JPH09213519A - Superconducting magnet and superconductive wire material - Google Patents

Superconducting magnet and superconductive wire material

Info

Publication number
JPH09213519A
JPH09213519A JP8016856A JP1685696A JPH09213519A JP H09213519 A JPH09213519 A JP H09213519A JP 8016856 A JP8016856 A JP 8016856A JP 1685696 A JP1685696 A JP 1685696A JP H09213519 A JPH09213519 A JP H09213519A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting wire
alloy
magnet
superconducting magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8016856A
Other languages
Japanese (ja)
Inventor
Yasuhiko Inoue
康彦 井上
Takayuki Miyatake
孝之 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8016856A priority Critical patent/JPH09213519A/en
Publication of JPH09213519A publication Critical patent/JPH09213519A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive magnet formed so as to avoid causing the quench and superconductive wire material usable for windings of such superconductive magnet by blocking the superconductive wire material from moving in the actuation this magnet. SOLUTION: A superconductive magnet 3 is composed of so that the heat shrinkage amount of a superconductive wire material 2 with a temp. rise at the actuation of a superconductive magnet from the ambient temp. at reeling may be higher than that of a reel 1. The above-used wire material 2 has a higher heat shrinkage with a temp. rise at the actuation of the superconductive magnet from the ambient temp. at reeling than that of the reel 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、核磁気共鳴(NM
R)分析装置等に用いられる超電導マグネットおよび該
超電導マグネットの巻線として使用される超電導線材に
関するものであり、特に励磁時(作動時)において超電
導マグネットの構成素材である超電導線材自身の動きを
阻止することによって、クエンチの発生を防止する様に
した超電導マグネット、およびにその様な超電導マグネ
ットの巻線として有用な超電導線材に関するものであ
る。
The present invention relates to nuclear magnetic resonance (NM)
R) The present invention relates to a superconducting magnet used in an analyzer or the like and a superconducting wire used as a winding of the superconducting magnet, and particularly prevents the movement of the superconducting wire itself which is a constituent material of the superconducting magnet during excitation (operation). By doing so, the present invention relates to a superconducting magnet which prevents quenching and a superconducting wire useful as a winding wire for such a superconducting magnet.

【0002】[0002]

【従来の技術】超電導現象は、抵抗ゼロで大電流を流す
ことができるものであり、この現象を利用して大電流輸
送や強磁場発生装置等、各方面での利用が広がりつつあ
る。特に、高分解能NMR分析装置等で用いられる超電
導マグネットは、コイルに大電流通電を行なうことによ
る強磁場発生や、抵抗ゼロを利用した永久電流運転を達
成するものであり、超電導現象を利用するによって初め
て実現可能な応用技術の典型例である。
2. Description of the Related Art The superconducting phenomenon allows a large current to flow with zero resistance, and the use of this phenomenon is expanding in various fields such as large current transport and strong magnetic field generators. In particular, a superconducting magnet used in a high-resolution NMR analyzer or the like achieves a strong magnetic field by energizing a coil with a large current and a permanent current operation using zero resistance. This is a typical example of application technology that can be realized for the first time.

【0003】図1は、超電導マグネットの構成の概略を
示す断面図である。図1に示す様に、超電導マグネット
3は、両端にフランジ部を有する円筒状の巻枠1に、超
電導線材2をコイル状に巻線することによって構成され
ている。
FIG. 1 is a sectional view showing the outline of the structure of a superconducting magnet. As shown in FIG. 1, the superconducting magnet 3 is configured by winding a superconducting wire 2 in a coil shape on a cylindrical winding frame 1 having flange portions at both ends.

【0004】こうした超電導マグネットにおいて、超電
導線材中を電流が抵抗なく流れる為には、所定の条件が
揃った場合に限られる。即ち、(a)流れている電流が
臨界電流以下であるとき、(b)周辺磁場が上部臨界磁
場以下であるとき、(c)周囲温度が臨界温度以下であ
るとき、という少なくとも3つの条件を満足する必要が
ある。これらの条件のうちひとつでも満足されなけれ
ば、超電導線材は忽ち高抵抗の常電導状態に陥り、超電
導線材を臨界温度以下に保っていた冷媒としての高価な
液体ヘリウムを一瞬にして蒸発させたり、超電導線材自
身が損傷するいわゆるクエンチを引き起こしてしまうこ
とになる。
In such a superconducting magnet, in order for the current to flow through the superconducting wire without resistance, it is limited to the case where the predetermined conditions are met. That is, at least three conditions are satisfied: (a) the flowing current is below the critical current, (b) the peripheral magnetic field is below the upper critical magnetic field, and (c) the ambient temperature is below the critical temperature. Need to be satisfied. If even one of these conditions is not satisfied, the superconducting wire falls into a high-resistance normal-conducting state for a while, and the expensive liquid helium as a refrigerant that keeps the superconducting wire below the critical temperature is evaporated in an instant, This causes a so-called quench that damages the superconducting wire itself.

【0005】上記したクエンチを引き起こす原因のなか
で大多数を占めるのは、機械的擾乱であり、具体的には
超電導線材自体が動くことによって発生する熱である。
即ち、超電導線材のある部分が動いて摩擦熱を生じる
と、周囲の温度が上って臨界電流が下がり、オーバーフ
ローした電流は非超電導部を流れてジュール発熱を伴う
ことになる。そして冷却が十分でない場合は、悪循環と
なって周辺温度が臨界温度を超えてしまい、上記クエン
チを引き起こしてしまうことになるのである。
The major cause of the above-mentioned quench is mechanical disturbance, and specifically, heat generated by the movement of the superconducting wire itself.
That is, when a portion of the superconducting wire moves to generate frictional heat, the ambient temperature rises and the critical current decreases, and the overflowed current flows through the non-superconducting portion and is accompanied by Joule heat generation. If the cooling is not sufficient, a vicious circle is formed and the ambient temperature exceeds the critical temperature, which causes the quench.

【0006】そこで超電導線材の動きを抑制するため
に、コイル状に巻線された超電導線材を含浸材で固めた
り、コイルの外側に補強材を設けて支持したりすること
が、一般的に行なわれている。またこうした観点から超
電導線材の動き阻止する為の方法が、これまでも様々提
案されている。例えば、特開昭62−173705号に
は、コイルを複数設けて外側コイルの巻枠に内側コイル
の巻線部よりも熱収縮量の大きい材質を用いることで、
内側コイルの巻線部を外側コイルの巻枠で補強する方法
が開示されている。
Therefore, in order to suppress the movement of the superconducting wire, the superconducting wire wound in a coil shape is generally hardened with an impregnating material, or a reinforcing material is provided outside the coil to support it. Has been. From this point of view, various methods for preventing the movement of the superconducting wire have been proposed so far. For example, in Japanese Unexamined Patent Publication No. 62-173705, a plurality of coils are provided and a material having a larger heat shrinkage amount than the winding portion of the inner coil is used for the winding frame of the outer coil.
A method of reinforcing the winding portion of the inner coil with the winding frame of the outer coil is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながらこれまで
の方法では、下記に示す様な問題があった。まず含浸材
で固める方法では、巻線部の全ての間隙に含浸材を行き
亘らせることは実質的に不可能であり、巻線部の超電導
線材が超電導マグネットの作動時に動く可能性を残して
おり、根本的な解決策にはなり得ない。またコイルの外
側に補強材を設けて支持する方法では、補強材に与える
巻締力を幾層も巻いてある超電導線材全体に作用させる
ことは実質的に不可能であるという欠点があった。更
に、上記特開昭62−173705号に開示された方法
では、一番外側のコイルの巻線部は補強されず、巻線部
の超電導部材が依然として動く可能性を残している。
However, the conventional methods have the following problems. First, with the method of solidifying with an impregnating material, it is practically impossible to spread the impregnating material in all the gaps of the winding part, leaving the possibility that the superconducting wire of the winding part will move during the operation of the superconducting magnet. It cannot be a fundamental solution. Further, the method of providing and supporting the reinforcing material on the outside of the coil has a drawback in that it is substantially impossible to apply the tightening force applied to the reinforcing material to the entire superconducting wire material in which several layers are wound. Further, in the method disclosed in Japanese Patent Laid-Open No. 62-173705, the winding portion of the outermost coil is not reinforced, and the superconducting member of the winding portion still remains movable.

【0008】本発明は、こうした従来技術における技術
的課題を解決する為になされたものであって、その目的
は、超電導マグネットの作動時における超電導線材の動
きを阻止することによってクエンチの発生を防止する様
にした超電導マグネット、およびその様な超電導マグネ
ットの巻線として有用な超電導線材を提供することにあ
る。
The present invention has been made in order to solve the technical problem in the prior art, and its purpose is to prevent the occurrence of quench by preventing the movement of the superconducting wire during the operation of the superconducting magnet. It is an object of the present invention to provide a superconducting magnet configured to do so, and a superconducting wire useful as a winding wire of such a superconducting magnet.

【0009】[0009]

【課題を解決するための手段】上記目的を達成し得た本
発明の超電導マグネットとは、巻枠に超電導線材を巻線
して構成される超電導マグネットにおいて、巻線時の周
囲温度から超電導マグネット作動時の温度までの超電導
線材の熱収縮量が、巻枠の熱収縮量よりも大きくなる様
に構成されたものである点に要旨を有するものである。
The superconducting magnet of the present invention which can achieve the above object is a superconducting magnet constituted by winding a superconducting wire on a winding frame. The gist is that the heat shrinkage of the superconducting wire up to the operating temperature is larger than the heat shrinkage of the bobbin.

【0010】また上記目的を達成し得た本発明の超電導
線材とは、巻枠に巻線されて超電導マグネットを構成す
る超電導線材であって、巻線時の周囲温度から超電導マ
グネット作動時の温度までの超電導線材の熱収縮率が、
巻枠の熱収縮率よりも大きいものである点に要旨を有す
るものである。
The superconducting wire of the present invention which can achieve the above object is a superconducting wire which is wound around a winding frame to form a superconducting magnet, and which varies from the ambient temperature during winding to the temperature during operation of the superconducting magnet. The heat shrinkage of superconducting wire up to
The gist is that it is higher than the heat shrinkage rate of the reel.

【0011】本発明の上記超電導線材は、具体的には、
超電導フィラメントと、Al合金またはAg合金を主体
とする母材からなるものが挙げられる。またこの超電導
線材の超電導フィラメントとしては、Nb−Ti合金フ
ィラメントが最も好ましい。
The above-mentioned superconducting wire of the present invention is specifically
Examples include a superconducting filament and a base material mainly composed of an Al alloy or an Ag alloy. The Nb-Ti alloy filament is most preferable as the superconducting filament of this superconducting wire.

【0012】上記のAl合金またはAg合金を主体とす
る母材からなる上記超電導線材を巻線する巻枠の素材と
しては、ステンレス鋼が挙げられ、こうした超電導線材
と巻枠の組み合わせで構成される超電導マグネットが、
本発明の効果を最大限に発揮する。
As a material for the winding frame for winding the superconducting wire made of a base material mainly composed of the above Al alloy or Ag alloy, stainless steel can be cited, which is constituted by a combination of such a superconducting wire and the winding frame. Superconducting magnet
The effects of the present invention are maximized.

【0013】[0013]

【発明の実施の形態】超電導マグネットの構成部材であ
る巻枠の素材としては、ステンレス鋼が一般的に使用さ
れている。一方、超電導線材としては、Nb3 SnやN
b−Ti等の超電導フィラメントを、無酸素銅からなる
母材中に多数埋設した構成のものが一般的である。こう
した組み合わせにおいては、超電導線材の巻線時の温度
(通常は常温)から超電導マグネット作動時の温度(通
常は液体ヘリウム温度)までの超電導線材の熱収縮量
は、巻枠の熱収縮量よりも小さいものとなり、これによ
って超電導マグネットの作動時に超電導線材が動くもの
と考えられた。
BEST MODE FOR CARRYING OUT THE INVENTION Stainless steel is generally used as a material for a winding frame which is a constituent member of a superconducting magnet. On the other hand, as the superconducting wire, Nb 3 Sn or N
Generally, a large number of superconducting filaments such as b-Ti are embedded in a base material made of oxygen-free copper. In such a combination, the heat shrinkage of the superconducting wire from the winding temperature of the superconducting wire (usually room temperature) to the operating temperature of the superconducting magnet (usually liquid helium temperature) is less than that of the bobbin. It became smaller, and it was thought that the superconducting wire would move when the superconducting magnet was activated.

【0014】そこで本発明者らは、上記の関係を踏まえ
て、巻線された超電導線材の動きを阻止できる様な構成
について様々な角度から検討した。その結果、巻線時の
温度から超電導マグネット作動時の温度までの超電導線
材の熱収縮量が、巻枠の熱収縮量よりも大きくなる様に
超電導マグネットを構成すれば、上記目的が見事に達成
されることを見いだした。またこうした超電導マグネッ
トを構成する為には、その素材としての超電導線材を、
巻線時の温度から超電導マグネット作動時の温度までの
超電導線材の熱収縮率が、巻枠の熱収縮率よりも大きく
ものとすれば良いことを見いだし、本発明を完成した。
Therefore, based on the above relations, the present inventors have studied from various angles a structure capable of preventing the movement of the wound superconducting wire. As a result, if the superconducting magnet is constructed so that the amount of heat shrinkage of the superconducting wire from the temperature during winding to the temperature during operation of the superconducting magnet is greater than the amount of heat shrinkage of the bobbin, the above-mentioned object can be achieved successfully. I was found to be done. In addition, in order to configure such a superconducting magnet, the superconducting wire as its material is
The inventors have found that the heat shrinkage rate of the superconducting wire from the temperature during winding to the temperature during operation of the superconducting magnet should be higher than the heat shrinkage rate of the winding frame, and completed the present invention.

【0015】本発明の超電導マグネットは上記の如く構
成されるが、要するに、超電導線材と巻枠における熱収
縮量の関係を上記の様に規定することによって、超電導
マグネットを例えば液体ヘリウム温度にまで冷却したと
きに、超電導線材自体に補強材としての機能を発揮させ
て、巻枠に超電導線材を固定する様にしたものである。
即ち、こうした構成によれば、超電導線材を巻枠に巻線
した後、巻線時の温度から超電導マグネット作動時の温
度まで冷却したときに、超電導線材の熱収縮量が巻枠の
熱収縮量よりも大きいので、張力をかけて巻線された超
電導線材がいっそう強固に巻枠に固定されて超電導線材
が動くことが阻止されるのである。そしてこれによっ
て、超電導マグネットにおけるクエンチの発生が防止で
きたのである。
The superconducting magnet of the present invention is constructed as described above. In short, the superconducting magnet is cooled to, for example, liquid helium temperature by defining the relationship between the superconducting wire and the amount of heat shrinkage in the bobbin as described above. In doing so, the superconducting wire itself is made to function as a reinforcing material, so that the superconducting wire is fixed to the winding frame.
That is, according to such a configuration, when the superconducting wire is wound around the winding frame and then cooled from the temperature at the time of winding to the temperature at which the superconducting magnet operates, the amount of heat shrinkage of the superconducting wire is the amount of heat shrinkage of the bobbin. Therefore, the superconducting wire wound under tension is more firmly fixed to the bobbin to prevent the superconducting wire from moving. By doing so, the occurrence of quench in the superconducting magnet could be prevented.

【0016】本発明における超電導線材の具体例として
は、超電導フィラメントと、Al合金またはAg合金を
主体とする母材からなるものが挙げられる。この様に、
Al合金やAg合金を主体とする母材からなる超電導線
材を用いると、ステンレス鋼製巻枠との関係において、
本発明で規定する要件を満足することになり、上記した
本発明の効果が達成されるのである。
As a specific example of the superconducting wire in the present invention, a superconducting filament and a base material mainly composed of an Al alloy or an Ag alloy can be mentioned. Like this
When a superconducting wire made of a base material mainly composed of an Al alloy or an Ag alloy is used, in relation to a stainless steel reel,
The requirements defined by the present invention are satisfied, and the effects of the present invention described above are achieved.

【0017】尚上記において、「(Al合金またはAg
合金を)主体とする」としたのは、次の理由からであ
る。即ち、本発明においては、例えば2重管で母材を構
成することも有効であり、こうした構成を採用する場合
には、母材の最外層部分を構成する素材が上記した様な
Al合金やAg合金であれば本発明の効果が達成される
ので、こうした場合を考慮して「Al合金またはAg合
金を主体とする母材」としたのである。またこうした主
旨からして、母材の内層部分(即ち、超電導フィラメン
トが埋設される部分)を従来のCu(またはCu合金)
製とし、その最外層部分をAl合金やAg合金で構成す
る様にしても良い。
In the above, "(Al alloy or Ag
It is based on the following reason. That is, in the present invention, it is also effective to configure the base material with, for example, a double pipe, and when adopting such a configuration, the material forming the outermost layer portion of the base material is the Al alloy or Since the effect of the present invention can be achieved with an Ag alloy, in consideration of such a case, the "base material mainly containing an Al alloy or an Ag alloy" is used. From this point of view, the inner layer portion of the base material (that is, the portion in which the superconducting filament is embedded) is made of conventional Cu (or Cu alloy).
The outermost layer may be made of Al alloy or Ag alloy.

【0018】ところでAl合金やAg合金を主体とする
母材を用いた場合に、その中に埋設される超電導フィラ
メントとしてNb3 Snを用いることも考えられるが、
Nb 3 Sn超電導フィラメントは脆いので、熱収縮量が
大きい母材からの応力が付加されたときに母材中のNb
3 Sn超電導フィラメントが損傷してしまうことがあ
る。また酸化物超電導物質をシース材に充填した酸化物
超電導線材においても、こうした問題が生じる。この
点、Nb−Ti合金フィラメントであれば、靭性が良好
であるので、多少の応力が付加されてもこうした不都合
が発生することがないので、Al合金やAg合金を主体
とする母材中に埋設される超電導フィラメントとして
は、Nb−Ti合金フィラメントが最も好ましい。
By the way, mainly Al alloys and Ag alloys are used.
When a base material is used, the superconducting filler embedded in it
Ment as NbThree It is possible to use Sn, but
Nb Three Since the Sn superconducting filament is brittle, the amount of heat shrinkage
Nb in base material when stress from large base material is applied
Three The Sn superconducting filament may be damaged.
You. Also, an oxide in which a sheath material is filled with an oxide superconducting material
This problem also occurs in the superconducting wire. this
Point, if it is Nb-Ti alloy filament, toughness is good
Therefore, even if some stress is applied, such inconvenience
Does not occur, so Al alloys and Ag alloys are mainly used
As a superconducting filament embedded in the base material
Are most preferably Nb-Ti alloy filaments.

【0019】本発明で超電導線材の母材として用いるA
l合金やAg合金の種類については、特に限定されるも
のではなく、例えばAl−Cu系,Al−Mg系,Al
−Si系,Al−Mn系,Al−Cu−Mg系,Al−
Mg−Zn系,Al−Mg−Si系等のAl合金や、A
g−Cu系,Ag−Mg系,Ag−Zn系等のAg合金
等、各合金元素を所定量含む公知の各種合金が使用でき
る。またこれらの合金は、例えば前述した2重管の様
に、複合的に使用することも可能である。
A used as a base material of a superconducting wire in the present invention
The type of the l alloy or the Ag alloy is not particularly limited, and may be, for example, Al-Cu system, Al-Mg system, or Al.
-Si system, Al-Mn system, Al-Cu-Mg system, Al-
Al alloys such as Mg-Zn type and Al-Mg-Si type, and A
Various known alloys containing a predetermined amount of each alloy element, such as Ag alloys such as g-Cu-based, Ag-Mg-based, Ag-Zn-based, etc., can be used. Further, these alloys can be used in combination as in the double tube described above.

【0020】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any change in the design of the present invention can be made without departing from the spirit of the preceding and the following. It is included in the technical scope.

【0021】[0021]

【実施例】【Example】

実施例1 直径:6mm×長さ:200mmのNb−Ti合金製ロ
ッド55本を、直径:67mm×長さ:200mmのA
l−Mg合金製母材の予め穿孔した孔に埋設し、両端に
Alの蓋を溶接して複合ビレットとした。この複合ビレ
ットを400℃、押出し比20で押出し、その後熱処理
と伸線を繰り返して、直径:1mmのNb−Ti合金超
電導線材とした。このとき熱処理温度は400℃、熱処
理時間は12時間とし、合計で4回繰り返した。
Example 1 55 rods of Nb-Ti alloy having a diameter of 6 mm and a length of 200 mm were used, and an A of a diameter of 67 mm and a length of 200 mm was used.
It was embedded in a pre-drilled hole in a base material made of 1-Mg alloy, and aluminum lids were welded to both ends to obtain a composite billet. This composite billet was extruded at 400 ° C. at an extrusion ratio of 20, and then heat treatment and wire drawing were repeated to obtain an Nb—Ti alloy superconducting wire having a diameter of 1 mm. At this time, the heat treatment temperature was 400 ° C. and the heat treatment time was 12 hours, which was repeated four times in total.

【0022】得られたNb−Ti合金超電導線材を、室
温から20Kまで冷却しながら収縮量を測定し、液体ヘ
リウム温度での収縮率を外挿法で求めたところ0.31
9%であった。また巻枠材として用いるSUS304の
液体ヘリウム温度での収縮率を同様の方法で求めたとこ
ろ、0.306%であった。
The obtained Nb-Ti alloy superconducting wire was cooled from room temperature to 20K, the shrinkage was measured, and the shrinkage at liquid helium temperature was determined by extrapolation to be 0.31.
It was 9%. Further, the shrinkage ratio of SUS304 used as the reel material at the temperature of liquid helium was determined by the same method to be 0.306%.

【0023】上記のNb−Ti合金超電導線材を、室温
でSUS304製の巻枠に巻線して超電導マグネットを
製作した。この超電導マグネットを液体ヘリウム温度ま
で冷却して励磁試験を行なったところ、定格の運転電流
までクエンチなしで励磁できた。
The above Nb-Ti alloy superconducting wire was wound around a SUS304 reel at room temperature to produce a superconducting magnet. When this superconducting magnet was cooled to liquid helium temperature and subjected to an excitation test, it was possible to excite up to the rated operating current without quenching.

【0024】実施例2 直径:6mm×長さ:200mmのNb−Ti合金製ロ
ッド55本を、直径:67mm×長さ:200mmのA
g−Mg合金製母材の予め穿孔した孔に埋設し、両端に
Agの蓋を溶接して複合ビレットとした。この複合ビレ
ットを400℃、押出し比20で押出し、その後熱処理
と伸線を繰り返して、直径:1mmのNb−Ti合金超
電導線材とした。このとき熱処理温度は400℃、熱処
理時間は12時間とし、合計で4回繰り返した。
Example 2 55 rods made of Nb-Ti alloy having a diameter of 6 mm and a length of 200 mm, and an A having a diameter of 67 mm and a length of 200 mm.
It was embedded in a pre-drilled hole of a base material made of a g-Mg alloy, and Ag lids were welded to both ends to obtain a composite billet. This composite billet was extruded at 400 ° C. at an extrusion ratio of 20, and then heat treatment and wire drawing were repeated to obtain an Nb—Ti alloy superconducting wire having a diameter of 1 mm. At this time, the heat treatment temperature was 400 ° C. and the heat treatment time was 12 hours, which was repeated four times in total.

【0025】得られたNb−Ti合金超電導線材を、室
温から20Kまで冷却しながら収縮量を測定し、液体ヘ
リウム温度での収縮率を外挿法で求めたところ0.31
5%であった。また巻枠材として用いるSUS304の
液体ヘリウム温度での収縮率を同様の方法で求めたとこ
ろ、0.306%でであった。
The shrinkage of the obtained Nb-Ti alloy superconducting wire was measured while cooling it from room temperature to 20K, and the shrinkage at liquid helium temperature was determined by extrapolation to be 0.31.
5%. Further, the shrinkage rate of SUS304 used as the reel material at the temperature of liquid helium was determined by the same method to be 0.306%.

【0026】上記のNb−Ti合金超電導線材を、室温
でSUS304製の巻枠に巻線して超電導マグネットを
製作した。この超電導マグネットを液体ヘリウム温度ま
で冷却して励磁試験を行なったところ、定格の運転電流
までクエンチなしで励磁できた。
The above Nb-Ti alloy superconducting wire was wound around a SUS304 reel at room temperature to produce a superconducting magnet. When this superconducting magnet was cooled to liquid helium temperature and subjected to an excitation test, it was possible to excite up to the rated operating current without quenching.

【0027】比較例1 直径:6mm×長さ:200mmのNb−Ti合金製ロ
ッド55本を、直径:67mm×長さ:200mmの無
酸素銅製母材の予め穿孔した孔に埋設し、両端に無酸素
銅の蓋を溶接して複合ビレットとした。この複合ビレッ
トを400℃、押出し比20で押出し、その後熱処理と
伸線を繰り返して、直径:1mmのNb−Ti合金超電
導線材とした。このとき熱処理温度は400℃、熱処理
時間は12時間とし、合計で4回繰り返した。
Comparative Example 1 55 Nb-Ti alloy rods having a diameter of 6 mm and a length of 200 mm were embedded in pre-drilled holes of a base material made of oxygen-free copper and having a diameter of 67 mm and a length of 200 mm at both ends. An oxygen-free copper lid was welded to form a composite billet. This composite billet was extruded at 400 ° C. at an extrusion ratio of 20, and then heat treatment and wire drawing were repeated to obtain an Nb—Ti alloy superconducting wire having a diameter of 1 mm. At this time, the heat treatment temperature was 400 ° C. and the heat treatment time was 12 hours, which was repeated four times in total.

【0028】得られたNb−Ti合金超電導線材を、室
温から20Kまで冷却しながら収縮量を測定し、液体ヘ
リウム温度での収縮率を外挿法で求めたところ、0.2
65%であった。また巻枠材であるSUS304の液体
ヘリウム温度での収縮率を同様の方法で求めると0.3
06%であった。
The obtained Nb-Ti alloy superconducting wire was cooled from room temperature to 20K, the shrinkage was measured, and the shrinkage at liquid helium temperature was determined by extrapolation.
It was 65%. The shrinkage ratio of SUS304, which is a reel material, at the temperature of liquid helium is 0.3 in the same manner.
It was 06%.

【0029】上記のNb−Ti合金超電導線材を、室温
でSUS304製の巻枠に巻線して超電導マグネットを
製作した。この超電導マグネットを液体ヘリウム温度ま
で冷却して励磁試験を行なったところ、定格の運転電流
の5/7の電流まで通電したときクエンチが発生して正
常に励磁できなかった。
The above Nb-Ti alloy superconducting wire was wound around a SUS304 reel at room temperature to produce a superconducting magnet. When this superconducting magnet was cooled to the temperature of liquid helium and subjected to an excitation test, it was found that quenching occurred when the superconducting magnet was energized to a current of 5/7 of the rated operating current and could not be excited normally.

【0030】[0030]

【発明の効果】本発明は以上の様に構成されており、巻
線時の周囲温度から超電導マグネットの作動時の温度ま
での超電導線材の熱収縮量が、巻枠の熱収縮量よりも大
きくなる様に構成することによって、超電導線材の動き
を阻止して超電導マグネットにおけるクエンチの発生を
防止することが可能となった。またこうした効果を達成
することのできる超電導線材が実現できた。
The present invention is configured as described above, and the amount of heat shrinkage of the superconducting wire from the ambient temperature during winding to the temperature during operation of the superconducting magnet is greater than that of the bobbin. With this structure, it is possible to prevent the movement of the superconducting wire and prevent the occurrence of quench in the superconducting magnet. In addition, a superconducting wire rod that can achieve these effects was realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】超電導マグネットの構成の概略を示す断面図で
ある。
FIG. 1 is a sectional view showing an outline of a configuration of a superconducting magnet.

【符号の説明】[Explanation of symbols]

1 巻枠 2 超電導線材 3 超電導マグネット 1 reel 2 superconducting wire 3 superconducting magnet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 巻枠に超電導線材を巻線して構成される
超電導マグネットにおいて、巻線時の周囲温度から超電
導マグネット作動時の温度までの超電導線材の熱収縮量
が、巻枠の熱収縮量よりも大きくなる様に構成されたも
のであることを特徴とする超電導マグネット。
1. In a superconducting magnet constructed by winding a superconducting wire on a winding frame, the amount of heat shrinkage of the superconducting wire from the ambient temperature during winding to the temperature during operation of the superconducting magnet is A superconducting magnet, which is configured to be larger than the quantity.
【請求項2】 巻枠に巻線されて超電導マグネットを構
成する超電導線材であって、巻線時の周囲温度から超電
導マグネット作動時の温度までの超電導線材の熱収縮率
が、巻枠の熱収縮率よりも大きいものであることを特徴
とする超電導線材。
2. A superconducting wire which is wound around a winding frame to form a superconducting magnet, wherein the heat shrinkage rate of the superconducting wire from the ambient temperature during winding to the temperature during operation of the superconducting magnet is A superconducting wire which is characterized by having a shrinkage ratio greater than that of the superconducting wire.
【請求項3】 超電導フィラメントと、Al合金または
Ag合金を主体とする母材からなるものである請求項2
に記載の超電導線材。
3. A superconducting filament and a base material mainly containing an Al alloy or an Ag alloy.
The superconducting wire according to.
【請求項4】 前記超電導フィラメントが、Nb−Ti
合金フィラメントである請求項3に記載の超電導線材。
4. The superconducting filament is Nb-Ti.
The superconducting wire according to claim 3, which is an alloy filament.
【請求項5】 請求項3または4に記載の超電導線材
を、ステンレス鋼からなる巻枠に巻線したものであるこ
とを特徴とする超電導マグネット。
5. A superconducting magnet, characterized in that the superconducting wire according to claim 3 or 4 is wound around a winding frame made of stainless steel.
JP8016856A 1996-02-01 1996-02-01 Superconducting magnet and superconductive wire material Withdrawn JPH09213519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8016856A JPH09213519A (en) 1996-02-01 1996-02-01 Superconducting magnet and superconductive wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8016856A JPH09213519A (en) 1996-02-01 1996-02-01 Superconducting magnet and superconductive wire material

Publications (1)

Publication Number Publication Date
JPH09213519A true JPH09213519A (en) 1997-08-15

Family

ID=11927870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8016856A Withdrawn JPH09213519A (en) 1996-02-01 1996-02-01 Superconducting magnet and superconductive wire material

Country Status (1)

Country Link
JP (1) JPH09213519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091290A (en) * 2009-10-26 2011-05-06 Fujikura Ltd Superconducting coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091290A (en) * 2009-10-26 2011-05-06 Fujikura Ltd Superconducting coil

Similar Documents

Publication Publication Date Title
US20090176649A1 (en) Permanent Current Switch
JP2009188109A (en) Superconductive coil and manufacturing method thereof
US5319333A (en) Superconducting homogeneous high field magnetic coil
JP7335886B2 (en) Insulation coating compound superconducting wire and its rewinding method
JP2007128686A (en) Nb3Sn SUPERCONDUCTING WIRE MATERIAL MANUFACTURED BY INSIDE DIFFUSION METHOD
JPH09213519A (en) Superconducting magnet and superconductive wire material
JP2009188108A (en) Superconductive coil and manufacturing method thereof
Sugimoto et al. Performance of Polyvinyl Formal Insulated Cu–Nb/Nb 3 Sn Wires for React-and-Wind Process
JPH09148123A (en) Superconductive coil
JPH11214214A (en) Hybrid superconducting magnet
JP3670708B2 (en) Magnetization method of cylindrical superconducting magnet
JPH065419A (en) Spool of superconducting magnet
JP4045082B2 (en) Superconducting wire
JP2000138118A (en) Oxide superconducting coil
JPH04134808A (en) Superconducting magnet
JPH10107330A (en) Persistent-current switching device and its operating method
JP3322981B2 (en) Permanent current switch
JP2829008B2 (en) Superconducting magnet. Semiconductor single crystal pulling equipment. Nuclear magnetic resonance apparatus and method of manufacturing superconducting magnet
JPH09326513A (en) Magnetic shield body and superconducting magnet device
JPH0992051A (en) Superconductive wire rod, and superconductive conductor using it
JPH07320928A (en) Superconducting magnet
JPS60154509A (en) Manufacture of superconductive magnet
JP3588974B2 (en) Superconducting coil device
JPH07105290B2 (en) Superconducting magnet manufacturing method
JPH09289112A (en) Superconducting magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401