高い冷凍装置に関する。   The present invention relates to a refrigeration apparatus having a relatively high temperature at which refrigerant is condensed.

近年、空気調和装置等の冷凍装置では、特許文献1(特開2001−226690号公報)に開示されるように、ハイドロフルオロカーボン(HFC)を含む冷媒が主に用いられている。HFCは、例えば、分子式C224で表されるR134a、分子式CH22で表されるR32、および、混合冷媒であるR410AおよびR407cである。HFCは、塩素を含まないので、クロロフルオロカーボンおよびハイドロクロロフルオロカーボンと比べてオゾン層を破壊する効果が小さい。 In recent years, in a refrigeration apparatus such as an air conditioner, a refrigerant containing hydrofluorocarbon (HFC) is mainly used as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2001-226690). HFC is, for example, R134a represented by the molecular formula C 2 H 2 F 4 , R32 represented by the molecular formula CH 2 F 2 , and R410A and R407c that are mixed refrigerants. Since HFC does not contain chlorine, the effect of destroying the ozone layer is small compared to chlorofluorocarbon and hydrochlorofluorocarbon.

しかし、HFCを含む冷媒の中には、冷凍機油との相溶性が悪く、冷凍機油と分離しやすい冷媒がある。冷媒と冷凍機油との分離が起こると、圧縮機の摺動部に粘度の高い冷凍機油が供給され、圧縮機の摺動部における粘性抵抗が増加する。これにより、圧縮機の動力損失が増加して、圧縮機の性能が低下するおそれがある。   However, among refrigerants containing HFC, there are refrigerants that are poorly compatible with refrigerating machine oil and are easily separated from refrigerating machine oil. When the refrigerant and the refrigerating machine oil are separated, the refrigerating machine oil having a high viscosity is supplied to the sliding part of the compressor, and the viscous resistance in the sliding part of the compressor is increased. Thereby, the power loss of a compressor increases and there exists a possibility that the performance of a compressor may fall.

本発明の目的は、圧縮機の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる冷凍装置を提供することである。   An object of the present invention is to provide a refrigeration apparatus that can suppress an increase in viscous resistance at a sliding portion of a compressor and improve performance.

本発明の第1観点に係る冷凍装置は、圧縮機と凝縮器と膨張機構と蒸発器とが環状に接続される冷凍サイクルを備える。この冷凍装置では、凝縮温度が46℃以上となる場合がある。凝縮温度は、冷凍サイクルを循環する冷媒が凝縮器で凝縮する温度である。冷凍サイクルには、圧縮機の潤滑用の冷凍機油が入れられる。冷凍機油は、分離温度が凝縮温度よりも高くなる油である。分離温度は、冷凍機油と冷媒との混合物が冷凍機油と冷媒とに分離する温度である。   A refrigeration apparatus according to a first aspect of the present invention includes a refrigeration cycle in which a compressor, a condenser, an expansion mechanism, and an evaporator are connected in an annular shape. In this refrigeration apparatus, the condensation temperature may be 46 ° C. or higher. The condensation temperature is a temperature at which the refrigerant circulating in the refrigeration cycle condenses in the condenser. The refrigeration cycle contains refrigeration oil for lubricating the compressor. Refrigerator oil is an oil whose separation temperature is higher than the condensation temperature. The separation temperature is a temperature at which the mixture of the refrigerating machine oil and the refrigerant is separated into the refrigerating machine oil and the refrigerant.

第1観点に係る冷凍装置は、外気温度が比較的高い環境で使用される。具体的には、この冷凍装置では、圧縮機で圧縮された冷媒が凝縮器で凝縮される温度である凝縮温度が46℃以上となる場合がある。しかし、この冷凍装置で使用される冷凍機油と冷媒との混合物が分離する温度である分離温度は、凝縮温度よりも高い。そのため、冷凍装置の運転中において、冷凍サイクルを循環する冷媒が冷凍機油と分離することが抑制されるので、圧縮機の摺動部に、冷媒を含む粘度の低い冷凍機油が供給される。従って、第1観点に係る冷凍装置は、圧縮機の摺動部に粘度の高い冷凍機油が供給されることを抑制し、性能を向上させることができる。   The refrigeration apparatus according to the first aspect is used in an environment where the outside air temperature is relatively high. Specifically, in this refrigeration apparatus, the condensation temperature, which is the temperature at which the refrigerant compressed by the compressor is condensed by the condenser, may be 46 ° C. or higher. However, the separation temperature, which is the temperature at which the mixture of refrigerating machine oil and refrigerant used in this refrigeration apparatus separates, is higher than the condensation temperature. Therefore, during operation of the refrigeration apparatus, the refrigerant circulating in the refrigeration cycle is suppressed from being separated from the refrigeration oil, so that the low-viscosity refrigeration oil containing the refrigerant is supplied to the sliding portion of the compressor. Therefore, the refrigerating apparatus according to the first aspect can suppress the supply of refrigerating machine oil having a high viscosity to the sliding portion of the compressor and improve the performance.

本発明の第2観点に係る冷凍装置は、第1観点に係る冷凍装置であって、冷凍機油は、油濃度が35±10wt%である場合において分離温度が凝縮温度よりも高くなる油である。油濃度は、冷凍機油と冷媒との混合物に含まれる冷凍機油の濃度である。   The refrigerating apparatus according to the second aspect of the present invention is the refrigerating apparatus according to the first aspect, wherein the refrigerating machine oil is an oil whose separation temperature is higher than the condensation temperature when the oil concentration is 35 ± 10 wt%. . The oil concentration is the concentration of refrigerating machine oil contained in the mixture of refrigerating machine oil and refrigerant.

第2観点に係る冷凍装置では、油濃度が35±10wt%と比較的低い時においても、分離温度が凝縮温度よりも高いので、冷媒が冷凍機油と分離することが抑制される。従って、第2観点に係る冷凍装置は、圧縮機の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる。   In the refrigeration apparatus according to the second aspect, since the separation temperature is higher than the condensation temperature even when the oil concentration is relatively low at 35 ± 10 wt%, the refrigerant is prevented from separating from the refrigeration oil. Therefore, the refrigeration apparatus according to the second aspect can suppress an increase in viscous resistance at the sliding portion of the compressor and improve the performance.

本発明の第3観点に係る冷凍装置は、第1観点または第2観点に係る冷凍装置であって、冷凍機油は、圧縮機の起動時において分離温度が凝縮温度よりも高くなる油である。   The refrigeration apparatus according to the third aspect of the present invention is the refrigeration apparatus according to the first aspect or the second aspect, and the refrigeration oil is an oil whose separation temperature is higher than the condensation temperature when the compressor is started.

第3観点に係る冷凍装置は、外気温度が比較的高い環境で使用され、起動時における油濃度が最も低く、起動後に油濃度が徐々に上昇する傾向を示す。油濃度が最も低い起動時において、分離温度が凝縮温度よりも高く、かつ、起動後に油濃度が徐々に上昇しても、分離温度は凝縮温度よりも高いままである。そのため、冷凍装置の起動後において、冷媒が冷凍機油と分離することが抑制される。従って、第3観点に係る冷凍装置は、圧縮機の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる。   The refrigeration apparatus according to the third aspect is used in an environment where the outside air temperature is relatively high, the oil concentration at the time of startup is the lowest, and the oil concentration tends to gradually increase after startup. At the start-up time when the oil concentration is the lowest, the separation temperature remains higher than the condensation temperature even if the separation temperature is higher than the condensation temperature and the oil concentration gradually increases after the start-up. Therefore, the refrigerant is prevented from separating from the refrigeration oil after the refrigeration apparatus is started. Therefore, the refrigeration apparatus according to the third aspect can suppress an increase in the viscous resistance at the sliding portion of the compressor and improve the performance.

本発明の第4観点に係る冷凍装置は、第1乃至第3観点のいずれか1つに係る冷凍装置であって、冷媒は、HFCを含む。   A refrigeration apparatus according to a fourth aspect of the present invention is the refrigeration apparatus according to any one of the first to third aspects, wherein the refrigerant includes HFC.

第4観点に係る冷凍装置は、HFCを含む冷媒を用いる。HFCは、例えば、分子式C224で表されるR134a、分子式CH22で表されるR32、および、混合冷媒であるR410AおよびR407cである。HFCは、塩素を含まないので、クロロフルオロカーボンおよびハイドロクロロフルオロカーボンと比べてオゾン層を破壊する効果が小さい。しかし、HFCを含む冷媒の中には、冷凍機油との相溶性が悪く、冷凍機油と分離することにより粘性抵抗が増加しやすい冷媒がある。しかし、分離温度が凝縮温度よりも高く、冷媒が冷凍機油と分離することが抑制されるので、冷凍機油の粘度の増加が抑制させる。従って、第4観点に係る冷凍装置は、圧縮機の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる。 The refrigeration apparatus according to the fourth aspect uses a refrigerant containing HFC. HFC is, for example, R134a represented by the molecular formula C 2 H 2 F 4 , R32 represented by the molecular formula CH 2 F 2 , and R410A and R407c that are mixed refrigerants. Since HFC does not contain chlorine, the effect of destroying the ozone layer is small compared to chlorofluorocarbon and hydrochlorofluorocarbon. However, among refrigerants containing HFC, there are refrigerants that are poorly compatible with refrigerating machine oil and whose viscosity resistance tends to increase when separated from refrigerating machine oil. However, since the separation temperature is higher than the condensation temperature and the refrigerant is prevented from separating from the refrigerating machine oil, an increase in the viscosity of the refrigerating machine oil is suppressed. Therefore, the refrigeration apparatus according to the fourth aspect can suppress an increase in viscous resistance at the sliding portion of the compressor and improve the performance.

本発明の第5観点に係る冷凍装置は、第1乃至第4観点のいずれか1つに係る冷凍装置であって、凝縮器は、室外に設置され、蒸発器は、室内に設置される。   A refrigeration apparatus according to a fifth aspect of the present invention is the refrigeration apparatus according to any one of the first to fourth aspects, wherein the condenser is installed outdoors and the evaporator is installed indoors.

第5観点に係る冷凍装置は、冷房専用機器である。この冷凍装置の凝縮器は、温度が比較的高い外部環境に設置されるので、凝縮温度が46℃以上となる場合がある。しかし、分離温度が凝縮温度よりも高いので、冷媒が冷凍機油と分離することが抑制される。従って、第5観点に係る冷凍装置は、圧縮機の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる。   The refrigeration apparatus according to the fifth aspect is a dedicated cooling device. Since the condenser of this refrigeration apparatus is installed in an external environment having a relatively high temperature, the condensation temperature may be 46 ° C. or higher. However, since the separation temperature is higher than the condensation temperature, the refrigerant is prevented from separating from the refrigerating machine oil. Therefore, the refrigeration apparatus according to the fifth aspect can suppress an increase in the viscous resistance at the sliding portion of the compressor and improve the performance.

本発明の第6観点に係る冷凍装置は、第1乃至第5観点のいずれか1つに係る冷凍装置であって、凝縮温度が52℃以上となる場合がある。   The refrigeration apparatus according to the sixth aspect of the present invention is the refrigeration apparatus according to any one of the first to fifth aspects, and the condensation temperature may be 52 ° C. or higher.

第6観点に係る冷凍装置は、凝縮温度が52℃以上となるような、外気温度が高い環境で使用することができる。   The refrigeration apparatus according to the sixth aspect can be used in an environment where the outside air temperature is high such that the condensation temperature is 52 ° C. or higher.

本発明の第1乃至第5観点に係る冷凍装置は、圧縮機の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる。   The refrigeration apparatus according to the first to fifth aspects of the present invention can improve the performance by suppressing an increase in viscous resistance at the sliding portion of the compressor.

本発明の実施形態に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning the embodiment of the present invention. R32とポリビニルエーテル油との混合物の二層分離温度曲線、および、当該混合物の運転軌跡を表すグラフである。It is a graph showing the bilayer separation temperature curve of the mixture of R32 and polyvinyl ether oil, and the driving | running locus | trajectory of the said mixture. R32とポリオールエステル油との混合物の二層分離温度曲線、および、当該混合物の運転軌跡を表すグラフである。It is a graph showing the bilayer separation temperature curve of the mixture of R32 and a polyol ester oil, and the driving | running locus | trajectory of the said mixture. 変形例Aに係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning modification A.

(1)空気調和装置の構成
本発明の実施形態に係る冷凍装置としての空気調和装置1について説明する。図1は、空気調和装置1の冷媒回路図である。空気調和装置1は、圧縮機2と、室外熱交換器4と、膨張機構5と、室内熱交換器6とが環状に接続された冷凍サイクルを備える。空気調和装置1は、冷房運転のみを行うことができる冷房専用機器である。図1において、実線の矢印は、空気調和装置1の運転時において、冷凍サイクルを循環する冷媒の流れ方向を表す。空気調和装置1は、外気温が高い環境において使用することができる。具体的には、空気調和装置1は、外気温が46℃以上の環境において使用することができる。また、好ましくは、空気調和装置1は、外気温が52℃以上の環境において使用することができる。
(1) Configuration of Air Conditioner An air conditioner 1 as a refrigeration apparatus according to an embodiment of the present invention will be described. FIG. 1 is a refrigerant circuit diagram of the air conditioner 1. The air conditioner 1 includes a refrigeration cycle in which a compressor 2, an outdoor heat exchanger 4, an expansion mechanism 5, and an indoor heat exchanger 6 are connected in a ring shape. The air conditioner 1 is a cooling-only device that can perform only a cooling operation. In FIG. 1, the solid line arrow represents the flow direction of the refrigerant circulating in the refrigeration cycle when the air conditioner 1 is in operation. The air conditioner 1 can be used in an environment where the outside air temperature is high. Specifically, the air conditioner 1 can be used in an environment where the outside air temperature is 46 ° C. or higher. Preferably, the air conditioner 1 can be used in an environment where the outside air temperature is 52 ° C. or higher.

冷房運転を行う空気調和装置1の冷凍サイクルについて説明する。最初に、圧縮機2は、低圧のガス冷媒を圧縮して、高圧のガス冷媒を吐出する。圧縮機2から吐出された圧縮冷媒は、室外熱交換器4に供給される。室外熱交換器4は、高圧のガス冷媒を凝縮して、高圧の液冷媒を吐出する。室外熱交換器4から吐出された冷媒は、膨張機構5の膨張弁を通過して低圧の気液混合状態の冷媒となり、室内熱交換器6に供給される。室内熱交換器6は、低圧の気液混合状態の冷媒を蒸発させて、低圧のガス冷媒を吐出する。室内熱交換器6から吐出された冷媒は、圧縮機2に供給される。   The refrigeration cycle of the air conditioner 1 that performs the cooling operation will be described. First, the compressor 2 compresses the low-pressure gas refrigerant and discharges the high-pressure gas refrigerant. The compressed refrigerant discharged from the compressor 2 is supplied to the outdoor heat exchanger 4. The outdoor heat exchanger 4 condenses the high-pressure gas refrigerant and discharges the high-pressure liquid refrigerant. The refrigerant discharged from the outdoor heat exchanger 4 passes through the expansion valve of the expansion mechanism 5, becomes a low-pressure gas-liquid mixed refrigerant, and is supplied to the indoor heat exchanger 6. The indoor heat exchanger 6 evaporates the low-pressure gas-liquid mixed refrigerant and discharges the low-pressure gas refrigerant. The refrigerant discharged from the indoor heat exchanger 6 is supplied to the compressor 2.

空気調和装置1は、冷房専用機器であり、室外熱交換器4は凝縮器として機能し、室内熱交換器6は蒸発器として機能する。そのため、室内熱交換器6において発生する冷媒の蒸発潜熱によって、室内が冷却される。また、室外熱交換器4において冷媒が凝縮される温度である凝縮温度は、46℃以上であり、好ましくは52℃以上である。   The air conditioner 1 is a cooling-only device, the outdoor heat exchanger 4 functions as a condenser, and the indoor heat exchanger 6 functions as an evaporator. Therefore, the room is cooled by the latent heat of vaporization of the refrigerant generated in the indoor heat exchanger 6. The condensation temperature, which is the temperature at which the refrigerant is condensed in the outdoor heat exchanger 4, is 46 ° C. or higher, and preferably 52 ° C. or higher.

空気調和装置1の冷凍サイクルには、冷凍機油が封入されている。冷凍機油は、主として、圧縮機2の摺動部における摩耗および焼き付きの防止のために用いられる潤滑油である。圧縮機2の摺動部は、例えば、圧縮機2がスクロール圧縮機の場合、2つのスクロール間のスラスト摺動面、および、クランク軸と軸受との間の摺動面等である。   Refrigerating machine oil is enclosed in the refrigeration cycle of the air conditioner 1. The refrigerating machine oil is a lubricating oil mainly used for preventing wear and seizure in the sliding portion of the compressor 2. For example, when the compressor 2 is a scroll compressor, the sliding portion of the compressor 2 is a thrust sliding surface between two scrolls, a sliding surface between a crankshaft and a bearing, and the like.

空気調和装置1の冷媒回路を循環する冷媒としては、ハイドロフルオロカーボン(HFC)を含むHFC系冷媒が用いられる。HFCは、例えば、分子式C224で表されるR134a、分子式CH22で表されるR32、および、混合冷媒であるR410AおよびR407cである。HFC系冷媒の地球温暖化係数は、好ましくは1000以下であり、より好ましくは500以下であり、さらに好ましくは300以下であり、特に好ましくは100以下である。なお、地球温暖化係数の観点からは、HFC系冷媒は、R32を50重量%より多く含むR32系冷媒であることが好ましい。R32系冷媒の具体例は、R32単体、R32とHFO−1234yfとの混合物、および、R32とHFO−1123との混合物等である。 As the refrigerant circulating in the refrigerant circuit of the air conditioner 1, an HFC-based refrigerant containing hydrofluorocarbon (HFC) is used. HFC is, for example, R134a represented by the molecular formula C 2 H 2 F 4 , R32 represented by the molecular formula CH 2 F 2 , and R410A and R407c that are mixed refrigerants. The global warming potential of the HFC-based refrigerant is preferably 1000 or less, more preferably 500 or less, still more preferably 300 or less, and particularly preferably 100 or less. From the viewpoint of the global warming potential, the HFC-based refrigerant is preferably an R32-based refrigerant containing more than 50% by weight of R32. Specific examples of the R32 refrigerant include R32 alone, a mixture of R32 and HFO-1234yf, a mixture of R32 and HFO-1123, and the like.

HFC系冷媒は、塩素を含まないので、クロロフルオロカーボンおよびハイドロクロロフルオロカーボン等の他のフッ素系冷媒と比べて、地球温暖化に与える影響が小さく、オゾン層を破壊する効果が小さい。しかし、HFC系冷媒には、他のフッ素系冷媒と比べて、冷凍機油との相溶性が悪く、凝縮温度が46℃以上となる場合に冷凍機油と分離しやすいR32系冷媒等が含まれる。冷媒と冷凍機油とが分離すると、圧縮機2の摺動部における粘性抵抗が増加し、圧縮機2の性能が低下するおそれがある。   Since the HFC-based refrigerant does not contain chlorine, it has less influence on global warming and less effective in destroying the ozone layer than other fluorine-based refrigerants such as chlorofluorocarbon and hydrochlorofluorocarbon. However, HFC-based refrigerants include R32-based refrigerants that are less compatible with refrigerating machine oils than other fluorine-based refrigerants and are easily separated from refrigerating machine oils when the condensation temperature is 46 ° C. or higher. When the refrigerant and the refrigerating machine oil are separated, the viscous resistance at the sliding portion of the compressor 2 increases, and the performance of the compressor 2 may be deteriorated.

(2)冷凍機油の組成
次に、冷凍サイクルに封入されている冷凍機油の組成について説明する。冷凍機油は、主として、基油、酸捕捉剤、極圧剤および酸化防止剤からなる。
(2) Composition of refrigeration oil Next, the composition of the refrigeration oil enclosed in the refrigeration cycle will be described. Refrigerating machine oil mainly consists of a base oil, an acid scavenger, an extreme pressure agent, and an antioxidant.

基油は、鉱油または合成油が用いられる。基油は、空気調和装置1に使用されるHFC系冷媒との相溶性が良いものが、適宜に選択される。鉱油は、例えば、ナフテン系鉱油、パラフィン系鉱油である。合成油は、例えば、エステル化合物、エーテル化合物、ポリα‐オレフィン、アルキルベンゼンである。合成油の具体例としては、ポリビニルエーテル、ポリオールエステル、ポリアルキレングリコール等が挙げられる。なお、基油として、上記の鉱油または合成油を2種以上組み合わせた混合物が用いられてもよい。   As the base oil, mineral oil or synthetic oil is used. As the base oil, one having good compatibility with the HFC refrigerant used in the air conditioner 1 is appropriately selected. The mineral oil is, for example, a naphthenic mineral oil or a paraffinic mineral oil. Synthetic oils are, for example, ester compounds, ether compounds, poly α-olefins, and alkylbenzenes. Specific examples of the synthetic oil include polyvinyl ether, polyol ester, polyalkylene glycol and the like. In addition, as a base oil, the mixture which combined 2 or more types of said mineral oil or synthetic oil may be used.

酸捕捉剤は、HFC系冷媒の分解によって発生したフッ酸等の酸と反応することにより、酸による冷凍機油の劣化を抑制するために用いられる添加剤である。酸捕捉剤は、例えば、エポキシ化合物、カルボジイミド化合物、テンペン系化合物である。酸捕捉剤の具体例としては、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、エポキシ化シクロヘキシルカルビノール、ジ(アルキルフェニル)カルボジイミド、β−ピネン等が挙げられる。HFC系冷媒の分解によって発生したフッ酸等の酸は、冷凍機油に含まれる酸捕捉剤によって捕捉される。これにより、HFC系冷媒の分解によって発生した酸に起因する冷凍機油の劣化、および、膨張機構5の膨張弁等の金属部品の腐食が抑制される。   The acid scavenger is an additive used for suppressing deterioration of the refrigerating machine oil due to the acid by reacting with an acid such as hydrofluoric acid generated by the decomposition of the HFC refrigerant. The acid scavenger is, for example, an epoxy compound, a carbodiimide compound, or a tempen compound. Specific examples of the acid scavenger include 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, epoxidized cyclohexyl carbinol, di (alkylphenyl) carbodiimide, β-pinene and the like. Acids such as hydrofluoric acid generated by the decomposition of the HFC refrigerant are captured by the acid scavenger contained in the refrigeration oil. Thereby, deterioration of the refrigerating machine oil resulting from the acid generated by the decomposition of the HFC-based refrigerant and corrosion of metal parts such as the expansion valve of the expansion mechanism 5 are suppressed.

極圧剤は、圧縮機2の摺動部における摩耗および焼き付きを防止するために用いられる添加剤である。冷凍機油は、摺動部において互いに摺動する部材表面の間に油膜を形成することで、摺動部材同士の接触を防止する。しかし、ポリビニルエーテルのような低粘度の冷凍機油を使用する場合、および、摺動部材にかかる圧力が高い場合には、摺動部材同士が接触しやすくなる。極圧剤は、摺動部において互いに摺動する部材表面と反応して被膜を形成することで、摩耗および焼き付きの発生を抑制する。極圧剤は、例えば、リン酸エステル、亜リン酸エステル、チオリン酸塩、硫化エステル、スルフィド、チオビスフェノール等である。極圧剤の具体例としては、トリクレジルホスフェート(TCP)、トリフェニルフォスフェート(TPP)、トリフェニルホスホロチオエート(TPPT)、アミン、C11−14側鎖アルキル、モノヘキシルおよびジヘキシルフォスフェートが挙げられる。TCPは、摺動部材の表面に吸着し、分解することで、リン酸塩の被膜を形成する。   The extreme pressure agent is an additive used for preventing wear and seizure in the sliding portion of the compressor 2. Refrigerating machine oil prevents contact between the sliding members by forming an oil film between the surfaces of the members that slide on each other at the sliding portion. However, when a low-viscosity refrigerating machine oil such as polyvinyl ether is used and when the pressure applied to the sliding member is high, the sliding members easily come into contact with each other. The extreme pressure agent suppresses the occurrence of wear and seizure by forming a film by reacting with the surfaces of members that slide on each other at the sliding portion. Examples of the extreme pressure agent include phosphate ester, phosphite ester, thiophosphate, sulfide ester, sulfide, thiobisphenol, and the like. Specific examples of extreme pressure agents include tricresyl phosphate (TCP), triphenyl phosphate (TPP), triphenyl phosphorothioate (TPPT), amine, C11-14 side chain alkyl, monohexyl and dihexyl phosphate. TCP is adsorbed on the surface of the sliding member and decomposes to form a phosphate coating.

酸化防止剤は、冷凍機油の酸化を防止するために用いられる添加剤である。酸化防止剤の具体例としては、ジチオリン酸亜鉛、有機硫黄化合物、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)等のフェノール系、フェニル−α−ナフチルアミン、N,N’−ジ−フェニル−p−フェニレンジアミン等のアミン系の酸化防止剤、N,N’‐ジサリシリデン‐1,2‐ジアミノプロパン等が挙げられる。   Antioxidants are additives used to prevent the refrigeration machine oil from being oxidized. Specific examples of the antioxidant include zinc dithiophosphate, organic sulfur compound, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,2 Phenols such as' -methylenebis (4-methyl-6-tert-butylphenol), amine-based antioxidants such as phenyl-α-naphthylamine, N, N'-di-phenyl-p-phenylenediamine, N, N Examples include '-disalicylidene-1,2-diaminopropane.

(3)冷凍機油の特性
次に、空気調和装置1で使用される冷凍機油の特性について説明する。最初に、HFC系冷媒と冷凍機油との混合物(以下、単に「混合物」と記載する。)の二層分離温度曲線、および、混合物の運転軌跡の例について、図2および図3を参照しながら説明する。ここで、HFC系冷媒は、R32単体である。
(3) Characteristics of Refrigerating Machine Oil Next, characteristics of the refrigerating machine oil used in the air conditioner 1 will be described. First, an example of a two-layer separation temperature curve of a mixture of an HFC-based refrigerant and refrigeration oil (hereinafter simply referred to as “mixture”) and an operation locus of the mixture will be described with reference to FIGS. explain. Here, the HFC-based refrigerant is R32 alone.

図2において、横軸は、混合物に含まれる冷凍機油の濃度(wt%)である油濃度であり、縦軸は、混合物の温度である。冷凍機油は、ポリビニルエーテル油である。曲線L1,L2は、二層分離温度曲線である。上側の曲線L1より上方の領域R1、および、下側の曲線L2より下方の領域R2は、R32とポリビニルエーテル油とが二層分離している領域である。曲線L1と曲線L2との間の領域R3は、R32とポリビニルエーテル油とが二層分離していない領域である。すなわち、領域R3は、R32とポリビニルエーテル油とが互いに溶解している領域である。   In FIG. 2, the horizontal axis represents the oil concentration which is the concentration (wt%) of the refrigerating machine oil contained in the mixture, and the vertical axis represents the temperature of the mixture. The refrigerating machine oil is polyvinyl ether oil. Curves L1 and L2 are two-layer separation temperature curves. A region R1 above the upper curve L1 and a region R2 below the lower curve L2 are regions where R32 and polyvinyl ether oil are separated into two layers. A region R3 between the curves L1 and L2 is a region where R32 and polyvinyl ether oil are not separated into two layers. That is, the region R3 is a region where R32 and polyvinyl ether oil are dissolved in each other.

図3において、横軸は、混合物に含まれる冷凍機油の濃度(wt%)である油濃度であり、縦軸は、混合物の温度である。冷凍機油は、ポリオールエステル油である。曲線L4,L5は、二層分離温度曲線である。上側の曲線L4より上方の領域R4、および、下側の曲線L5より下方の領域R5は、R32とポリオールエステル油とが二層分離している領域である。曲線L4と曲線L5との間の領域R6は、R32とポリオールエステル油とが二層分離していない領域である。すなわち、領域R6は、R32とポリオールエステル油とが互いに溶解している領域である。   In FIG. 3, the horizontal axis represents the oil concentration that is the concentration (wt%) of the refrigerating machine oil contained in the mixture, and the vertical axis represents the temperature of the mixture. The refrigerating machine oil is a polyol ester oil. Curves L4 and L5 are two-layer separation temperature curves. A region R4 above the upper curve L4 and a region R5 below the lower curve L5 are regions where R32 and polyol ester oil are separated into two layers. A region R6 between the curve L4 and the curve L5 is a region where R32 and polyol ester oil are not separated into two layers. That is, the region R6 is a region where R32 and polyol ester oil are dissolved.

なお、冷凍機油の組成にもよるが、冷媒としてR32を用いる場合、冷媒と冷凍機油との混合物の油濃度の最小値は、35±10wt%である。   Although depending on the composition of the refrigerating machine oil, when R32 is used as the refrigerant, the minimum value of the oil concentration of the mixture of the refrigerant and the refrigerating machine oil is 35 ± 10 wt%.

図2および図3において、直線LMは、外気温が高い環境で空気調和装置1を使用した場合における、混合物の運転軌跡を表す。図2および図3において直線LMで示される混合物の運転軌跡は、共通である。直線LMは、空気調和装置1の起動時における、圧縮機2の内部に存在する混合物の状態の推移を表す。空気調和装置1の起動前において、混合物は、直線LMの点P1の状態にある。圧縮機2は室外に設置されているので、空気調和装置1の起動前において、圧縮機2の内部に存在する混合物の温度は、外気温に近い。空気調和装置1が起動すると、空気調和装置1の運転時間の経過と共に、圧縮機2の温度が上昇するため混合物の温度も上昇し、混合物に含まれる液冷媒が徐々に蒸発する。その結果、混合物の油濃度は徐々に増加する。図2および図3では、混合物の油濃度は、空気調和装置1の起動時における点P1の約35wt%から、徐々に増加している。すなわち、点P1は、油濃度が最小値であるときの状態を示す。   2 and 3, a straight line LM represents an operation locus of the mixture when the air conditioner 1 is used in an environment where the outside air temperature is high. The operation trajectories of the mixture indicated by the straight line LM in FIGS. 2 and 3 are common. The straight line LM represents the transition of the state of the mixture existing inside the compressor 2 when the air conditioner 1 is started. Prior to activation of the air conditioner 1, the mixture is in the state of the point P1 of the straight line LM. Since the compressor 2 is installed outdoors, the temperature of the mixture existing inside the compressor 2 is close to the outside air temperature before the air conditioner 1 is started. When the air conditioner 1 is activated, the temperature of the compressor 2 increases as the operating time of the air conditioner 1 elapses, so that the temperature of the mixture also rises, and the liquid refrigerant contained in the mixture gradually evaporates. As a result, the oil concentration of the mixture increases gradually. 2 and 3, the oil concentration of the mixture gradually increases from about 35 wt% at the point P1 when the air conditioner 1 is started. That is, the point P1 shows a state when the oil concentration is the minimum value.

空気調和装置1の起動時における混合物の運転軌跡LMは、図2においては、R32とポリビニルエーテル油とが二層分離しない領域R3に存在し、図3においては、R32とポリオールエステル油とが二層分離しない領域R6に存在する。そのため、空気調和装置1の起動時において、混合物は、R32と冷凍機油とに二層分離しない。混合物が二層分離すると、冷凍機油の粘度が増加する。空気調和装置1に使用される冷凍機油は、混合物がR32と冷凍機油とに二層分離する温度である分離温度が、凝縮温度よりも高い特性を有する油である。ここで、分離温度は、図2の上側の二層分離温度曲線L1、および、図3の上側の二層分離温度曲線L4で示される、高温側の分離温度である。冷凍サイクルにおいて、混合物の温度の最大値は凝縮温度である。そのため、高温側の分離温度が凝縮温度よりも高い場合、混合物は、R32と冷凍機油とに分離しない。反対に、凝縮温度が高温側の分離温度よりも高い場合、混合物は、R32と冷凍機油とに分離するおそれがある。   The operating locus LM of the mixture at the start of the air conditioner 1 exists in a region R3 where R32 and polyvinyl ether oil are not separated into two layers in FIG. 2, and in FIG. Present in the region R6 where the layers are not separated. Therefore, at the time of starting the air conditioning apparatus 1, the mixture does not separate into two layers of R32 and refrigerating machine oil. When the mixture is separated into two layers, the viscosity of the refrigerating machine oil increases. The refrigerating machine oil used in the air conditioner 1 is an oil having a characteristic that the separation temperature, which is the temperature at which the mixture separates into R32 and refrigerating machine oil, is higher than the condensation temperature. Here, the separation temperature is a high-temperature side separation temperature indicated by the upper two-layer separation temperature curve L1 in FIG. 2 and the upper two-layer separation temperature curve L4 in FIG. In the refrigeration cycle, the maximum temperature of the mixture is the condensation temperature. Therefore, when the separation temperature on the high temperature side is higher than the condensation temperature, the mixture does not separate into R32 and refrigerating machine oil. On the other hand, when the condensation temperature is higher than the separation temperature on the high temperature side, the mixture may be separated into R32 and refrigerating machine oil.

(4)特徴
空気調和装置1は、外気温度が比較的高い環境で使用され、圧縮機2で圧縮された冷媒が室外熱交換器4で凝縮される温度である凝縮温度が46℃以上となる場合がある。しかし、空気調和装置1で使用される冷凍機油と冷媒との混合物が二層分離する温度である分離温度は、凝縮温度よりも高い。そのため、空気調和装置1の運転中において、冷凍サイクルに封入されている混合物が冷媒と冷凍機油とに分離することが抑制される。その結果、圧縮機2の摺動部に、冷凍機油を十分に含まない潤滑性の低い冷媒が供給されることが抑制される。従って、空気調和装置1は、圧縮機2の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる。
(4) Features The air conditioner 1 is used in an environment where the outside air temperature is relatively high, and the condensation temperature that is the temperature at which the refrigerant compressed by the compressor 2 is condensed by the outdoor heat exchanger 4 is 46 ° C. or higher. There is a case. However, the separation temperature, which is the temperature at which the mixture of the refrigerating machine oil and the refrigerant used in the air conditioner 1 is separated into two layers, is higher than the condensation temperature. Therefore, during the operation of the air conditioner 1, the mixture enclosed in the refrigeration cycle is suppressed from being separated into the refrigerant and the refrigeration oil. As a result, it is possible to suppress the supply of a low-lubricant refrigerant that does not sufficiently contain refrigeration oil to the sliding portion of the compressor 2. Therefore, the air conditioner 1 can suppress an increase in the viscous resistance at the sliding portion of the compressor 2 and improve the performance.

また、空気調和装置1は、外気温度が比較的高い環境で使用され、空気調和装置1の起動前における混合物の油濃度(図2および図3の点P1の油濃度)が35±10wt%と最も低く、空気調和装置1の起動後に混合物の油濃度が徐々に上昇する傾向を示す。しかし、図2および図3に示されるように、空気調和装置1の起動後に混合物の油濃度が徐々に上昇しても、混合物の温度は分離温度よりも低いままである。そのため、空気調和装置1の運転中において、冷凍サイクルに封入されている混合物が冷媒と冷凍機油とに分離することが抑制される。従って、空気調和装置1は、圧縮機2の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる。   The air conditioner 1 is used in an environment where the outside air temperature is relatively high, and the oil concentration of the mixture (oil concentration at the point P1 in FIGS. 2 and 3) before activation of the air conditioner 1 is 35 ± 10 wt%. The lowest is the tendency that the oil concentration of the mixture gradually increases after the air conditioner 1 is started. However, as shown in FIGS. 2 and 3, even if the oil concentration of the mixture gradually increases after the air conditioner 1 is started, the temperature of the mixture remains lower than the separation temperature. Therefore, during the operation of the air conditioner 1, the mixture enclosed in the refrigeration cycle is suppressed from being separated into the refrigerant and the refrigeration oil. Therefore, the air conditioner 1 can suppress an increase in the viscous resistance at the sliding portion of the compressor 2 and improve the performance.

また、空気調和装置1は、HFC系冷媒を用いる。HFC系冷媒の一種であるR32は、他のフッ素系冷媒と比べて、冷凍機油との相溶性が悪く、冷凍機油と分離することにより粘性抵抗が増加しやすい。しかし、空気調和装置1は、冷凍機油として、分離温度が凝縮温度よりも高い特性を有する油を用いるので、冷凍機油と冷媒との混合物が冷媒と冷凍機油とに分離することが抑制され、その結果、冷凍機油の粘度の増加が抑制される。従って、空気調和装置1は、圧縮機2の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる。   The air conditioner 1 uses an HFC refrigerant. R32, which is a kind of HFC-based refrigerant, has poor compatibility with refrigerating machine oil as compared with other fluorine-based refrigerants, and viscosity resistance tends to increase when separated from refrigerating machine oil. However, since the air conditioning apparatus 1 uses oil having a separation temperature higher than the condensation temperature as the refrigeration oil, the separation of the mixture of the refrigeration oil and the refrigerant into the refrigerant and the refrigeration oil is suppressed. As a result, an increase in the viscosity of the refrigerating machine oil is suppressed. Therefore, the air conditioner 1 can suppress an increase in the viscous resistance at the sliding portion of the compressor 2 and improve the performance.

また、高温側において、R32と冷凍機油との混合物が二層分離する温度は、R410AまたはR407Cと冷凍機油との混合物が二層分離する温度よりも低い。そのため、外気温が高い環境において、R32と冷凍機油との混合物は、R410AまたはR407Cと冷凍機油との混合物と比較して、空気調和装置1の起動時に二層分離しやすい傾向を有する。従って、分離温度が凝縮温度よりも高い特性を有する冷凍機油を用いることで、空気調和装置1の起動時における混合物の二層分離が抑制され、その結果、冷凍機油の粘度の増加が抑制される。従って、空気調和装置1は、圧縮機2の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる。   On the high temperature side, the temperature at which the mixture of R32 and the refrigerating machine oil is separated into two layers is lower than the temperature at which the mixture of R410A or R407C and the refrigerating machine oil is separated into two layers. Therefore, in an environment where the outside air temperature is high, the mixture of R32 and refrigerating machine oil tends to be separated into two layers when the air conditioner 1 is started, as compared with the mixture of R410A or R407C and refrigerating machine oil. Therefore, by using the refrigerating machine oil having a characteristic that the separation temperature is higher than the condensation temperature, the two-layer separation of the mixture at the start-up of the air conditioner 1 is suppressed, and as a result, the increase in the viscosity of the refrigerating machine oil is suppressed. . Therefore, the air conditioner 1 can suppress an increase in the viscous resistance at the sliding portion of the compressor 2 and improve the performance.

(5)変形例
以上、本発明の実施形態について説明したが、本発明の具体的構成は、本発明の要旨を逸脱しない範囲内で変更可能である。以下、本発明の実施形態に適用可能な変形例について説明する。
(5) Modifications Although the embodiment of the present invention has been described above, the specific configuration of the present invention can be changed without departing from the gist of the present invention. Hereinafter, modified examples applicable to the embodiment of the present invention will be described.

(5−1)変形例A
本実施形態では、空気調和装置1は、冷房専用機器である。しかし、空気調和装置1は、冷房機能および暖房機能の両方を備える機器でもよい。図4は、本変形例における空気調和装置1の冷媒回路図である。空気調和装置1は、主として、圧縮機2と、四方切替弁3と、室外熱交換器4と、膨張機構5と、室内熱交換器6とから構成される。図4において、実線の矢印は、冷房運転時における冷媒の流れを表し、点線の矢印は、暖房運転時における冷媒の流れを表す。
(5-1) Modification A
In this embodiment, the air conditioning apparatus 1 is a cooling-only device. However, the air conditioning apparatus 1 may be a device having both a cooling function and a heating function. FIG. 4 is a refrigerant circuit diagram of the air-conditioning apparatus 1 in the present modification. The air conditioner 1 mainly includes a compressor 2, a four-way switching valve 3, an outdoor heat exchanger 4, an expansion mechanism 5, and an indoor heat exchanger 6. In FIG. 4, the solid line arrows represent the refrigerant flow during the cooling operation, and the dotted line arrows represent the refrigerant flow during the heating operation.

冷房運転時では、室外熱交換器4は凝縮器として機能し、室内熱交換器6は蒸発器として機能する。すなわち、室内熱交換器6で発生する冷媒の蒸発潜熱によって、室内が冷却される。一方、暖房運転時では、四方切替弁3を切り換えることで、室外熱交換器4は蒸発器として機能し、室内熱交換器6は凝縮器として機能する。すなわち、室外熱交換器4で発生する冷媒の凝縮潜熱によって、室内が加熱される。   During the cooling operation, the outdoor heat exchanger 4 functions as a condenser, and the indoor heat exchanger 6 functions as an evaporator. That is, the room is cooled by the latent heat of vaporization of the refrigerant generated in the indoor heat exchanger 6. On the other hand, during the heating operation, by switching the four-way switching valve 3, the outdoor heat exchanger 4 functions as an evaporator, and the indoor heat exchanger 6 functions as a condenser. That is, the room is heated by the condensation latent heat of the refrigerant generated in the outdoor heat exchanger 4.

本変形例においても、分離温度が凝縮温度よりも高い特性を有する冷凍機油を用いることで、空気調和装置1の起動時における混合物の二層分離が抑制され、その結果、冷凍機油の粘度の増加が抑制される。従って、空気調和装置1は、圧縮機2の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる。   Also in this modification, by using the refrigerating machine oil having a characteristic that the separation temperature is higher than the condensation temperature, the two-layer separation of the mixture at the start-up of the air conditioner 1 is suppressed, and as a result, the viscosity of the refrigerating machine oil increases. Is suppressed. Therefore, the air conditioner 1 can suppress an increase in the viscous resistance at the sliding portion of the compressor 2 and improve the performance.

(5−2)変形例B
本実施形態では、冷凍機油は、極圧剤および酸化防止剤を含んでいる。しかし、冷凍機油は、極圧剤および酸化防止剤の一方のみを含んでいてもよく、極圧剤および酸化防止剤を含んでいなくてもよい。
(5-2) Modification B
In this embodiment, the refrigerating machine oil contains an extreme pressure agent and an antioxidant. However, the refrigerating machine oil may contain only one of the extreme pressure agent and the antioxidant, and may not contain the extreme pressure agent and the antioxidant.

本発明に係る冷凍装置は、圧縮機の摺動部における粘性抵抗の増加を抑制し、性能を向上させることができる。   The refrigeration apparatus according to the present invention can suppress an increase in viscous resistance at the sliding portion of the compressor and improve performance.

1 空気調和装置(冷凍装置)
2 圧縮機
4 室外熱交換器(凝縮器、蒸発器)
5 膨張機構
6 室内熱交換器(蒸発器、凝縮器)
1 Air conditioning equipment (refrigeration equipment)
2 Compressor 4 Outdoor heat exchanger (condenser, evaporator)
5 Expansion mechanism 6 Indoor heat exchanger (evaporator, condenser)

特開2001−226690号公報JP 2001-226690 A

Claims (6)

圧縮機と凝縮器と膨張機構と蒸発器とが環状に接続される冷凍サイクルを備え、前記冷凍サイクルを循環する冷媒が前記凝縮器で凝縮する凝縮温度が46℃以上となる場合がある冷凍装置であって、
前記冷凍サイクルには、前記圧縮機の潤滑用の冷凍機油が入れられ、
前記冷凍機油は、前記冷凍機油と前記冷媒との混合物が前記冷凍機油と前記冷媒とに分離する分離温度が前記凝縮温度よりも高くなる油である、
冷凍装置。
A refrigeration system comprising a refrigeration cycle in which a compressor, a condenser, an expansion mechanism, and an evaporator are connected in an annular shape, and the condensation temperature at which the refrigerant circulating in the refrigeration cycle condenses in the condenser may be 46 ° C. or higher. Because
The refrigeration cycle contains refrigeration oil for lubricating the compressor,
The refrigerating machine oil is an oil in which a separation temperature at which a mixture of the refrigerating machine oil and the refrigerant is separated into the refrigerating machine oil and the refrigerant becomes higher than the condensation temperature.
Refrigeration equipment.
前記冷凍機油は、前記混合物に含まれる前記冷凍機油の濃度である油濃度が35±10wt%である場合において前記分離温度が前記凝縮温度よりも高くなる油である、
請求項1に記載の冷凍装置。
The refrigerating machine oil is an oil whose separation temperature is higher than the condensation temperature when the oil concentration, which is the concentration of the refrigerating machine oil contained in the mixture, is 35 ± 10 wt%.
The refrigeration apparatus according to claim 1.
前記冷凍機油は、前記圧縮機の起動時において前記分離温度が前記凝縮温度よりも高くなる油である、
請求項1または2に記載の冷凍装置。
The refrigerating machine oil is an oil in which the separation temperature becomes higher than the condensation temperature when the compressor is started.
The refrigeration apparatus according to claim 1 or 2.
前記冷媒は、HFCを含む、
請求項1から3のいずれか1項に記載の冷凍装置。
The refrigerant includes HFC,
The refrigeration apparatus according to any one of claims 1 to 3.
前記凝縮器は、室外に設置され、
前記蒸発器は、室内に設置される、
請求項1から4のいずれか1項に記載の冷凍装置。
The condenser is installed outdoors,
The evaporator is installed indoors,
The refrigeration apparatus according to any one of claims 1 to 4.
前記冷凍装置は、前記凝縮温度が52℃以上となる場合がある、
請求項1から4のいずれか1項に記載の冷凍装置。
In the refrigeration apparatus, the condensation temperature may be 52 ° C. or higher.
The refrigeration apparatus according to any one of claims 1 to 4.
JP2016034227A 2016-02-25 2016-02-25 Refrigeration equipment Active JP6736910B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016034227A JP6736910B2 (en) 2016-02-25 2016-02-25 Refrigeration equipment
PCT/JP2017/006607 WO2017146100A1 (en) 2016-02-25 2017-02-22 Refrigeration device
SA518392247A SA518392247B1 (en) 2016-02-25 2018-08-19 Refrigeration Apparatus Equipped with a Refrigerati Cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034227A JP6736910B2 (en) 2016-02-25 2016-02-25 Refrigeration equipment

Publications (3)

Publication Number Publication Date
JP2017150753A true JP2017150753A (en) 2017-08-31
JP2017150753A5 JP2017150753A5 (en) 2019-03-07
JP6736910B2 JP6736910B2 (en) 2020-08-05

Family

ID=59686290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034227A Active JP6736910B2 (en) 2016-02-25 2016-02-25 Refrigeration equipment

Country Status (3)

Country Link
JP (1) JP6736910B2 (en)
SA (1) SA518392247B1 (en)
WO (1) WO2017146100A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065944A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Air conditioning apparatus

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490453A (en) * 1990-08-01 1992-03-24 Daikin Ind Ltd Freezer operation control device
JPH08240351A (en) * 1996-02-20 1996-09-17 Hitachi Ltd Freezing device
JPH08239677A (en) * 1996-02-20 1996-09-17 Hitachi Ltd Compressor
JPH08240362A (en) * 1996-02-20 1996-09-17 Hitachi Ltd Freezer device
JPH08240352A (en) * 1996-02-20 1996-09-17 Hitachi Ltd Method for using freezing cycle
JPH08253779A (en) * 1996-02-20 1996-10-01 Hitachi Ltd Compressor
JPH08259975A (en) * 1996-02-20 1996-10-08 Hitachi Ltd Refrigerator
JPH0920898A (en) * 1988-04-22 1997-01-21 Nippon Oil Co Ltd Refrigerating machine oil composition for air-conditioner for vehicle
JPH0921569A (en) * 1995-07-05 1997-01-21 Daikin Ind Ltd Refrigerator
JP2000154943A (en) * 1990-11-16 2000-06-06 Hitachi Ltd Refrigeration apparatus
JP2002156165A (en) * 2001-09-10 2002-05-31 Hitachi Ltd Refrigerator
JP2014092339A (en) * 2012-11-06 2014-05-19 Hitachi Appliances Inc Air conditioner
JP2015061926A (en) * 2012-10-31 2015-04-02 ダイキン工業株式会社 Refrigeration device
JP2015092123A (en) * 2013-11-08 2015-05-14 ダイキン工業株式会社 Refrigerator

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920898A (en) * 1988-04-22 1997-01-21 Nippon Oil Co Ltd Refrigerating machine oil composition for air-conditioner for vehicle
JPH0490453A (en) * 1990-08-01 1992-03-24 Daikin Ind Ltd Freezer operation control device
JP2000154943A (en) * 1990-11-16 2000-06-06 Hitachi Ltd Refrigeration apparatus
JPH0921569A (en) * 1995-07-05 1997-01-21 Daikin Ind Ltd Refrigerator
JPH08240362A (en) * 1996-02-20 1996-09-17 Hitachi Ltd Freezer device
JPH08253779A (en) * 1996-02-20 1996-10-01 Hitachi Ltd Compressor
JPH08259975A (en) * 1996-02-20 1996-10-08 Hitachi Ltd Refrigerator
JPH08240352A (en) * 1996-02-20 1996-09-17 Hitachi Ltd Method for using freezing cycle
JPH08239677A (en) * 1996-02-20 1996-09-17 Hitachi Ltd Compressor
JPH08240351A (en) * 1996-02-20 1996-09-17 Hitachi Ltd Freezing device
JP2002156165A (en) * 2001-09-10 2002-05-31 Hitachi Ltd Refrigerator
JP2015061926A (en) * 2012-10-31 2015-04-02 ダイキン工業株式会社 Refrigeration device
JP2014092339A (en) * 2012-11-06 2014-05-19 Hitachi Appliances Inc Air conditioner
JP2015092123A (en) * 2013-11-08 2015-05-14 ダイキン工業株式会社 Refrigerator

Also Published As

Publication number Publication date
WO2017146100A1 (en) 2017-08-31
JP6736910B2 (en) 2020-08-05
SA518392247B1 (en) 2021-09-06

Similar Documents

Publication Publication Date Title
JP7029095B2 (en) Refrigeration equipment
JP6450896B1 (en) Refrigerant composition and refrigeration cycle apparatus using the same
KR102103225B1 (en) Refrigeration unit
WO2017146100A1 (en) Refrigeration device
JP6522345B2 (en) Refrigerating apparatus and sealed electric compressor
JP5257500B2 (en) Hermetic compressor
JP2015140994A (en) Air conditioner, and refrigerator oil

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200512

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6736910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151