JPH09213664A - Method of processing substrate and processing device - Google Patents

Method of processing substrate and processing device

Info

Publication number
JPH09213664A
JPH09213664A JP8021556A JP2155696A JPH09213664A JP H09213664 A JPH09213664 A JP H09213664A JP 8021556 A JP8021556 A JP 8021556A JP 2155696 A JP2155696 A JP 2155696A JP H09213664 A JPH09213664 A JP H09213664A
Authority
JP
Japan
Prior art keywords
substrate
gas
airtight chamber
chamber
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8021556A
Other languages
Japanese (ja)
Inventor
Makoto Sasaki
真 佐々木
Takashi Kubota
傑 窪田
Yasuhiko Kasama
泰彦 笠間
Tadahiro Omi
忠弘 大見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FURONTETSUKU KK
Frontec Inc
Original Assignee
FURONTETSUKU KK
Frontec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FURONTETSUKU KK, Frontec Inc filed Critical FURONTETSUKU KK
Priority to JP8021556A priority Critical patent/JPH09213664A/en
Priority to KR1019970003603A priority patent/KR970063443A/en
Publication of JPH09213664A publication Critical patent/JPH09213664A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13069Thin film transistor [TFT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method of processing a substrate, in which organic compound removed from the substrate does not re-attach it, water molecules are effectively removed form it without increasing processing steps, the steps of drying process are not necessary before forming a thin film on the processed substrate, the deterioration of the roughness or the flatness of the substrate by the processing is little and the processing is not dependent on the material of the substrate and to provide the processing device. SOLUTION: In the processing method of the substrate, the substrate arranged in a gas tight chamber provided with exhaust means is exposed to ozone gas or/and heated gas. The density of the impurity included in the ozone gas or the heated gas is desirable to be 10ppb or less. Further, the temperature of the heated gas is 80 deg.C or more is desirable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基体の処理方法及
び処理装置に係る。より詳細には、基体の表面上に付着
した有機系不純物又は/及び水分子を除去する基体の処
理方法及び処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate processing method and processing apparatus. More specifically, the present invention relates to a method and apparatus for treating a substrate for removing organic impurities or / and water molecules attached to the surface of the substrate.

【0002】[0002]

【従来の技術】近年、表示装置分野及び半導体分野にお
いては、さらなる大容量・高密度化が望まれている。こ
のとき、これらの分野では、微細表示技術及び微細回路
技術などを実現する必要がある。
2. Description of the Related Art In recent years, in the fields of display devices and semiconductors, higher capacity and higher density are desired. At this time, in these fields, it is necessary to realize fine display technology and fine circuit technology.

【0003】上記技術を達成するため、基体に対して、
減圧(真空)雰囲気中では各種の成膜工程、エッチング
工程、及びクリーニング工程が、大気雰囲気中では各種
の組立工程、洗浄工程、及びエッチング工程が行われて
いる。
To achieve the above technique,
Various film forming steps, etching steps, and cleaning steps are performed in a reduced pressure (vacuum) atmosphere, and various assembly steps, cleaning steps, and etching steps are performed in the air atmosphere.

【0004】何れの工程においても、基体に対して何ら
かの処理を行う場合には、その処理前の基体表面を清浄
に保持する必要がある。すなわち、基体表面上に存在す
る有機系不純物や水分子を極力除去することが大切であ
る。この清浄度が低下したり又は不安定な場合には、各
工程の処理を終えた基体の諸特性はバラツキが大きくな
ってしまう。その結果、各工程を経て製造される各種製
品の歩留まりが低下するという問題があった。
In any process, when the substrate is subjected to any treatment, it is necessary to keep the surface of the substrate clean before the treatment. That is, it is important to remove organic impurities and water molecules existing on the surface of the substrate as much as possible. If the cleanliness is lowered or unstable, the characteristics of the substrate after the treatment in each step are greatly varied. As a result, there has been a problem that the yield of various products manufactured through each process is reduced.

【0005】従来、上記問題に対処する方法としては、
次の技術が知られている。 大気中において、純水、各種アルコール、又は各種
溶剤を用いて基体をウェット洗浄した後、基体上に薄膜
を形成する前に各種乾燥処理を行う方法。 大気中において、各種エッチング溶液を用いて基体
をウェットエッチングした後、基体上に薄膜を形成する
前に各種乾燥処理を行う方法。 真空中において、各種プラズマを用いて基体をドラ
イエッチングする方法。 大気中において、低圧水銀灯等の単一ではないスペ
クトル(184nmの他、200nm以上の波長があ
る)からなる紫外線の光源により、大気中に含まれる酸
素を分解することによりオゾンを発生させ、このオゾン
に基体を曝す方法。 真空中において、基体上に薄膜を1層以上堆積し
て、基体上に新たな清浄面を形成する方法。
Conventionally, as a method for dealing with the above problem,
The following techniques are known. A method of performing various kinds of drying treatment after wet-cleaning a substrate with pure water, various alcohols, or various solvents in the air, and before forming a thin film on the substrate. A method of performing various dry treatments after wet etching a substrate with various etching solutions in the air and before forming a thin film on the substrate. A method of dry etching a substrate using various plasmas in a vacuum. In the air, ozone is generated by decomposing oxygen contained in the atmosphere with a light source of ultraviolet rays having a non-single spectrum (a wavelength of 184 nm and a wavelength of 200 nm or more) such as a low-pressure mercury lamp. A method of exposing the substrate to A method of depositing one or more thin films on a substrate in a vacuum to form a new clean surface on the substrate.

【0006】しかし、上記従来技術には、次のような問
題がある。 (1)上記及びの技術は、基体上に薄膜を形成する
前に各種乾燥処理の工程が必須であり、製造コストが高
くなる。また、処理後に大気に暴露されるため、基体表
面に有機物や水分子が再付着してしまう。 (2)上記及びの技術は、エッチングにより基体表
面の粗さが増大し、基体の平坦性も低下するため、基体
上に作製した薄膜又は構造物の中に乱れが発生する。 (3)上記の技術は、基体から除去した有機物のポリ
マライゼーションが発生し、基体に再付着してしまう。
また、減圧下においてはオゾンの発生効率が低い。 (4)上記の技術は、真空下における工程が増え製造
コストが高くなり、かつ、基体の材質依存性があるため
制約が大きい。
However, the above conventional technique has the following problems. (1) In the above techniques and, various drying treatment steps are indispensable before forming a thin film on a substrate, resulting in high manufacturing cost. In addition, since it is exposed to the atmosphere after the treatment, organic substances and water molecules are redeposited on the surface of the substrate. (2) In the above techniques and, the roughness of the surface of the substrate increases due to etching, and the flatness of the substrate also decreases, so that disorder occurs in the thin film or structure formed on the substrate. (3) In the above technique, the polymerization of the organic substance removed from the substrate occurs, and it reattaches to the substrate.
Further, the ozone generation efficiency is low under reduced pressure. (4) The above-mentioned technique has many restrictions because the number of processes under vacuum increases, the manufacturing cost becomes high, and the material of the substrate depends.

【0007】[0007]

【発明が解決しようとしている課題】本発明は、基体か
ら除去した有機物が再付着しない基体の処理方法及び処
理装置を提供することを第1の目的とする。
SUMMARY OF THE INVENTION It is a first object of the present invention to provide a method for treating a substrate and an apparatus for treating the substrate, in which organic substances removed from the substrate do not redeposit.

【0008】また、本発明は、処理工程を増やすことな
く効率的に水分子を除去できる基体の処理方法及び処理
装置を提供することを第2の目的とする。
A second object of the present invention is to provide a substrate processing method and a processing apparatus capable of efficiently removing water molecules without increasing the number of processing steps.

【0009】さらに、本発明は、処理した基体上に薄膜
を形成する前に各種乾燥処理の工程が不要で、処理によ
り基体表面の粗さ増大や平坦性の低下が少なく、かつ、
基体の材質依存性が少ない基体の処理方法及び処理装置
を提供することを第3の目的とする。
Further, according to the present invention, various drying treatment steps are not required before forming a thin film on the treated substrate, and the treatment does not increase the roughness or flatness of the substrate surface, and
A third object of the present invention is to provide a substrate processing method and a substrate processing apparatus which are less dependent on the material of the substrate.

【0010】[0010]

【課題を解決するための手段】本発明は、少なくとも排
気手段を備えた気密室に配設された基体が、オゾンガス
又は/及び加熱された気体に曝されることを特徴とする
基体の処理方法に要旨が存在する。
The present invention is a method for treating a substrate, characterized in that the substrate disposed in an airtight chamber provided with at least exhaust means is exposed to ozone gas and / or heated gas. There is a summary in.

【0011】[0011]

【発明の実施の形態】以下では、本発明に係る各請求項
の作用に関して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of each claim according to the present invention will be described below.

【0012】請求項1に係る発明では、少なくとも排気
手段を備えた気密室に配設された基体がオゾンガスに曝
されるため、基体上に存在する有機系不純物の残存量を
低減できる。
According to the first aspect of the present invention, since the substrate disposed in the airtight chamber provided with at least the exhaust means is exposed to the ozone gas, the residual amount of the organic impurities existing on the substrate can be reduced.

【0013】請求項2に係る発明では、少なくとも排気
手段を備えた気密室に配設された基体が加熱された気体
に曝されるため、基体上に存在する水分子の残存量を低
減できる。
According to the second aspect of the present invention, since at least the substrate arranged in the airtight chamber provided with the exhaust means is exposed to the heated gas, the amount of water molecules remaining on the substrate can be reduced.

【0014】請求項3に係る発明では、少なくとも排気
手段を備えた気密室に配設された基体がオゾンガス及び
加熱された気体に曝されるため、基体上に存在する有機
系不純物の残存量と水分子の残存量とを同時に低減でき
る。
According to the third aspect of the invention, since the substrate disposed in the airtight chamber having at least the exhaust means is exposed to the ozone gas and the heated gas, the residual amount of the organic impurities existing on the substrate and The residual amount of water molecules can be reduced at the same time.

【0015】請求項4に係る発明では、前記オゾンガス
に含まれる不純物濃度が、10ppb以下であるため、
基体上に存在する有機系不純物の残存量をさらに少なく
できる。
In the invention according to claim 4, since the concentration of impurities contained in the ozone gas is 10 ppb or less,
The remaining amount of organic impurities existing on the substrate can be further reduced.

【0016】請求項5に係る発明では、前記加熱された
気体に含まれる不純物濃度が、10ppb以下であるた
め、基体上に存在する水分子の残存量をさらに少なくで
きる。
In the invention according to claim 5, since the impurity concentration contained in the heated gas is 10 ppb or less, the residual amount of water molecules existing on the substrate can be further reduced.

【0017】請求項6に係る発明では、前記加熱された
気体の温度が80℃以上であるため、基体上に存在する
水分子の残存量を低減する効果が著しく高まる。その結
果、基体の処理時間の短縮化も可能となる。
In the invention according to claim 6, since the temperature of the heated gas is 80 ° C. or higher, the effect of reducing the residual amount of water molecules existing on the substrate is significantly enhanced. As a result, the processing time of the substrate can be shortened.

【0018】請求項7に係る発明では、前記加熱された
気体が、希ガス、窒素ガス、オゾンガス又は水素ガスか
ら選択される1つのガスであるため、基体上に存在する
水分子の除去作用が高い基体の処理方法が得られる。
In the invention according to claim 7, since the heated gas is one gas selected from rare gas, nitrogen gas, ozone gas or hydrogen gas, the action of removing water molecules existing on the substrate is achieved. A high substrate processing method is obtained.

【0019】請求項8に係る発明では、請求項1乃至7
のいずれか1項に記載の基体の処理方法を用いたため、
基体上に存在する有機系不純物の残存量又は/及び水分
子の残存量を低減できる基体の処理装置が得られる。
According to the invention of claim 8, claims 1 to 7
Since the method for treating a substrate according to any one of 1 above is used,
It is possible to obtain a substrate treating apparatus capable of reducing the residual amount of organic impurities and / or the residual amount of water molecules existing on a substrate.

【0020】請求項9に係る発明では、少なくとも排気
手段を備えた気密室及び処理室を有する基体の処理装置
において、前記気密室で請求項1乃至7のいずれか1項
に記載の基体の処理方法を行った基体上に、前記処理室
で薄膜を形成するため、構造の安定した薄膜が得られ
る。
According to a ninth aspect of the present invention, there is provided an apparatus for treating a substrate having an airtight chamber having at least an exhaust means and a treatment chamber, wherein the treatment of the substrate according to any one of the first to seventh aspects is performed in the airtight chamber. A thin film having a stable structure is obtained because the thin film is formed in the processing chamber on the substrate subjected to the method.

【0021】以下、図面を参照して本発明の実施態様例
を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】(少なくとも排気手段を備えた気密室)本
発明に係る気密室は、例えば図2、図3又は図10に示
すように、気密室内に導入されたオゾンガスや加熱され
た気体を排除できる排気手段を有する。排気手段として
は、汎用の各種ポンプを用いて構わない。気密室内を減
圧下にする場合は、各種真空ポンプが適宜用いられる。
特に、導入するガス流量が多い場合は、複数のポンプを
多段接続して用いる。例えば、モレキュラードラッグポ
ンプ(ダイキン製、DMS600ACR)+メカニカル
ブースタポンプ(エドワーズ製、QMB500)+ドラ
イポンプ(エドワーズ製、QDP80)の組み合わせが
挙げられる。この組み合わせでは、ガス流量50SLM
で連続使用が可能となる。
(Airtight chamber equipped with at least exhaust means) The airtight chamber according to the present invention can eliminate ozone gas or heated gas introduced into the airtight chamber as shown in FIG. 2, FIG. 3 or FIG. It has an exhaust means. Various general-purpose pumps may be used as the exhaust means. When reducing the pressure in the airtight chamber, various vacuum pumps are appropriately used.
In particular, when the flow rate of the introduced gas is large, a plurality of pumps are connected in multiple stages and used. For example, a combination of a molecular drug pump (manufactured by Daikin, DMS600ACR) + mechanical booster pump (manufactured by Edwards, QMB500) + dry pump (manufactured by Edwards, QDP80) can be mentioned. With this combination, the gas flow rate is 50 SLM
Allows continuous use.

【0023】気密室の内壁を構成する材料としては、例
えばSUS(316L、304L等)、Al、Ni合金
(ハステロイ等)が挙げられる。特に、気密室にオゾン
ガスを導入する場合は、気密室の内壁は耐オゾンガス性
の高い材料で構成する必要がある。このような材料とし
ては、例えばFe23/SUS−316L(表面にFe
23膜を数十nm形成したSUS−316L)が好適で
ある。O3により材質が改質せず、かつ、Alに比べて
3が失活しない点から有利である。
Examples of the material forming the inner wall of the hermetic chamber include SUS (316L, 304L, etc.), Al, Ni alloy (Hastelloy, etc.). In particular, when introducing ozone gas into the airtight chamber, the inner wall of the airtight chamber must be made of a material having high ozone gas resistance. Examples of such a material include Fe 2 O 3 / SUS-316L (Fe on the surface is
SUS-316L) in which a 2 O 3 film is formed with a thickness of several tens of nm is preferable. This is advantageous because the material is not modified by O 3 and O 3 is not deactivated as compared with Al.

【0024】また、O3以外の加熱された気体を導入す
る場合、気密室の内壁を構成する材料としては、例えば
(Cr23、Fe23)/SUS−316L(電解研磨
あるいは複合電解研磨したSUS−316Lの表面にC
23膜やFe23膜を設けたもの)、表面粗さRaが
0.1μm程度に研磨されたAlが好適に用いられる。
表面を構成する材料自体からの不純物ガス放出が少ない
点が優れている。
When a heated gas other than O 3 is introduced, the material forming the inner wall of the hermetic chamber is, for example, (Cr 2 O 3 , Fe 2 O 3 ) / SUS-316L (electrolytic polishing or composite C on the surface of electrolytically polished SUS-316L
r 2 O 3 film and Fe 2 O 3 film which was provided), Al to the surface roughness Ra is polished to about 0.1μm is preferably used.
It is excellent in that the emission of the impurity gas from the material itself constituting the surface is small.

【0025】ガス導入系が気密室に接続される位置は、
排気手段が気密室に接続される位置とほぼ対向して設
け、かつ、気密室内に導入されたガスが乱流となるよう
にした方が好ましい。この配置を採用した場合、ガスが
滞留することなく、本発明の効果が損なわれないという
点から優れている。例えば、図2又は図3に示すような
配置が挙げられる。
The position where the gas introduction system is connected to the airtight chamber is
It is preferable that the exhaust means is provided substantially opposite to the position where it is connected to the airtight chamber, and that the gas introduced into the airtight chamber becomes a turbulent flow. When this arrangement is adopted, the gas is not retained and the effect of the present invention is not impaired, which is advantageous. For example, the arrangement as shown in FIG. 2 or FIG.

【0026】上述した気密室にゲートバルブを介してT
DS(Thermal Desorption Spectroscopy、昇温脱離ガ
ス分析法)分析室を設けた。TDS分析室では、基板に
熱を加えることで、基体表面に付着した有機系不純物や
水分子を離脱させ、その離脱ガスを後述する分析装置で
定量的に評価した。
The above-mentioned airtight chamber is connected to the T through a gate valve.
A DS (Thermal Desorption Spectroscopy) analysis room was provided. In the TDS analysis room, heat was applied to the substrate to release organic impurities and water molecules adhering to the substrate surface, and the released gas was quantitatively evaluated by an analyzer described later.

【0027】TDS分析室は排気手段を備えており、そ
の排気手段は、基体表面に付着した有機系不純物や水分
子を評価分析する雰囲気圧力により、気密室と同様に適
宜選択される。
The TDS analysis chamber is equipped with an evacuation means, and the evacuation means is appropriately selected in the same manner as the airtight chamber depending on the atmospheric pressure for evaluating and analyzing organic impurities and water molecules adhering to the surface of the substrate.

【0028】TDS分析室内の圧力が大気圧近傍で測定
する場合には、日立東京エレクトロニクス製のTDS装
置(UG−21)を分析室に取り付けた(図2)。基体
表面から脱離した有機系不純物や水分子の評価は、TD
S装置に付設したAPIMS(Atmospheric Pressure I
onization Mass Spectrometer、大気圧イオン化質量分
析装置)を用い、実施した。また、分析中はキャリアガ
スとしてAr、N2等を適宜導入した。
When the pressure in the TDS analysis chamber is measured near atmospheric pressure, a TDS device (UG-21) manufactured by Hitachi Tokyo Electronics was attached to the analysis chamber (FIG. 2). The evaluation of organic impurities and water molecules desorbed from the substrate surface is performed by TD
APIMS (Atmospheric Pressure I
onization Mass Spectrometer, atmospheric pressure ionization mass spectrometer). Further, during the analysis, Ar, N 2, etc. were appropriately introduced as a carrier gas.

【0029】一方、減圧下で測定する場合には、電子科
学製のTDS装置(EMD−WA1000K)を分析室
に取り付けた(図3)。基体表面から脱離した有機系不
純物や水分子の評価は、TDS装置に付設したQMS
(Quadrupole Mass Analyzer、四重極質量分析器)を用
い、実施した。
On the other hand, in the case of measurement under reduced pressure, a TDS device (EMD-WA1000K) manufactured by Electronic Science was attached to the analysis room (FIG. 3). Evaluation of organic impurities and water molecules desorbed from the surface of the substrate is performed by QMS attached to the TDS device.
(Quadrupole Mass Analyzer).

【0030】(基体)基体としては、例えば、ガラス基
板(ホウケイ酸無アルカリガラス、ソーダガラス、石英
等)、Siウェハ基板(FZ(100)、CZ(100)
等)、セラミックス基板(Al23、SiC等)が挙げ
られる。また、これらの基板上に各種皮膜を設けたもの
も含む。各種皮膜としては、例えば、Al、Mo、T
a、SiN、TiN、a−Si等が挙げられる。さら
に、これらの膜を積層して形状加工することで前記基板
上に、電子素子又は回路、磁気素子又は回路、及び光学
素子又は回路などを配設したものも本発明に係る基体の
一例である。
(Substrate) Examples of the substrate include a glass substrate (alkali-free borosilicate glass, soda glass, quartz, etc.), Si wafer substrate (F Z (100), C Z (100)).
Etc.) and ceramics substrates (Al 2 O 3 , SiC, etc.). Further, it also includes those in which various films are provided on these substrates. As various coatings, for example, Al, Mo, T
a, SiN, TiN, a-Si, etc. are mentioned. Further, one in which an electronic element or circuit, a magnetic element or circuit, an optical element or circuit, and the like are provided on the substrate by stacking these films and processing the shape is also an example of the substrate according to the present invention. .

【0031】電子素子又は回路を有する基体としては、
例えばTFT(Thin Film Transistor)、MOSFET
(Metal Oxide Semiconductor Field Emittion Transi
stor)、又は、Diode Capacitor を設けたものが挙げら
れる。中でも、TFT(ThinFilm Transistor)回路を
有するLCDセル(Liquid Crystal Display Cell)す
なわちアクティブマトリクス型LCDや、透明電極で形
成されたセグメント電極及びコモン電極を有するLCD
セル(Liquid Crystal Display Cell)すなわち単純マ
トリクス型LCDを作製するとき、本発明に係る基体の
処理方法及び処理装置が好適に用いられる。
As the substrate having an electronic element or circuit,
For example, TFT (Thin Film Transistor), MOSFET
(Metal Oxide Semiconductor Field Emittion Transi
stor), or those provided with a Diode Capacitor. Above all, an LCD cell (Liquid Crystal Display Cell) having a TFT (Thin Film Transistor) circuit, that is, an active matrix LCD, or an LCD having segment electrodes and common electrodes formed of transparent electrodes.
When manufacturing a cell (Liquid Crystal Display Cell), that is, a simple matrix type LCD, the substrate processing method and the processing apparatus according to the present invention are preferably used.

【0032】磁気素子又は回路を有する基体としては、
例えば磁気ディスク、磁気ヘッド、磁気カードが挙げら
れる。光学素子又は回路を有する基体としては、例えば
LEDや半導体レーザに代表される各種の受発光デバイ
ス、光(光磁気)ディスクが挙げられる。
As the substrate having the magnetic element or the circuit,
Examples include magnetic disks, magnetic heads, and magnetic cards. Examples of the substrate having an optical element or circuit include various light emitting and receiving devices represented by LEDs and semiconductor lasers, and optical (magneto-optical) disks.

【0033】(オゾンガス)本発明に係るオゾンガス
は、O3、O2及びN2から構成された混合ガスであり、
3濃度が1ppm〜1000ppm(O3:(O2
2)=1:106〜103)の範囲にあるものが好適に
用いられる。O3、O2及びN2以外のガス成分がオゾン
ガスに含まれる不純物であり、例えばH2O、CO2、C
4が挙げられる。このオゾンガスに含まれる不純物濃
度は、1000ppb以下としたとき、TDS測定時の
有機系ガス不純物の検出量が大きく減少し、有機系ガス
不純物の除去効果が顕著になるため好ましい。また、こ
の不純物濃度を10ppb以下としたとき、有機系ガス
不純物の検出量が少ない状態で飽和することから、基体
表面に存在する有機系ガス不純物量がほぼ最小値になっ
たと判断できるため、より好ましい。
(Ozone Gas) The ozone gas according to the present invention is a mixed gas composed of O 3 , O 2 and N 2 .
O 3 concentration is 1 ppm to 1000 ppm (O 3 : (O 2 +
Those in the range of N 2 ) = 1: 10 6 to 10 3 ) are preferably used. Gas components other than O 3 , O 2 and N 2 are impurities contained in ozone gas, such as H 2 O, CO 2 and C.
H 4 may be mentioned. When the concentration of impurities contained in the ozone gas is 1000 ppb or less, the detected amount of the organic gas impurities during TDS measurement is greatly reduced, and the effect of removing the organic gas impurities becomes remarkable, which is preferable. Further, when the impurity concentration is set to 10 ppb or less, the amount of the organic gas impurities is saturated in a state in which the detected amount is small, so that it can be determined that the amount of the organic gas impurities present on the surface of the substrate is almost the minimum value. preferable.

【0034】本発明におけるオゾンガスは、気密室近傍
に配置した市販のO3生成器(住友精密工業製、SG−
01A1)を一部改良したものに、不純物濃度を1pp
b以下のO2及びN2を供給して製造した。得られたオゾ
ンガスの不純物濃度は1ppb以下であり、耐オゾンガ
ス仕様の配管を介して気密室に導入した。また、O3
成器と気密室を結ぶ配管部に、既知の不純物を10pp
m添加したN2ガス供給系とマスフローコントローラを
多段に組み合わせたガス希釈系からなる不純物添加系よ
り、適当量の不純物を含有不純物濃度が1ppb以下の
オゾンガスに添加して、気密室に導入するオゾンガスに
含まれる不純物濃度を100ppm〜1ppbの範囲で
変化させた。
The ozone gas used in the present invention is a commercially available O 3 generator (SG-manufactured by Sumitomo Precision Industries Co., Ltd.) arranged near the airtight chamber.
01A1) with partially improved impurity concentration of 1pp
It was manufactured by supplying O 2 and N 2 of b or less. The impurity concentration of the obtained ozone gas was 1 ppb or less, and the ozone gas was introduced into the airtight chamber through the ozone gas resistant pipe. In addition, a known impurity of 10 pp was added to the pipe section connecting the O 3 generator and the airtight chamber.
ozone gas to be introduced into the hermetic chamber by adding an appropriate amount of impurities to ozone gas having an impurity concentration of 1 ppb or less from an impurity addition system consisting of a gas dilution system in which a multi-stage N 2 gas supply system and a mass flow controller are added. The impurity concentration contained in was changed from 100 ppm to 1 ppb.

【0035】(加熱された気体)本発明に係る加熱され
た気体としては、気体を介して基体に熱を伝えやすく、
かつ、基体表面から水分子を除去できるガス種が好まし
い。この理由から、希ガス(He、Ar等)、窒素ガ
ス、オゾンガス又は水素ガスから選択される1つのガス
が好適に用いられる。
(Heated Gas) As the heated gas according to the present invention, it is easy to transfer heat to the substrate through the gas,
Moreover, a gas species capable of removing water molecules from the surface of the substrate is preferable. For this reason, one gas selected from rare gas (He, Ar, etc.), nitrogen gas, ozone gas or hydrogen gas is preferably used.

【0036】各加熱された気体以外のガス成分が各加熱
された気体に含まれる不純物であり、例えばH2O、C
2、CH4が挙げられる。加熱された気体が窒素ガスの
場合、窒素ガスに含まれる不純物濃度は、含有不純物濃
度が1ppb以下の窒素ガスの供給系と気密室を結ぶ配
管部に、既知の不純物を100ppm添加した窒素ガス
の別の供給系とマスフローコントローラを多段に組み合
わせたガス希釈系からなる不純物添加系より、適当量の
不純物を含有不純物濃度が1ppb以下の窒素ガスに添
加して、気密室に導入する窒素ガスに含まれる不純物濃
度を100ppm〜1ppbの範囲で変化させた。この
各加熱された気体に含まれる不純物濃度は、1000p
pb以下としたとき、TDS測定時のH2Oの検出量が
大きく減少し、H2Oの除去効果が顕著になるため好ま
しい。また、この不純物濃度を10ppb以下としたと
き、H2Oの検出量が少ない状態で飽和することから、
基体表面に存在するH2O量がほぼ最小値になったと判
断できるため、より好ましい。
Gas components other than each heated gas are impurities contained in each heated gas, such as H 2 O and C.
Examples include O 2 and CH 4 . When the heated gas is nitrogen gas, the concentration of impurities contained in the nitrogen gas is the same as that of the nitrogen gas in which 100 ppm of known impurities are added to the pipe part connecting the supply system of nitrogen gas having a contained impurity concentration of 1 ppb or less and the hermetic chamber An appropriate amount of impurities is added to the nitrogen gas with an impurity concentration of 1 ppb or less from the impurity addition system consisting of a gas dilution system in which different supply systems and mass flow controllers are combined in multiple stages, and is included in the nitrogen gas introduced into the hermetic chamber. The impurity concentration to be generated was changed in the range of 100 ppm to 1 ppb. The impurity concentration contained in each heated gas is 1000 p
When the content is pb or less, the amount of H 2 O detected during TDS measurement is greatly reduced, and the effect of removing H 2 O becomes remarkable, which is preferable. Further, when the impurity concentration is set to 10 ppb or less, the amount of H 2 O is saturated in a small amount.
It is more preferable because it can be judged that the amount of H 2 O existing on the surface of the substrate has reached the minimum value.

【0037】気体に熱を加える方法としては、例えば気
密室へのガス導入配管にヒーターを取り付け、配管を介
して間接的に加熱する方法が挙げられる。各加熱された
気体の温度は、50℃以上としたとき、TDS測定時の
2Oの検出量が大きく減少し、H2Oの除去効果が顕著
になるため好ましい。また、また、この温度を80℃以
上としたとき、H2Oの検出量が少ない状態で飽和する
ことから、基体表面に存在するH2O量がほぼ最小値に
なったと判断できるため、より好ましい。
As a method of applying heat to the gas, for example, a method of attaching a heater to a gas introducing pipe to the airtight chamber and indirectly heating via the pipe can be mentioned. When the temperature of each heated gas is 50 ° C. or higher, the amount of H 2 O detected during TDS measurement is greatly reduced, and the effect of removing H 2 O becomes remarkable, which is preferable. Further, when the temperature is set to 80 ° C. or higher, the amount of H 2 O existing on the surface of the substrate becomes almost the minimum value because it saturates in a state where the amount of H 2 O detected is small. preferable.

【0038】(少なくとも排気手段を備えた気密室及び
処理室を有する基体の処理装置)本発明に係る基体の処
理装置は、上述した気密室にゲートバルブを介して処理
室が設けてある。処理室は少なくとも排気手段を備えて
いる。その排気手段は、気密室内の動作圧力により気密
室と同様に適宜選択される。場合によっては、気密室内
の動作圧力に依存せず、独立して適宜選択した排気手段
を設けても構わない。したがって、処理室の内圧には特
に制限は無い。
(Substrate Processing Apparatus Having At least Airtight Chamber Equipped with Exhaust Means and Processing Chamber) In the substrate processing apparatus according to the present invention, the above-mentioned airtight chamber is provided with a processing chamber via a gate valve. The processing chamber is provided with at least exhaust means. The exhaust means is appropriately selected similarly to the airtight chamber depending on the operating pressure in the airtight chamber. Depending on the case, it is possible to provide an appropriately selected exhaust means independently of the operating pressure in the airtight chamber. Therefore, the internal pressure of the processing chamber is not particularly limited.

【0039】処理室内では、気密室において所定の処理
を終えた基体上に薄膜が形成されるが、薄膜形成方法は
何れであっても構わない。例えば、大気圧下の場合は塗
布法、めっき法等、減圧下の場合は蒸着法、スパッタ
法、CVD法等が挙げられる。
In the processing chamber, a thin film is formed on the substrate which has been subjected to the predetermined processing in the airtight chamber, but any thin film forming method may be used. For example, under atmospheric pressure, a coating method, a plating method, and the like, and under a reduced pressure, an evaporation method, a sputtering method, a CVD method, and the like can be given.

【0040】形成される薄膜の材料に制限は無いが、薄
膜の諸特性や密着性などを制御する目的から、薄膜が形
成される際に基体を適宜加熱又は冷却する場合がある。
また、薄膜が形成される空間内に電場又は/及び磁場を
導入しても構わない。
The material of the thin film to be formed is not limited, but for the purpose of controlling various characteristics and adhesion of the thin film, the substrate may be appropriately heated or cooled when the thin film is formed.
Further, an electric field and / or a magnetic field may be introduced into the space where the thin film is formed.

【0041】(基体の評価方法)以下では、図2及び図
3を用いて本発明に係る基体の評価方法を説明する。
(Substrate Evaluation Method) The substrate evaluation method according to the present invention will be described below with reference to FIGS. 2 and 3.

【0042】(1)TDS分析室内の圧力が大気圧近傍
の場合 基体I及びIIを気密室の回転可能な基体ホルダー
にセットした。 常にAr以外の不純物ガス濃度が1ppb以下の高
純度Arでパージされて清浄な雰囲気にあるTDS装置
に、基体Iを移動させた。 Arを2l/min供給しながら、基体Iを室温か
ら500℃まで加熱し、その過程で脱離したガスが含ま
れるキャリアArガスをAPIMSで分析した。 基体Iを気密室に移動後、基体I及びIIにオゾン
ガス又は/及び加熱された気体による処理を施した。 上記及びと同様に、基体IIをTDS装置に移
動させ、APIMSで分析した。
(1) When the pressure in the TDS analysis chamber is near atmospheric pressure: The substrates I and II were set in a rotatable substrate holder in an airtight chamber. The substrate I was moved to a TDS apparatus that was always purged with high-purity Ar having an impurity gas concentration other than Ar of 1 ppb or less and was in a clean atmosphere. The substrate I was heated from room temperature to 500 ° C. while supplying Ar at 2 l / min, and the carrier Ar gas containing the gas desorbed in the process was analyzed by APIMS. After moving the substrate I to the airtight chamber, the substrates I and II were treated with ozone gas and / or heated gas. Substrate II was transferred to a TDS instrument and analyzed by APIMS as described above and.

【0043】(2)TDS分析室内の圧力が減圧下の場
合 ’基体I及びIIを気密室の回転可能な基体ホルダー
にセットした。 ’気密室を1×10-6Torrに減圧後、予め2×1
-9Torrに減圧してあるTDS装置に、基体Iを移
動させた。 ’基体Iを室温から500℃まで加熱し、その過程で
脱離したガスをQMSで分析した。 ’基体Iを気密室に移動後、基体I及びIIにオゾン
ガス又は/及び加熱された気体による処理を施した。 ’上記’及び’と同様に、基体IIをTDS装置
に移動させ、APIMSで分析した。
(2) When the pressure in the TDS analysis chamber is under reduced pressure'Substrates I and II were set in a rotatable substrate holder in an airtight chamber. 'After depressurizing the airtight chamber to 1 × 10 -6 Torr, 2 × 1 in advance
The substrate I was moved to the TDS apparatus which was depressurized to 0 -9 Torr. The substrate I was heated from room temperature to 500 ° C., and the gas desorbed in the process was analyzed by QMS. 'After moving the substrate I to the airtight chamber, the substrates I and II were treated with ozone gas and / or heated gas. Substrate II was transferred to a TDS instrument and analyzed by APIMS as in'above 'and'.

【0044】(薄膜の評価方法)本発明に係るAl薄膜
の評価項目としては、比抵抗、ヒロック、温純水酸化及
び結晶性が挙げられる。これらの各評価方法を以下に記
載する。
(Evaluation Method of Thin Film) The evaluation items of the Al thin film according to the present invention include specific resistance, hillock, hot pure water oxidation and crystallinity. Each of these evaluation methods is described below.

【0045】[比抵抗]比抵抗(Ω・cm)は、シート
抵抗(Ω/□)と膜厚(nm)の積から算出した。シー
ト抵抗は、成膜直後の薄膜(基体上)に対して、ナプソ
ン製のHA−6100/RG−1000Eを用いて測定
した。その後、薄膜をパターニング処理して、シート抵
抗測定箇所の膜厚をULVAC製のDEKTAK−30
30で測定した。
[Specific Resistance] The specific resistance (Ω · cm) was calculated from the product of the sheet resistance (Ω / □) and the film thickness (nm). The sheet resistance was measured using HA-6100 / RG-1000E manufactured by Napson on the thin film (on the substrate) immediately after film formation. After that, the thin film is subjected to a patterning process so that the film thickness at the sheet resistance measuring portion is DEKTAK-30 manufactured by ULVAC.
It was measured at 30.

【0046】[ヒロック]ヒロックは、以下の手順によ
り測定した。 成膜直後の薄膜(基体上)を光学顕微鏡で観察し、
写真を撮った。 上記の薄膜(基体ごと)をN2雰囲気下、400
℃で2時間アニール処理した。 上記の処理を終えた薄膜(基体上)を光学顕微鏡
で観察し、写真を撮った。 上記との写真(倍率:825)に写っているヒ
ロックの数を各々計測し、その差分を求め、単位面積当
たりのヒロック増加の有無を調べた。ヒロックサイズが
数百nm程度以上のものを計測した。
[Hillock] Hillock was measured by the following procedure. Observe the thin film (on the substrate) immediately after film formation with an optical microscope,
I took a picture. The above thin film (for each substrate) was set to 400 under N 2 atmosphere.
It was annealed at 2 ° C. for 2 hours. The thin film (on the substrate) that had been subjected to the above treatment was observed with an optical microscope and a photograph was taken. The number of hillocks shown in the above photograph (magnification: 825) was measured, the difference between them was determined, and the presence or absence of increase in hillocks per unit area was examined. A hillock size of several hundreds nm or more was measured.

【0047】[温純水酸化]温純水酸化は、以下の手順
により測定した。 上記比抵抗で膜厚測定後の薄膜(基体上)を、80
℃の温超純水に20分間浸漬した。 上記の処理を終えた薄膜(基体上)の膜厚を測定
した。浸漬後の膜厚が浸漬前より増加した場合、Alが
酸化されてAlOXに変化し体積が増えたと判断した。
この酸化状態の有無は、XPS(Xray Photoelectron S
pectroscopy、X線光電子分光法)を用いて別途確認し
た。
[Warm pure water oxidation] The warm pure water oxidation was measured by the following procedure. The thin film (on the substrate) after film thickness measurement with the above-mentioned specific resistance is
It was immersed in warm ultrapure water at ℃ for 20 minutes. The film thickness of the thin film (on the substrate) after the above treatment was measured. When the film thickness after the immersion was larger than that before the immersion, it was judged that Al was oxidized and changed to AlO x , and the volume increased.
The presence or absence of this oxidation state is determined by XPS (Xray Photoelectron S
It was separately confirmed using pectroscopy and X-ray photoelectron spectroscopy.

【0048】[結晶性]結晶性は、成膜直後の薄膜が付
着した基体を3cm角にカッティング後、理研製のX線
回折測定装置で回折強度を測定した。
[Crystallinity] The crystallinity was measured by measuring the diffraction intensity with an X-ray diffractometer made by Riken after cutting a substrate having a thin film immediately after film formation attached thereto into a 3 cm square.

【0049】[0049]

【実施例】以下に実施例をあげて本発明をより詳細に説
明するが、本発明がこれら実施例に限定されることはな
い。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0050】(実施例1)本例では、図2に示した気密
室内に基体を配設し、大気圧近傍においてオゾンガスに
曝される前後の基体上に存在する有機系不純物の残存量
を、気密室にゲートバルブを介して設けたTDS分析室
において調べた。TDS分析室では、基板に熱を加える
ことで、基体表面に付着した有機系不純物を離脱させ、
その離脱ガスをAPIMSを用いて定量的に評価した。
基体としては、Siウェハ(FZ(100))又はガラ
ス(#7059)を用いた。
(Example 1) In this example, a substrate is placed in the airtight chamber shown in FIG. 2, and the residual amount of organic impurities existing on the substrate before and after being exposed to ozone gas in the vicinity of atmospheric pressure is determined. The examination was carried out in a TDS analysis room provided in the airtight chamber through a gate valve. In the TDS analysis room, heat is applied to the substrate to remove organic impurities adhering to the surface of the substrate,
The released gas was quantitatively evaluated using APIMS.
A Si wafer (F Z (100)) or glass (# 7059) was used as the substrate.

【0051】以下では、実験手順にしたがって説明す
る。 (1)次の及びに示した処理を順次行い、2枚の基
体を洗浄した。 基体が入ったカセット(材質:テフゼル)を超純水
(比抵抗:18MΩ)浸漬させ、超純水中にメガソニッ
ク(0.8MHz)を10分間加えた。 上記の処理を終えた基体をスピン乾燥(850r
pm、2分間)した。 (2)上記(1)の処理を終えた2枚の基体が入ったカ
セットを気密室内へ挿入した後、1枚の基体は未処理の
ままTDS分析室へ移し、基体表面に付着した有機系不
純物を離脱させ、その離脱量をAPIMSで測定した。 (3)他の1枚の基体は、気密室内に次の条件でオゾン
ガスを導入することでオゾンガスに曝した。 ・供給ガス:O3100ppm/O2:N2=1:4 ・オゾンガスの不純物濃度:1ppb以下 ・気密室の内圧:760Torr ・供給時間:10min (4)上記(3)の処理を終えた基体をTDS分析室へ
移し、上記(2)と同様に基体表面に付着した有機系不
純物を離脱させ、その離脱量を測定した。
The following is a description according to the experimental procedure. (1) The following treatments shown in and were sequentially performed to wash the two substrates. A cassette (material: Tefzel) containing a substrate was immersed in ultrapure water (specific resistance: 18 MΩ), and megasonic (0.8 MHz) was added to the ultrapure water for 10 minutes. The substrate after the above treatment is spin dried (850 r
pm, 2 minutes). (2) After inserting the cassette containing the two substrates that have been subjected to the treatment of (1) above into the airtight chamber, one substrate is transferred to the TDS analysis chamber without treatment, and the organic system adhered to the surface of the substrate. Impurities were released and the amount of removal was measured by APIMS. (3) Another substrate was exposed to ozone gas by introducing ozone gas into the airtight chamber under the following conditions.・ Supply gas: O 3 100 ppm / O 2 : N 2 = 1: 4 ・ Ozone gas impurity concentration: 1 ppb or less ・ Internal pressure of airtight chamber: 760 Torr ・ Supply time: 10 min (4) Substrate that has undergone the treatment of (3) above Was transferred to the TDS analysis room, and the organic impurities adhering to the surface of the substrate were released in the same manner as in (2) above, and the amount of release was measured.

【0052】図1は、オゾンガスに曝す前後の基体表面
から離脱した有機系不純物量(質量数28)の測定結果
である。図1から、オゾンガスに曝した基体の表面で
は、基体の材質に依存せず、有機系不純物が除去されて
いることが分かった。
FIG. 1 shows the measurement results of the amount of organic impurities (mass number 28) separated from the substrate surface before and after exposure to ozone gas. From FIG. 1, it was found that the organic impurities were removed on the surface of the substrate exposed to the ozone gas without depending on the material of the substrate.

【0053】(実施例2)本例では、図3に示した気密
室内に基体を配設し、減圧下にある気密室において基体
をオゾンガスに曝した点が実施例1と異なる。TDS分
析室も気密室と同レベルの減圧下とし、基板に熱を加え
ることで、基体表面に付着した有機系不純物を離脱さ
せ、その離脱ガスをQMSを用いて定量的に評価した。
他の点は、実施例1と同様とした。
(Embodiment 2) This embodiment differs from Embodiment 1 in that the substrate is placed in the airtight chamber shown in FIG. 3 and the substrate is exposed to ozone gas in the airtight chamber under reduced pressure. The TDS analysis chamber was also under a reduced pressure at the same level as the airtight chamber, and the substrate was heated to release organic impurities adhering to the substrate surface, and the released gas was quantitatively evaluated using QMS.
Other points were the same as in Example 1.

【0054】以下では、実験手順にしたがって説明す
る。 (1)実施例1の工程(1)と同様に2枚の基体を洗浄
した。 (2)上記(1)の処理を終えた2枚の基体が入ったカ
セットを気密室内へ挿入した後、気密室内を1×10-6
Torrまで減圧した。 (3)1枚の基体は未処理のまま、前もって2×10-9
Torrまで減圧してあるTDS分析室へ移し、基体表
面に付着した有機系不純物を離脱させ、その離脱量をQ
MSで測定した。 (4)他の1枚の基体は、気密室内に次の条件でオゾン
ガスを導入することでオゾンガスに曝した。 ・供給ガス:O3100ppm/O2:N2=1:4 ・オゾンガスの不純物濃度:1ppb以下 ・気密室の内圧:700Torr ・供給時間:10min (5)上記(4)の処理を終えた基体を前もって2×1
-9Torrまで減圧してあるTDS分析室へ移し、上
記(2)と同様に基体表面に付着した有機系不純物を離
脱させ、その離脱量を測定した。
The following is a description according to the experimental procedure. (1) Two substrates were washed in the same manner as in step (1) of Example 1. (2) After inserting the cassette containing the two substrates, which has undergone the treatment of (1) above, into the airtight chamber, the airtight chamber is set to 1 × 10 −6.
The pressure was reduced to Torr. (3) One substrate is left untreated and 2 × 10 -9 in advance
Transfer to a TDS analysis chamber that has been depressurized to Torr to separate organic impurities adhering to the substrate surface,
Measured by MS. (4) Another substrate was exposed to ozone gas by introducing ozone gas into the airtight chamber under the following conditions.・ Supply gas: O 3 100 ppm / O 2 : N 2 = 1: 4 ・ Ozone gas impurity concentration: 1 ppb or less ・ Internal pressure of hermetic chamber: 700 Torr ・ Supply time: 10 min (5) Substrate that has undergone the treatment of (4) above 2 x 1 in advance
The sample was transferred to a TDS analysis chamber that had been depressurized to 0 -9 Torr, and the organic impurities adhering to the surface of the substrate were detached in the same manner as in (2) above, and the detached amount was measured.

【0055】図4は、オゾンガスに曝す前後の基体表面
から離脱した有機系不純物量(質量数28)の測定結果
である。図4から、減圧下においてもオゾンガスに曝し
た基体の表面では、基体の材質に依存せず、有機系不純
物が除去されていることが分かった。
FIG. 4 shows the measurement results of the amount of organic impurities (mass number 28) separated from the substrate surface before and after exposure to ozone gas. From FIG. 4, it was found that the organic impurities were removed on the surface of the substrate exposed to ozone gas even under reduced pressure without depending on the material of the substrate.

【0056】(実施例3)本例では、図2に示した気密
室内に基体を配設し、大気圧近傍において加熱された気
体に曝される前後の基体上に存在する水分子の残存量
を、気密室にゲートバルブを介して設けたTDS分析室
において調べた。加熱された気体としては、50℃の窒
素ガスを用いた。
(Embodiment 3) In this embodiment, the substrate is arranged in the airtight chamber shown in FIG. 2, and the residual amount of water molecules existing on the substrate before and after being exposed to the heated gas in the vicinity of atmospheric pressure. Was examined in a TDS analysis room provided in the airtight chamber through a gate valve. Nitrogen gas at 50 ° C. was used as the heated gas.

【0057】TDS分析室では、基板に熱を加えること
で、基体表面に付着した水分子を離脱させ、その離脱ガ
スをAPIMSを用いて定量的に評価した。基体として
は、Siウェハ(FZ(100))又はガラス(#70
59)を用いた。他の点は、実施例1と同様とした。
In the TDS analysis room, heat was applied to the substrate to release water molecules attached to the substrate surface, and the released gas was quantitatively evaluated using APIMS. As the substrate, Si wafer (F Z (100)) or glass (# 70)
59) was used. Other points were the same as in Example 1.

【0058】以下では、実験手順にしたがって説明す
る。 (1)実施例1の工程(1)と同様に2枚の基体を洗浄
した。 (2)上記(1)の処理を終えた2枚の基体が入ったカ
セットを気密室内へ挿入した後、1枚の基体は未処理の
ままTDS分析室へ移し、基体表面に付着した水分子を
離脱させ、その離脱量をAPIMSで測定した。 (3)他の1枚の基体は、気密室内に次の条件で窒素ガ
スを導入することで窒素ガスに曝した。 ・供給ガス:N2(温度50℃、流量50SLM) ・窒素ガスの不純物濃度:1ppb以下 ・気密室の内圧:760Torr ・供給時間:10min (4)上記(3)の処理を終えた基体をTDS分析室へ
移し、上記(2)と同様に基体表面に付着した水分子を
離脱させ、その離脱量を測定した。
The following is a description of the experimental procedure. (1) Two substrates were washed in the same manner as in step (1) of Example 1. (2) After inserting the cassette containing the two substrates that have been subjected to the treatment of (1) above into the airtight chamber, one substrate is transferred to the TDS analysis chamber without treatment, and water molecules attached to the substrate surface Was withdrawn, and the amount of withdrawal was measured by APIMS. (3) Another substrate was exposed to nitrogen gas by introducing nitrogen gas into the hermetic chamber under the following conditions.・ Supply gas: N 2 (Temperature: 50 ° C., Flow rate: 50 SLM) ・ Impurity concentration of nitrogen gas: 1 ppb or less ・ Internal pressure of airtight chamber: 760 Torr ・ Supply time: 10 min (4) TDS of the substrate after the treatment of (3) above The sample was transferred to an analysis room, and water molecules attached to the surface of the substrate were released in the same manner as in (2) above, and the amount of release was measured.

【0059】図5は、加熱された窒素ガスに曝す前後の
基体表面から離脱した水分子量(質量数18)の測定結
果である。図5から、加熱された窒素ガスに曝した基体
の表面では、基体の材質に依存せず、水分子が除去され
ていることが分かった。
FIG. 5 shows the measurement results of the water molecular weight (mass number 18) separated from the surface of the substrate before and after the exposure to the heated nitrogen gas. From FIG. 5, it was found that water molecules were removed on the surface of the substrate exposed to the heated nitrogen gas, regardless of the material of the substrate.

【0060】(実施例4)本例では、図3に示した気密
室内に基体を配設し、減圧下にある気密室において基体
を加熱された窒素ガスに曝した点が実施例3と異なる。
TDS分析室も気密室と同レベルの減圧下とし、基板に
熱を加えることで、基体表面に付着した水分子を離脱さ
せ、その離脱ガスをQMSを用いて定量的に評価した。
他の点は、実施例3と同様とした。
(Embodiment 4) This embodiment differs from Embodiment 3 in that the substrate is placed in the airtight chamber shown in FIG. 3 and the substrate is exposed to heated nitrogen gas in the airtight chamber under reduced pressure. .
The TDS analysis chamber was also under a reduced pressure at the same level as the airtight chamber, and the substrate was heated to release water molecules attached to the substrate surface, and the released gas was quantitatively evaluated using QMS.
Other points were the same as in Example 3.

【0061】以下では、実験手順にしたがって説明す
る。 (1)実施例1の工程(1)と同様に2枚の基体を洗浄
した。 (2)上記(1)の処理を終えた2枚の基体が入ったカ
セットを気密室内へ挿入した後、気密室内を1×10-4
Torrまで減圧した。 (3)1枚の基体は未処理のまま、前もって2×10-9
Torrまで減圧してあるTDS分析室へ移し、基体表
面に付着した水分子を離脱させ、その離脱量をQMSで
測定した。 (4)他の1枚の基体は、気密室内に次の条件で窒素ガ
スを導入することで窒素ガスに曝した。 ・供給ガス:N2(温度50℃、流量50SLM) ・窒素ガスの不純物濃度:1ppb以下 ・気密室の内圧:700Torr ・供給時間:10min (5)上記(4)の処理を終えた基体を前もって2×1
-9Torrまで減圧してあるTDS分析室へ移し、上
記(2)と同様に基体表面に付着した水分子を離脱さ
せ、その離脱量を測定した。
The following is a description according to the experimental procedure. (1) Two substrates were washed in the same manner as in step (1) of Example 1. (2) After inserting the cassette containing the two substrates that have undergone the treatment of (1) above into the airtight chamber, the airtight chamber is set to 1 × 10 −4.
The pressure was reduced to Torr. (3) One substrate is left untreated and 2 × 10 -9 in advance
The sample was transferred to a TDS analysis chamber where the pressure was reduced to Torr, water molecules adhering to the substrate surface were released, and the amount of separation was measured by QMS. (4) Another substrate was exposed to nitrogen gas by introducing nitrogen gas into the hermetic chamber under the following conditions.・ Supply gas: N 2 (Temperature 50 ° C., Flow rate 50 SLM) ・ Impurity concentration of nitrogen gas: 1 ppb or less ・ Internal pressure of airtight chamber: 700 Torr ・ Supply time: 10 min (5) Preliminarily the substrate after the treatment of (4) above 2 x 1
The sample was transferred to a TDS analysis chamber where the pressure was reduced to 0 -9 Torr, and water molecules adhering to the surface of the substrate were released in the same manner as in (2) above, and the amount of separation was measured.

【0062】図6は、加熱された窒素ガスに曝す前後の
基体表面から離脱した水分子量(質量数18)の測定結
果である。図6から、減圧下においても加熱された窒素
ガスに曝した基体の表面では、基体の材質に依存せず、
水分子が除去されていることが分かった。
FIG. 6 shows the measurement results of the water molecular weight (mass number 18) desorbed from the surface of the substrate before and after the exposure to the heated nitrogen gas. From FIG. 6, the surface of the substrate exposed to the heated nitrogen gas even under reduced pressure does not depend on the material of the substrate,
It was found that water molecules were removed.

【0063】実施例3及び4では、加熱された気体とし
て窒素ガスを用いたが、窒素ガスの代わりに希ガス(例
えばHe、Ar、Xe等)、オゾンガス又は水素ガスを
用いても同様の作用があることが別途確認された。特
に、加熱された気体としてオゾンガスを採用した場合
は、実施例1又は2と実施例3又は4の効果を同時に実
現できる。すなわち、基体の表面上に存在する有機系不
純物と水分子を同時に除去できるため、処理工程の短縮
化を図ることができ、低コスト化の可能な基体の処理方
法が得られた。
In Examples 3 and 4, nitrogen gas was used as the heated gas, but a similar effect can be obtained by using a rare gas (eg He, Ar, Xe, etc.), ozone gas or hydrogen gas instead of nitrogen gas. It was separately confirmed that there is. In particular, when ozone gas is used as the heated gas, the effects of Example 1 or 2 and Example 3 or 4 can be realized at the same time. That is, since the organic impurities and water molecules existing on the surface of the substrate can be removed at the same time, the treatment process can be shortened, and the substrate treatment method capable of reducing the cost can be obtained.

【0064】(実施例5)本例では、オゾンガスに含ま
れる不純物濃度を1ppm〜1ppbの範囲で変えた点
が実施例1と異なる。基体としては、ガラス(#705
9)を用いた。他の点は、実施例1と同様とした。
(Embodiment 5) This embodiment differs from Embodiment 1 in that the concentration of impurities contained in ozone gas is changed within the range of 1 ppm to 1 ppb. As the substrate, glass (# 705
9) was used. Other points were the same as in Example 1.

【0065】図7は、オゾンガスに含まれる不純物濃度
と、処理後の基体表面に残存する有機系不純物の量を測
定した結果である。図7から、1ppm以下としたと
き、TDS測定時に基体表面から離脱する有機系不純物
の量が急激に減少することから、基体表面に残存する有
機系不純物の量が減少することが分かった。また、10
ppb以下としたとき、基体表面から離脱する有機系不
純物の量の減少する傾きが大幅に緩和することから、基
体表面に残存する有機系不純物の量がほぼ最小値に近づ
いたと判断した。
FIG. 7 shows the results of measuring the concentration of impurities contained in ozone gas and the amount of organic impurities remaining on the surface of the substrate after the treatment. From FIG. 7, it was found that when the concentration was 1 ppm or less, the amount of organic impurities released from the substrate surface during TDS measurement drastically decreased, so that the amount of organic impurities remaining on the substrate surface decreased. Also, 10
When it was ppb or less, the decreasing gradient of the amount of organic impurities released from the surface of the substrate was remarkably alleviated, so that it was determined that the amount of organic impurities remaining on the surface of the substrate approached the minimum value.

【0066】(実施例6)本例では、加熱された窒素ガ
スに含まれる不純物濃度を1ppm〜1ppbの範囲で
変えた点が実施例3と異なる。基体としては、ガラス
(#7059)を用いた。他の点は、実施例3と同様と
した。
Example 6 This example differs from Example 3 in that the concentration of impurities contained in the heated nitrogen gas was changed within the range of 1 ppm to 1 ppb. Glass (# 7059) was used as the substrate. Other points were the same as in Example 3.

【0067】図8は、加熱された窒素ガスに含まれる不
純物濃度と、処理後の基体表面に残存する水分子の量を
測定した結果である。図8から、1ppm以下としたと
き、TDS測定時に基体表面から離脱する水分子の量が
急激に減少することから、基体表面に残存する有水分子
の量が減少することが分かった。また、10ppb以下
としたとき、基体表面から離脱する水分子の量の減少す
る傾きが大幅に緩和することから、基体表面に残存する
水分子の量がほぼ最小値に近づいたと判断した。
FIG. 8 shows the results of measuring the concentration of impurities contained in the heated nitrogen gas and the amount of water molecules remaining on the surface of the substrate after the treatment. From FIG. 8, it was found that when the concentration was 1 ppm or less, the amount of water molecules released from the substrate surface during TDS measurement drastically decreased, so that the amount of water-containing molecules remaining on the substrate surface decreased. Further, when it was 10 ppb or less, the decreasing gradient of the amount of water molecules released from the surface of the substrate was remarkably alleviated, so that it was judged that the amount of water molecules remaining on the surface of the substrate approached the minimum value.

【0068】(実施例7)本例では、窒素ガスの加熱温
度を室温(約20℃)〜400℃の範囲で変えた点が実
施例3と異なる。基体としては、ガラス(#7059)
を用いた。他の点は、実施例3と同様とした。
(Embodiment 7) This embodiment is different from Embodiment 3 in that the heating temperature of nitrogen gas is changed in the range of room temperature (about 20 ° C.) to 400 ° C. As the base material, glass (# 7059)
Was used. Other points were the same as in Example 3.

【0069】図9は、窒素ガスの温度と、処理後の基体
表面に残存する水分子の量を測定した結果である。図9
から、50℃以上としたとき、基体表面から離脱する水
分子の量が急激に減少することから、基体表面に残存す
る水分子の量が減少することが分かった。また、80℃
以上としたとき、基体表面から離脱する水分子の量の減
少する傾きが大幅に緩和することから、基体表面に残存
する水分子の量がほぼ最小値に近づいたと判断した。
FIG. 9 shows the results of measuring the temperature of nitrogen gas and the amount of water molecules remaining on the surface of the substrate after the treatment. FIG.
From this, it was found that when the temperature was 50 ° C. or higher, the amount of water molecules released from the surface of the substrate was rapidly reduced, and the amount of water molecules remaining on the substrate surface was reduced. 80 ° C
In the above case, since the decreasing gradient of the amount of water molecules released from the surface of the substrate is remarkably relaxed, it was determined that the amount of water molecules remaining on the surface of the substrate was close to the minimum value.

【0070】(実施例8)本例では、図10に示した気
密室において加熱された気体に表面を曝された基体上
に、処理室で薄膜を形成し、作製した薄膜の諸特性を調
べた。
Example 8 In this example, a thin film was formed in the processing chamber on the substrate whose surface was exposed to the gas heated in the airtight chamber shown in FIG. 10, and various characteristics of the produced thin film were examined. It was

【0071】加熱された気体としては窒素ガスを、基体
としてはガラス(#7059)を、薄膜としてはアルミ
を用いた。評価した膜特性は、比抵抗、ヒロック、温純
水酸化および結晶性である。
Nitrogen gas was used as the heated gas, glass (# 7059) was used as the substrate, and aluminum was used as the thin film. The film properties evaluated are resistivity, hillock, hot pure water oxidation and crystallinity.

【0072】以下では、実験手順にしたがって説明す
る。 (1)実施例1の工程(1)と同様の基体洗浄を行っ
た。 (2)上記(1)の処理を終えた基体が入ったカセット
を気密室へ挿入した。 (3)気密室内を1×10-4Torrまで真空排気し
た。 (4)成膜前処理として、加熱された窒素ガス(温度1
50℃、流量50SLM)導入し、排気コンダクタンス
を調節することにより、気密室内の圧力を5Torrと
し、1分間パージ処理した。 (5)気密室への窒素ガス供給を停止した後、気密室内
を1×10-2Torrまで真空排気した。 (6)上記(4)〜(5)の工程を4回繰り返した。 (7)気密室内を5×10-7Torrまで真空排気し
た。 (8)別途5×10-7Torrまで真空排気してある処
理室へ、気密室から基体を移動した。 (9)処理室において、電力密度1.5W/cm2の周
波数13.56MHzの高周波電力(又は、電力密度4
W/cm2の直流電力)をカソードに供給し、プラズマ
を発生させ、加熱された基体(150℃)上に厚さ20
0nmのアルミ膜を形成した。
The following is a description according to the experimental procedure. (1) The same substrate cleaning as in step (1) of Example 1 was performed. (2) The cassette containing the substrate that has undergone the treatment of (1) above was inserted into the airtight chamber. (3) The airtight chamber was evacuated to 1 × 10 −4 Torr. (4) Heated nitrogen gas (temperature 1
50 ° C. and a flow rate of 50 SLM) were introduced, and the exhaust conductance was adjusted to adjust the pressure in the airtight chamber to 5 Torr, and purging was performed for 1 minute. (5) After stopping the supply of nitrogen gas to the airtight chamber, the airtight chamber was evacuated to 1 × 10 -2 Torr. (6) The above steps (4) to (5) were repeated four times. (7) The airtight chamber was evacuated to 5 × 10 −7 Torr. (8) The substrate was moved from the hermetic chamber to a processing chamber which was separately evacuated to 5 × 10 −7 Torr. (9) In the processing chamber, high frequency power (or power density 4 with a power density of 1.5 W / cm 2 and frequency of 13.56 MHz).
DC power of W / cm 2 ) is supplied to the cathode to generate plasma, and the thickness is 20 on the heated substrate (150 ° C.).
An aluminum film of 0 nm was formed.

【0073】上記(1)〜(9)の工程により作製した
試料は、試実8と呼称した。
The sample produced by the above steps (1) to (9) was designated as trial sample 8.

【0074】(比較例1)本例では、実施例8における
基体の前処理、すなわち実施例8の工程(3)〜(6)
を削除した。他の点は、実施例8と同様とした。
(Comparative Example 1) In this example, pretreatment of the substrate in Example 8, that is, steps (3) to (6) in Example 8 were performed.
Was deleted. The other points were the same as in Example 8.

【0075】本例で作製した試料は、試比1と呼称し
た。
The sample prepared in this example was designated as trial ratio 1.

【0076】表1は、上述した実施例6と比較例1で作
製した各試料に対して行った、比抵抗、ヒロック、温純
水酸化、及び結晶性に関する評価結果である。
Table 1 shows the evaluation results of the specific resistance, hillock, hot pure water oxidation, and crystallinity, which were performed on the samples prepared in Example 6 and Comparative Example 1 described above.

【0077】[0077]

【表1】 [Table 1]

【0078】表1から、試比1に比べて試実6の方が安
定した薄膜であることが分かった。したがって、表示装
置分野及び半導体分野などにおいて、各種薄膜を作製す
る場合、本発明に係る基体の処理方法を用いることで膜
構造の安定性を高められると判断した。
From Table 1, it was found that Sample 6 was a more stable thin film than Sample 1. Therefore, it was determined that the stability of the film structure can be improved by using the substrate processing method according to the present invention when various thin films are produced in the fields of display devices and semiconductors.

【0079】また一般的に、結晶性が改善されたことか
ら、本発明に係る基体の処理方法は、処理面における粗
さ増大や平坦性の低下がほとんど無いと判断した。
In general, since the crystallinity was improved, it was judged that the substrate processing method according to the present invention showed almost no increase in roughness or decrease in flatness on the processed surface.

【0080】本例では、構造の簡単な単層膜を用いて本
発明に係る基体の処理方法を検討したが、多層構造や複
雑な構造を有する各種の半導体デバイスやTFT−LC
Dなどを作製する工程においても有効であることは言う
までもない。
In this example, the method of treating the substrate according to the present invention was examined using a single layer film having a simple structure. However, various semiconductor devices having a multi-layer structure or a complicated structure and TFT-LC
It goes without saying that it is also effective in the step of producing D and the like.

【0081】[0081]

【発明の効果】以上説明したように、本発明によれば、
基体から除去した有機物が再付着せず、処理工程を増や
すことなく効率的に水分子を除去でき、処理した基体上
に薄膜を形成する前に各種乾燥処理の工程が不要で、処
理により基体表面の粗さ増大や平坦性の低下が少なく、
かつ、基体の材質依存性が少ない基体の処理方法及び処
理装置が得られる。
As described above, according to the present invention,
The organic substances removed from the substrate do not redeposit, water molecules can be removed efficiently without increasing the number of treatment steps, and various drying treatment steps are not required before forming a thin film on the treated substrate. Roughness increase and flatness decrease are small,
In addition, it is possible to obtain a substrate processing method and a substrate processing device that are less dependent on the material of the substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る大気圧近傍においてオ
ゾンガスに曝す前後の基体表面から離脱した有機系不純
物の量の測定結果を示すグラフである。
FIG. 1 is a graph showing the measurement results of the amount of organic impurities released from the substrate surface before and after exposure to ozone gas in the vicinity of atmospheric pressure according to Example 1 of the present invention.

【図2】本発明の実施例1に係る気密室及びTDS分析
室からなる基体の処理装置の模式的断面図である。
FIG. 2 is a schematic cross-sectional view of a substrate processing apparatus including an airtight chamber and a TDS analysis chamber according to the first embodiment of the present invention.

【図3】本発明の実施例2に係る気密室及びTDS分析
室からなる基体の処理装置の模式的断面図である。
FIG. 3 is a schematic cross-sectional view of a substrate processing apparatus including an airtight chamber and a TDS analysis chamber according to a second embodiment of the present invention.

【図4】本発明の実施例2に係る減圧下においてオゾン
ガスに曝す前後の基体表面から離脱した有機系不純物の
量の測定結果を示すグラフである。
FIG. 4 is a graph showing the measurement results of the amount of organic impurities released from the substrate surface before and after exposure to ozone gas under reduced pressure according to Example 2 of the present invention.

【図5】本発明の実施例3に係る大気圧近傍において加
熱された窒素ガスに曝す前後の基体表面から離脱した水
分子の量の測定結果を示すグラフである。
FIG. 5 is a graph showing the measurement results of the amount of water molecules released from the substrate surface before and after exposure to heated nitrogen gas in the vicinity of atmospheric pressure according to Example 3 of the present invention.

【図6】本発明の実施例4に係る減圧下において加熱さ
れた窒素ガスに曝す前後の基体表面から離脱した水分子
の量の測定結果を示すグラフである。
FIG. 6 is a graph showing the measurement results of the amount of water molecules released from the substrate surface before and after exposure to heated nitrogen gas under reduced pressure according to Example 4 of the present invention.

【図7】本発明の実施例5に係るオゾンガスに含まれる
不純物濃度と、処理後の基体表面に残存する有機系不純
物の量の測定結果を示すグラフである。
FIG. 7 is a graph showing the measurement results of the concentration of impurities contained in ozone gas and the amount of organic impurities remaining on the substrate surface after the treatment according to Example 5 of the present invention.

【図8】本発明の実施例6に係る加熱された窒素ガスに
含まれる不純物濃度と、処理後の基体表面に残存する水
分子の量の測定結果を示すグラフである。
FIG. 8 is a graph showing the measurement results of the concentration of impurities contained in heated nitrogen gas and the amount of water molecules remaining on the surface of the substrate after the treatment according to Example 6 of the present invention.

【図9】本発明の実施例7に係る窒素ガスの温度と、処
理後の基体表面に残存する水分子の量の測定結果を示す
グラフである。
FIG. 9 is a graph showing the measurement results of the temperature of nitrogen gas and the amount of water molecules remaining on the surface of the substrate after the treatment according to Example 7 of the present invention.

【図10】本発明の実施例8に係る気密室及び処理室か
らなる基体の処理装置の模式的断面図である。
FIG. 10 is a schematic cross-sectional view of a substrate processing apparatus including an airtight chamber and a processing chamber according to Example 8 of the present invention.

【符号の説明】[Explanation of symbols]

200、300、900 気密室、 201、301、901 TDS装置、 202 APIMS、 203、303、903 O3生成器、 204、304、904 温ガス発生機構、 205、305、905 ガス希釈器、 206、306、906 標準ガスボンベ、 207、307、907 基体I、 208、308、908 基体II、 209、309、909 基体ホルダー(カセット)、 210、310、320、910、931 ターボ分子
ポンプ、 211、311、911 ゲートバルブ、 212、312 TDS測定時の基体、 213、313 TDS装置の基体ホルダー、 214 赤外線ランプ、 215 高純度Ar導入ライン、 216 TDS装置とAPIMS間のArライン、 217、218、317、318、917、918 高
純度N2ライン、 219、319、919 高純度O2ライン、 302 QMS、 314 赤外線導入装置、 912 処理室内の基体、 930 処理室、 932 Arライン、 933 Alターゲット、 934 基板ホルダー兼カソード。
200, 300, 900 Airtight chamber, 201, 301, 901 TDS device, 202 APIMS, 203, 303, 903 O 3 generator, 204, 304, 904 Hot gas generation mechanism, 205, 305, 905 Gas diluter, 206, 306, 906 Standard gas cylinder, 207, 307, 907 Substrate I, 208, 308, 908 Substrate II, 209, 309, 909 Substrate holder (cassette), 210, 310, 320, 910, 931 Turbo molecular pump, 211, 311, 911 Gate valve, 212, 312 Substrate for TDS measurement, 213, 313 TDS device substrate holder, 214 Infrared lamp, 215 High-purity Ar introduction line, 216 Ar line between TDS device and APIMS, 217, 218, 317, 318 , 917, 918 Kojun Degree N 2 line, 219, 319, 919 high-purity O 2 line, 302 QMS, 314 infrared introducing device, 912 substrate in processing chamber, 930 processing chamber, 932 Ar line, 933 Al target, 934 substrate holder / cathode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 窪田 傑 宮城県仙台市泉区明通三丁目31番地 株式 会社フロンテック内 (72)発明者 笠間 泰彦 宮城県仙台市泉区明通三丁目31番地 株式 会社フロンテック内 (72)発明者 大見 忠弘 宮城県仙台市青葉区米ヶ袋2の1の17の 301 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor, Jie Kubota, 3-31, Meidori, Izumi-ku, Sendai-shi, Miyagi Frontech Co., Ltd. Incorporated company Frontech (72) Inventor Tadahiro Omi 1-17 of 2 Yonegabukuro, Aoba-ku, Sendai-shi, Miyagi 301-301

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも排気手段を備えた気密室に配
設された基体が、オゾンガスに曝されることを特徴とす
る基体の処理方法。
1. A method of treating a substrate, wherein the substrate disposed in an airtight chamber provided with at least an exhaust means is exposed to ozone gas.
【請求項2】 少なくとも排気手段を備えた気密室に配
設された基体が、加熱された気体に曝されることを特徴
とする基体の処理方法。
2. A method for treating a substrate, wherein the substrate disposed in an airtight chamber provided with at least an exhaust means is exposed to a heated gas.
【請求項3】 少なくとも排気手段を備えた気密室に配
設された基体が、オゾンガス及び加熱された気体に曝さ
れることを特徴とする基体の処理方法。
3. A method for treating a substrate, wherein the substrate disposed in an airtight chamber provided with at least an exhaust means is exposed to ozone gas and heated gas.
【請求項4】 前記オゾンガスに含まれる不純物濃度
が、10ppb以下であることを特徴とする請求項1又
は3に記載の基体の処理方法。
4. The method for treating a substrate according to claim 1, wherein the concentration of impurities contained in the ozone gas is 10 ppb or less.
【請求項5】 前記加熱された気体に含まれる不純物濃
度が、10ppb以下であることを特徴とする請求項2
又は3に記載の基体の処理方法。
5. The impurity concentration contained in the heated gas is 10 ppb or less.
Or the method of treating a substrate according to item 3.
【請求項6】 前記加熱された気体の温度が、80℃以
上であることを特徴とする請求項2、3又は5のいずれ
か1項に記載の基体の処理方法。
6. The method for treating a substrate according to claim 2, wherein the temperature of the heated gas is 80 ° C. or higher.
【請求項7】 前記加熱された気体が、希ガス、窒素ガ
ス、オゾンガス又は水素ガスから選択される1つのガス
であることを特徴とする請求項2、3、5又は6のいず
れか1項に記載の基体の処理方法。
7. The heated gas is one gas selected from a rare gas, a nitrogen gas, an ozone gas or a hydrogen gas, and the heated gas is any one of claims 2, 3, 5 and 6. The method for treating a substrate according to item 1.
【請求項8】 請求項1乃至7のいずれか1項に記載の
基体の処理方法を用いたことを特徴とする基体の処理装
置。
8. An apparatus for treating a substrate, which uses the method for treating a substrate according to any one of claims 1 to 7.
【請求項9】 少なくとも排気手段を備えた気密室及び
処理室を有する基体の処理装置において、前記気密室で
請求項1乃至7のいずれか1項に記載の基体の処理方法
を行った基体上に、前記処理室で薄膜を形成することを
特徴とする基体の処理装置。
9. A substrate treating apparatus having an airtight chamber having at least exhaust means and a treatment chamber, wherein the substrate is subjected to the substrate treating method according to any one of claims 1 to 7 in the airtight chamber. 1. A substrate processing apparatus, wherein a thin film is formed in the processing chamber.
JP8021556A 1996-02-07 1996-02-07 Method of processing substrate and processing device Withdrawn JPH09213664A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8021556A JPH09213664A (en) 1996-02-07 1996-02-07 Method of processing substrate and processing device
KR1019970003603A KR970063443A (en) 1996-02-07 1997-02-05 Gas treatment method, treatment apparatus and manufacturing method of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8021556A JPH09213664A (en) 1996-02-07 1996-02-07 Method of processing substrate and processing device

Publications (1)

Publication Number Publication Date
JPH09213664A true JPH09213664A (en) 1997-08-15

Family

ID=12058289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8021556A Withdrawn JPH09213664A (en) 1996-02-07 1996-02-07 Method of processing substrate and processing device

Country Status (2)

Country Link
JP (1) JPH09213664A (en)
KR (1) KR970063443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790097B1 (en) * 2000-01-22 2007-12-31 불칸 슈트랄테히닉 게엠베하 METHOD FOR PRODUCING ANGULAR, STAINLESS SHOT-BLASTING ABRASIVES BASED ON AN Fe-Cr-C ALLOY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790097B1 (en) * 2000-01-22 2007-12-31 불칸 슈트랄테히닉 게엠베하 METHOD FOR PRODUCING ANGULAR, STAINLESS SHOT-BLASTING ABRASIVES BASED ON AN Fe-Cr-C ALLOY

Also Published As

Publication number Publication date
KR970063443A (en) 1997-09-12

Similar Documents

Publication Publication Date Title
US5407867A (en) Method of forming a thin film on surface of semiconductor substrate
JP5191656B2 (en) Film forming apparatus and film forming method
US5174881A (en) Apparatus for forming a thin film on surface of semiconductor substrate
JP4191137B2 (en) Cleaning method for substrate processing apparatus
JPH0228322A (en) Preliminary treatment of semiconductor substrate
Belkind et al. Plasma cleaning of surfaces
EP2200073A1 (en) Method for forming silicide and apparatus for forming the silicide
TW200823977A (en) Plasma doping method and plasma doping apparatus
US7961283B2 (en) Manufacturing method of liquid crystal panel and deuterium, hydrogen deuteride, or tritium treatment of alignment film
JP3973051B2 (en) Method and apparatus for depositing materials using primers
Choi et al. Comparison of the removal efficiency for organic contaminants on silicon wafers stored in plastic boxes between UV/O3 and ECR oxygen plasma cleaning methods
JP3254482B2 (en) Plasma processing apparatus and cleaning method thereof
JP3644556B2 (en) Deposition equipment
JPH09213664A (en) Method of processing substrate and processing device
JP4921206B2 (en) Manufacturing method of liquid crystal panel
JP2729310B2 (en) Apparatus for forming thin film on semiconductor substrate surface
JP3474312B2 (en) Synthetic resin reflecting mirror, method of manufacturing the same, and manufacturing apparatus
JPH09232263A (en) Treatment method for substrate
JPH11354514A (en) Cluster tool device and film formation method
JPH09270404A (en) Treatment of substrate
JPH08125185A (en) Method and system for fabricating thin film transistor
JPH05102068A (en) Forming method for electrode of electronic device using diamond
JPH09270403A (en) Treatment of substrate
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JPH05283346A (en) Semiconductor manufacturing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506