JPH09213796A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same

Info

Publication number
JPH09213796A
JPH09213796A JP2085696A JP2085696A JPH09213796A JP H09213796 A JPH09213796 A JP H09213796A JP 2085696 A JP2085696 A JP 2085696A JP 2085696 A JP2085696 A JP 2085696A JP H09213796 A JPH09213796 A JP H09213796A
Authority
JP
Japan
Prior art keywords
film
silicon oxide
insulating film
wiring pattern
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2085696A
Other languages
Japanese (ja)
Inventor
Takeshi Sugawara
岳 菅原
Nobuo Aoi
信雄 青井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2085696A priority Critical patent/JPH09213796A/en
Publication of JPH09213796A publication Critical patent/JPH09213796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a dielectric constant making use of an organic insulating film by a method wherein an insulating film is embedded among a plurality of first metal wiring patterns formed with an inorganic insulating film and a second metal wiring pattern is embedded in a via hole reaching these first metal wiring patterns. SOLUTION: A plurality of Al films 12 are formed on a substrate 11, and a silicon oxide film 13 is formed on the Al film 12. The silicon oxide film 13 and the Al film 12 are selectively etched away, and a wiring pattern of a first wiring layer 18 is formed. The wiring pattern is coated with a silicon oxide film 14 on the entire face. Continuously, an insulating film 15 including organic compounds is formed so that the plurality of Al films 12 are embedded in the silicon oxide film 14. Further, the insulating film 15 is removed, a silicon oxide film 16 is formed on the entire face, and after embedding of a via hole is performed with a metal material, Al films 17 are deposited and a second wiring layer is formed. Accordingly, a dielectric constant can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置及びそ
の製造方法に関するものであり、特に配線容量の小さい
多層配線構造を持つ半導体装置及びその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a multi-layer wiring structure having a small wiring capacitance and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、半導体装置の微細化に伴う信号遅
延の増大が動作速度の高速化を進めるにあたり障害とな
っている。上記信号遅延を低減するためには、配線材料
の低抵抗化及び層間絶縁膜の低誘電率化が必須とされて
いる。上記の二項目のうち、配線材料の低抵抗化に関し
ては、Cuなどの低抵抗材料の採用が検討されており、
一方の層間絶縁膜の低誘電率化に関しては、有機SOG
や有機ポリマーなどの低誘電率材料の採用が検討されて
いる。
2. Description of the Related Art In recent years, an increase in signal delay due to miniaturization of semiconductor devices has been an obstacle in increasing the operating speed. In order to reduce the signal delay, it is essential to reduce the resistance of the wiring material and the dielectric constant of the interlayer insulating film. Among the above two items, regarding the reduction of the resistance of the wiring material, the adoption of a low resistance material such as Cu is considered,
Regarding the lowering of the dielectric constant of one interlayer insulating film, organic SOG is used.
Adoption of low-dielectric constant materials such as organic polymers is under consideration.

【0003】従来、有機SOGなどの有機成分を含有す
る材料を層間絶縁膜として用いる場合、エッチバック法
が用いられており、上記のようにエッチバック法を用い
た従来の半導体装置の製造方法の工程について図2を参
照しながら説明する。
Conventionally, when a material containing an organic component such as organic SOG is used as an interlayer insulating film, an etch back method is used. As described above, the conventional method of manufacturing a semiconductor device using the etch back method is used. The process will be described with reference to FIG.

【0004】まず図2(A)に示すように、基板21上
に配線パターン22を形成した後、プラズマCVD法に
よりシリコン酸化膜23を形成する。次に図2(B)に
示すように、上記シリコン酸化膜23上に有機SOG薬
液を回転塗布した後、熱処理により硬化させ、有機SO
G膜24を得る。さらに図2(C)に示すように、配線
パターン22上のシリコン酸化膜23が露出するまで有
機SOG膜24をエッチングしたあと、プラズマCVD
法によりシリコン酸化膜25を形成する。最後に図2
(D)に示すように、必要に応じてヴィアホールの形成
とヴィアホールの金属材料による埋め込みを行った後、
第2の配線パターン26を形成する。
First, as shown in FIG. 2A, after forming a wiring pattern 22 on a substrate 21, a silicon oxide film 23 is formed by a plasma CVD method. Next, as shown in FIG. 2B, an organic SOG chemical solution is spin-coated on the silicon oxide film 23 and then cured by heat treatment to form an organic SO film.
The G film 24 is obtained. Further, as shown in FIG. 2C, after etching the organic SOG film 24 until the silicon oxide film 23 on the wiring pattern 22 is exposed, plasma CVD is performed.
A silicon oxide film 25 is formed by the method. Finally Figure 2
As shown in (D), after forming a via hole and filling the via hole with a metal material as necessary,
The second wiring pattern 26 is formed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら従来の方
法では、有機SOG膜がヴィアホール形成時に露出した
場合に発生するヴィアポイズンを防ぐため、配線パター
ン上の有機SOG膜をエッチバックしている。そこで以
下では上記した問題点について図3を参照しながら説明
する。図3(A)は基板31上に配線パターン32を形
成し、さらに配線パターン32の形成された基板31上
に有機SOG膜33を形成した状態を示したものであ
る。この後、図3(B)に示すように、配線パターン3
2上の有機SOG膜3をエッチングしてヴィアホール3
4を形成する。しかしながら、有機のSOG膜33をエ
ッチングする際に、ヴィアホール側壁に有機SOG膜か
ら発生しデバイスへの悪影響を及ぼす生成物が付着して
しまう。しかしながら、CVD法等により形成されたシ
リコン酸化膜は有機の成分を含有していないため、上記
のように悪影響を及ぼす付着物は発生しない。
However, in the conventional method, the organic SOG film on the wiring pattern is etched back in order to prevent via poisoning that occurs when the organic SOG film is exposed during the formation of via holes. Therefore, the above problems will be described below with reference to FIG. FIG. 3A shows a state in which the wiring pattern 32 is formed on the substrate 31, and the organic SOG film 33 is further formed on the substrate 31 on which the wiring pattern 32 is formed. After that, as shown in FIG.
The organic SOG film 3 on 2 is etched to form the via hole 3
4 is formed. However, when the organic SOG film 33 is etched, a product generated from the organic SOG film and adversely affecting the device adheres to the sidewall of the via hole. However, since the silicon oxide film formed by the CVD method or the like does not contain an organic component, the above-mentioned harmful substances are not generated.

【0006】そこで、上記した図2に示すように配線パ
ターンの形成された基板上に有機のSOG膜を形成した
後に、一旦配線パターンが露出するまでエッチングを行
ってさらにその上にCVD法によりシリコン酸化膜を形
成することが必要となる訳である。
Therefore, after forming the organic SOG film on the substrate on which the wiring pattern is formed as shown in FIG. 2 described above, etching is performed until the wiring pattern is once exposed, and silicon is further formed thereon by the CVD method. That is, it becomes necessary to form an oxide film.

【0007】しかしながら、上記のように有機のSOG
膜を一旦エッチバックして再度シリコン酸化膜をCVD
法により形成した場合、有機SOG膜は配線より低い部
分には埋め込まれるものの、配線より高い部分はすべて
シリコン酸化膜となってしまう。配線容量を低減するた
めには、シリコン酸化膜より誘電率の低い有機SOGな
どの有機成分を含有する絶縁材料をヴィアポイズンの発
生しない範囲内でできるだけ多く用いることが望ましい
が、従来の方法では、配線より低い領域にしか有機成分
を含有する絶縁材料を埋め込むことができず、配線容量
低減の障害になっている。
However, as described above, the organic SOG
The film is once etched back and the silicon oxide film is CVD again.
When formed by the method, the organic SOG film is buried in a portion lower than the wiring, but a portion higher than the wiring becomes a silicon oxide film. In order to reduce the wiring capacitance, it is desirable to use an insulating material containing an organic component such as organic SOG having a dielectric constant lower than that of a silicon oxide film as much as possible within the range where via poison does not occur. An insulating material containing an organic component can be embedded only in a region lower than the wiring, which is an obstacle to reducing the wiring capacitance.

【0008】そこで本発明は、ヴィアホールの形成用の
エッチングの際に、ヴィアポイズンの発生しない範囲内
で可能な限り有機のSOG膜を利用して誘電率を低減す
ることの可能な半導体装置を提供することを目的とする
ものである。
Therefore, the present invention provides a semiconductor device capable of reducing the dielectric constant by using an organic SOG film as much as possible within the range where via poison does not occur during etching for forming a via hole. It is intended to be provided.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題に鑑み
てなされたもので、第1の金属配線パターンとその上部
の第2の金属配線パターンを分離する層間絶縁膜におい
て、第1の金属配線パターンの配線より高い領域にも有
機成分を含む絶縁材料を用いることで、配線容量の小さ
い半導体装置及びその製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems. In the interlayer insulating film for separating the first metal wiring pattern and the second metal wiring pattern on the first metal wiring pattern, the first metal is formed. By using an insulating material containing an organic component also in a region higher than the wiring of a wiring pattern, a semiconductor device having a small wiring capacitance and a method for manufacturing the same are provided.

【0010】具体的には、金属配線層の上に無機絶縁膜
(具体的にはCVD法等で形成されたシリコン酸化膜)
を形成する工程と、上記無機絶縁膜のうち配線パターン
間の部分をエッチングして溝部を形成する工程と、上記
溝部に有機成分を含有する絶縁材料(具体的には有機S
OG膜)を埋め込む工程と、配線パターン上の上記無機
絶縁膜をエッチングしてヴィアホールを形成する工程に
より、ヴィアポイズンがなく、かつ、従来のエッチバッ
ク法を用いた場合より配線容量の小さい半導体装置を形
成できる。
Specifically, an inorganic insulating film (specifically, a silicon oxide film formed by a CVD method or the like) on the metal wiring layer.
And a step of forming a groove by etching a portion of the inorganic insulating film between the wiring patterns, and an insulating material containing an organic component in the groove (specifically, organic S
OG film) and a step of etching the inorganic insulating film on the wiring pattern to form a via hole, the semiconductor having no via poison and a wiring capacitance smaller than that in the case of using a conventional etchback method. A device can be formed.

【0011】[0011]

【発明の実施の形態】以下では本発明の実施の形態にお
ける半導体装置及びその製造方法について図面を参照し
ながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A semiconductor device and a method of manufacturing the same according to an embodiment of the present invention will be described below with reference to the drawings.

【0012】まず図1(A)に示すように、多層配線を
形成する基板11上に第1の配線層として、例えば膜厚
800nmのAl膜12を形成し、さらに、Al膜12
の上にプラズマCVD法により例えば膜厚1μmのシリ
コン酸化膜13を形成する。
First, as shown in FIG. 1A, an Al film 12 having a film thickness of 800 nm, for example, is formed as a first wiring layer on a substrate 11 on which multi-layer wiring is formed, and the Al film 12 is further formed.
A silicon oxide film 13 having a film thickness of 1 μm, for example, is formed on the above by the plasma CVD method.

【0013】次に図1(B)に示すように、通常のリソ
グラフィー工程とドライエッチング工程を用いてシリコ
ン酸化膜13とAl膜12を選択的にエッチング除去
し、第1の配線層18の配線パターンを形成する。そし
て配線パターン形成後、プラズマCVD法によりシリコ
ン酸化膜14(このシリコン酸化膜14は緻密な膜とし
ての代表である)を全面に50nm程度形成し、表面全
体を被覆する。これは、有機SOG膜(緻密でない膜)
への配線パターンの材料であるメタルの拡散を防止する
ために形成されるものである。
Next, as shown in FIG. 1B, the silicon oxide film 13 and the Al film 12 are selectively removed by etching using a normal lithography process and a dry etching process, and the wiring of the first wiring layer 18 is formed. Form a pattern. After the wiring pattern is formed, a silicon oxide film 14 (this silicon oxide film 14 is a typical dense film) is formed on the entire surface by plasma CVD to a thickness of about 50 nm to cover the entire surface. This is an organic SOG film (non-dense film)
It is formed in order to prevent the diffusion of the metal that is the material of the wiring pattern into the wiring.

【0014】続いて図1(C)に示すように、有機SO
G薬液を3000rpm,20secで基板上に回転塗
布後、ホットプレート上で200℃3分間の熱処理を施
し、さらに電気炉で窒素雰囲気中にて400℃30分の
熱処理を施し、有機SOG膜15を形成する。上記のよ
うに、2工程に分けて熱処理を行うのは、一度に高温で
熱処理を行うと、著しく有機SOG膜が収縮してしまう
からである。
Subsequently, as shown in FIG. 1C, organic SO
After spin coating the G chemical solution on the substrate at 3000 rpm for 20 sec, heat treatment is performed on a hot plate at 200 ° C. for 3 minutes, and further heat treatment is performed at 400 ° C. for 30 minutes in an electric furnace in a nitrogen atmosphere to form the organic SOG film 15. Form. As described above, the reason why the heat treatment is performed in two steps is that if the heat treatment is performed at a high temperature at one time, the organic SOG film contracts significantly.

【0015】ここで用いた有機SOG膜は、配線容量を
低減するためのものであるので、有機SOGの代わり
に、誘電率の低い有機ポリマー等を用いてもよい。な
お、有機成分を含む絶縁材料としては、例えば、メチル
シルセスキオキサンを主成分とする有機SOG膜(比誘
電率約3.0)やフッ素系有機ポリマー(比誘電率約
2.2)などが望ましいものとして挙げられる。
Since the organic SOG film used here is for reducing the wiring capacitance, an organic polymer having a low dielectric constant may be used instead of the organic SOG. As the insulating material containing an organic component, for example, an organic SOG film containing methylsilsesquioxane as a main component (relative permittivity of about 3.0), a fluorine-based organic polymer (relative permittivity of about 2.2), etc. Is mentioned as a desirable one.

【0016】さらに図1(D)に示すように、化学機械
研磨法により、シリコン酸化膜13上の有機SOG膜1
5を取り除き、シリコン酸化膜14を露出させた後、プ
ラズマCVD法により全面にシリコン酸化膜16を10
0nm程度形成する。
Further, as shown in FIG. 1D, the organic SOG film 1 on the silicon oxide film 13 is formed by the chemical mechanical polishing method.
After removing 5 and exposing the silicon oxide film 14, a silicon oxide film 16 is formed on the entire surface by plasma CVD.
It is formed to a thickness of about 0 nm.

【0017】最後に図1(E)に示すように、通常のリ
ソグラフィー工程とドライエッチング工程を用いてヴィ
アホールを形成した後、ヴィアホールのパターニングに
用いたレジストマスクを酸素プラズマ中でのアッシング
処理により除去する。さらに、ヴィアホールの金属材料
による埋め込みを行った後、膜厚800nmのAl膜1
7を堆積し、第2の配線層を形成する。
Finally, as shown in FIG. 1E, after a via hole is formed by using a normal lithography process and a dry etching process, the resist mask used for patterning the via hole is ashed in oxygen plasma. To remove. Further, after filling the via hole with a metal material, an Al film 1 having a thickness of 800 nm is formed.
7 is deposited to form a second wiring layer.

【0018】以上のように本発明によれば、配線上のヴ
ィアホールを形成する領域に予めシリコン酸化膜を形成
しているため、ヴィアホール形成時にヴィアポイズンが
発生することはなく、従って、その後形成されるべき有
機SOG膜を配線パターンが露出する領域までエッチン
グする必要がなくなる。そのため、配線パターン間の配
線パターンの斜め上の部分をCVD法等により形成され
るシリコン酸化膜により形成しなくとも、有機SOG膜
で形成することができる。
As described above, according to the present invention, since the silicon oxide film is formed in advance in the region where the via hole is formed on the wiring, the via poison does not occur during the formation of the via hole. It is not necessary to etch the organic SOG film to be formed to the area where the wiring pattern is exposed. Therefore, it is possible to form the organic SOG film without forming the diagonally upper portion of the wiring pattern between the wiring patterns by the silicon oxide film formed by the CVD method or the like.

【0019】[0019]

【発明の効果】本発明によれば、第1の金属配線パター
ンとその上部の第2の金属配線パターンを分離する層間
絶縁膜において、第1の金属配線パターンの配線より低
い領域のみならず、配線より高い領域にも低誘電率の有
機系絶縁膜15を用いることで、従来のエッチバックを
用いて形成される半導体装置より配線容量を低減でき
る。しかも、配線パターン上は無機絶縁材料であるシリ
コン酸化膜13、14、16のみから成るため、ヴィア
ホールを形成した際に低誘電率の有機系絶縁膜15がヴ
ィアホール側壁に露出しない。したがって、酸素プラズ
マ中でのアッシング処理によるヴィアポイズンの発生が
ない。
According to the present invention, in the interlayer insulating film for separating the first metal wiring pattern and the second metal wiring pattern above it, not only the region lower than the wiring of the first metal wiring pattern, By using the organic insulating film 15 having a low dielectric constant even in a region higher than the wiring, the wiring capacitance can be reduced as compared with the semiconductor device formed by the conventional etchback. Moreover, since the wiring pattern is composed of only the silicon oxide films 13, 14 and 16 which are inorganic insulating materials, the organic insulating film 15 having a low dielectric constant is not exposed on the sidewall of the via hole when the via hole is formed. Therefore, there is no occurrence of via poison due to the ashing treatment in oxygen plasma.

【0020】また、本発明の請求項2に述べた構造を持
つ半導体装置は金属配線がシリコン酸化膜13、14、
16で被覆されている。この金属配線を被覆するシリコ
ン酸化膜は金属配線を支える骨格となるため、ガラス転
移点の低い有機ポリマーを有機系絶縁膜15として用い
た場合でも、有機ポリマーの軟化による金属配線のずれ
が生じにくく、多層配線形成時の歩留まり低下を抑えら
れる。
Further, in the semiconductor device having the structure described in claim 2 of the present invention, the metal wiring has the silicon oxide films 13, 14,
It is covered with 16. Since the silicon oxide film covering the metal wiring serves as a skeleton that supports the metal wiring, even when an organic polymer having a low glass transition point is used as the organic insulating film 15, the metal wiring is less likely to be displaced due to the softening of the organic polymer. It is possible to suppress a decrease in yield when forming the multilayer wiring.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における半導体装置の製造
工程断面図
FIG. 1 is a sectional view of a manufacturing process of a semiconductor device according to an embodiment of the present invention.

【図2】従来のエッチバック法を用いた半導体装置の製
造工程断面図
FIG. 2 is a sectional view of a semiconductor device manufacturing process using a conventional etchback method.

【図3】従来の半導体装置の製造工程断面図FIG. 3 is a sectional view of a conventional semiconductor device manufacturing process.

【符号の説明】[Explanation of symbols]

11 基板 12 Al膜 13 シリコン酸化膜 14 シリコン酸化膜 15 有機SOG膜 16 シリコン酸化膜 17 Al膜 21 基板 22 配線パターン 23 シリコン酸化膜 24 有機SOG膜 25 シリコン酸化膜 26 配線パターン 31 基板 32 配線パターン 33 有機SOG膜 34 ヴィアホール 11 substrate 12 Al film 13 silicon oxide film 14 silicon oxide film 15 organic SOG film 16 silicon oxide film 17 Al film 21 substrate 22 wiring pattern 23 silicon oxide film 24 organic SOG film 25 silicon oxide film 26 wiring pattern 31 substrate 32 wiring pattern 33 Organic SOG film 34 via hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成された複数個の第1の金属配
線パターンと、前記第1の金属配線パターンを覆うよう
に形成された無機の絶縁膜と、前記無機の絶縁膜が形成
された複数個の前記第1の金属配線パターン間に埋め込
まれた有機成分を含有する絶縁膜と、前記第1の金属配
線パターンに達するヴィアホールに埋め込まれた第2の
金属配線パターンとを有する半導体装置。
1. A plurality of first metal wiring patterns formed on a substrate, an inorganic insulating film formed to cover the first metal wiring patterns, and the inorganic insulating film are formed. A semiconductor having an insulating film containing an organic component embedded between a plurality of the first metal wiring patterns and a second metal wiring pattern embedded in a via hole reaching the first metal wiring pattern. apparatus.
【請求項2】第1の金属配線パターンが無機絶縁膜で被
覆されることを特徴とする請求項1に記載の半導体装
置。
2. The semiconductor device according to claim 1, wherein the first metal wiring pattern is covered with an inorganic insulating film.
【請求項3】基板上に第1の金属配線層及び無機絶縁膜
を順次形成する工程と、前記無機絶縁膜の配線パターン
となるべき以外の部分を選択的にエッチングして溝部を
形成する工程と、前記溝部に有機成分を含有する絶縁材
料を埋め込む工程と、配線パターン上の上記無機絶縁膜
をエッチングしてヴィアホールを形成した後前記ヴィア
ホールに第2の金属配線パターンを形成する工程とを有
する半導体装置の製造方法。
3. A step of sequentially forming a first metal wiring layer and an inorganic insulating film on a substrate, and a step of selectively etching a portion of the inorganic insulating film other than a wiring pattern to form a groove portion. And a step of embedding an insulating material containing an organic component in the groove, and a step of etching the inorganic insulating film on the wiring pattern to form a via hole and then forming a second metal wiring pattern in the via hole. And a method for manufacturing a semiconductor device having the same.
JP2085696A 1996-02-07 1996-02-07 Semiconductor device and method for manufacturing the same Pending JPH09213796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085696A JPH09213796A (en) 1996-02-07 1996-02-07 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085696A JPH09213796A (en) 1996-02-07 1996-02-07 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JPH09213796A true JPH09213796A (en) 1997-08-15

Family

ID=12038762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085696A Pending JPH09213796A (en) 1996-02-07 1996-02-07 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH09213796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366621B1 (en) * 2000-06-28 2003-01-09 삼성전자 주식회사 Method for manufacturing conductive contact body of semiconductor device
US6528865B1 (en) * 1999-01-22 2003-03-04 Intel Corporation Thin amorphous fluorocarbon films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528865B1 (en) * 1999-01-22 2003-03-04 Intel Corporation Thin amorphous fluorocarbon films
KR100366621B1 (en) * 2000-06-28 2003-01-09 삼성전자 주식회사 Method for manufacturing conductive contact body of semiconductor device

Similar Documents

Publication Publication Date Title
EP0667036B1 (en) Chip interconnection having a breathable etch stop layer
EP0046525B1 (en) Planar multi-level metal-insulator structure comprising a substrate, a conductive interconnection pattern and a superposed conductive structure and a method to form such a structure
US7256136B2 (en) Self-patterning of photo-active dielectric materials for interconnect isolation
US7705431B1 (en) Method of improving adhesion between two dielectric films
JPH0613470A (en) Manufacture of semiconductor device
JP2001077196A (en) Manufacture of semiconductor device
KR100414506B1 (en) Dry etching method and method of manufacturing a semiconductor device
JP2000150519A (en) Manufacture of semiconductor device
EP0388862A2 (en) Fabrication method of a semiconductor device having a planarized surface
US4447824A (en) Planar multi-level metal process with built-in etch stop
JPH11260815A (en) Manufacture of semiconductor device
US6713386B1 (en) Method of preventing resist poisoning in dual damascene structures
KR100219562B1 (en) Method for forming of multi-level interconnections in semiconductor device
US6861376B1 (en) Photoresist scum free process for via first dual damascene process
US6803327B1 (en) Cost effective polymide process to solve passivation extrusion or damage and SOG delminates
JPH09213796A (en) Semiconductor device and method for manufacturing the same
JPH10163198A (en) Semiconductor device and its manufacture
US20030186536A1 (en) Via formation in integrated circuits by use of sacrificial structures
KR100243284B1 (en) Method for forming contact hole of semiconductor device
JPS6255703B2 (en)
JPH098131A (en) Manufacture of semiconductor device
JPH1074837A (en) Semiconductor device and its manufacture
KR100290466B1 (en) Method of manufacturing a semiconductor device
WO1996019826A1 (en) A method of fabricating integrated circuits using bilayer dielectrics
EP0204631A2 (en) Semiconductor structures having polysiloxane leveling film