JPH09213307A - Nonaqueous electrolyte system secondary cell - Google Patents

Nonaqueous electrolyte system secondary cell

Info

Publication number
JPH09213307A
JPH09213307A JP8330398A JP33039896A JPH09213307A JP H09213307 A JPH09213307 A JP H09213307A JP 8330398 A JP8330398 A JP 8330398A JP 33039896 A JP33039896 A JP 33039896A JP H09213307 A JPH09213307 A JP H09213307A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
metal
battery according
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8330398A
Other languages
Japanese (ja)
Inventor
Katsuharu Ikeda
克治 池田
Kazuya Hiratsuka
和也 平塚
Takeshi Morimoto
剛 森本
Shinji Matsumoto
伸二 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Elna Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8330398A priority Critical patent/JPH09213307A/en
Publication of JPH09213307A publication Critical patent/JPH09213307A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous system secondary cell of small internal resistance with high energy density. SOLUTION: In a cell provided with a negative electrode 14 with lithium storable and separable, positive electrode 6, nonaqueous system electrolyte containing lithium salt and a vessel, a foaming metal mainly composed of nickel or a fiber-state metal sintered material is charged with a carbon material, capable of storing and separating lithium, together with a binder, to be pressed, the negative electrode 4 is formed, its thickness is set to 0.1mm or more and porosity to 20 to 50%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液系リチ
ウムイオン二次電池(以下非水系二次電池と呼ぶ)に関
し、特に、充放電サイクル耐久性に優れ、内部抵抗が小
さく大電流での充放電が可能な非水系二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte type lithium ion secondary battery (hereinafter referred to as a non-aqueous type secondary battery), and particularly to excellent charge / discharge cycle durability, small internal resistance and large current. The present invention relates to a non-aqueous secondary battery that can be charged and discharged.

【0002】[0002]

【従来の技術】アルカリ金属を活物質とする電池は、高
いエネルギ密度を有する高性能の電池として注目されて
いる。そのなかでも、リチウム電池は、特に高いエネル
ギ密度を有し、貯蔵性などの信頼性においても優れてい
るため、既に一次電池として小型の電子機器の電源に広
く用いられている。また、最近は、小型携帯用電気機器
の普及に伴い、充電して繰り返し使えるリチウム二次電
池の需要が急増している。
2. Description of the Related Art Batteries using an alkali metal as an active material are attracting attention as high-performance batteries having high energy density. Among them, the lithium battery has a particularly high energy density and is excellent in reliability such as storability, so that it has already been widely used as a power source for small electronic devices as a primary battery. In addition, recently, with the spread of small portable electric devices, the demand for lithium secondary batteries that can be charged and used repeatedly is rapidly increasing.

【0003】また、リチウム二次電池の負極材料には、
たとえば、リチウム金属、リチウム合金又はリチウムを
吸蔵、離脱可能な炭素材料にリチウムを吸蔵させた炭素
質材料が使用されている。リチウム金属を負極に用いた
非水系二次電池では、高エネルギ密度の電池が得られる
が、充放電サイクルでリチウム金属の溶解と析出が繰り
返されるときに析出した活性なリチウムが電解液の溶媒
を還元するため、充放電可能なリチウムが失なわれて負
極の充放電効率が低下し、また、リチウムのデンドライ
ト(樹枝状結晶)が生成して内部短絡する危険性があ
る。
Further, as a negative electrode material of a lithium secondary battery,
For example, a carbonaceous material in which lithium is occluded in a lithium metal, a lithium alloy, or a carbon material capable of occluding and releasing lithium is used. A non-aqueous secondary battery using lithium metal as the negative electrode can provide a battery with high energy density, but active lithium deposited when the dissolution and deposition of lithium metal is repeated in the charge / discharge cycle serves as a solvent for the electrolytic solution. Due to the reduction, the chargeable / dischargeable lithium is lost to reduce the charge / discharge efficiency of the negative electrode, and there is a risk that lithium dendrites (dendritic crystals) are generated and an internal short circuit occurs.

【0004】二次電池の正極は、たとえば、正極材料、
導電材及びバインダに溶剤を混合したスラリを、金属箔
の集電体の表面に塗工して厚さが50〜100μmの厚
さの電極層を形成し、次いでこれを乾燥して正極シート
としている。また、負極は、たとえば、負極材料とバイ
ンダに溶剤を混合したスラリを、金属箔の集電体の表面
に塗工して厚さが50〜100μmの厚さの電極層を形
成し、次いでこれを乾燥して負極シートとしている。
The positive electrode of the secondary battery is, for example, a positive electrode material,
A slurry in which a conductive material and a binder are mixed with a solvent is applied to the surface of a current collector of a metal foil to form an electrode layer having a thickness of 50 to 100 μm, which is then dried to obtain a positive electrode sheet. There is. For the negative electrode, for example, a slurry in which a solvent is mixed with a negative electrode material and a binder is applied to the surface of a current collector of a metal foil to form an electrode layer having a thickness of 50 to 100 μm, and then this is formed. Is dried to obtain a negative electrode sheet.

【0005】次いで、正極シート及び負極シートをそれ
ぞれ所要の寸法に切断したシート状の正極と負極との間
に、セパレータのフィルムを挟んだものを捲回して素子
とし、又は正極シート及び負極シートをそれぞれ所要の
寸法に切断したシート状の正極と負極との間にセパレー
タのフィルムを挟んで多数交互に積層して素子とし、こ
の素子を容器に収容し、電解液を含浸して電池としてい
る。
Then, a positive electrode sheet and a negative electrode sheet are cut into a desired size, and a separator film is sandwiched between the positive electrode and the negative electrode to form an element, or the positive electrode sheet and the negative electrode sheet are formed. A separator film is sandwiched between a sheet-shaped positive electrode and a negative electrode, which are cut into desired dimensions, and a large number of layers are alternately laminated to form an element. The element is housed in a container and impregnated with an electrolytic solution to form a battery.

【0006】コイン型非水系二次電池では、その正極
は、正極材料、導電材及びバインダからなる混合物の円
盤状成形体、又はこれらの材料をシート状に成形後円形
に打ち抜いたものが使用される。また、負極は、負極材
料とバインダとの混合物を加圧成形した円盤、又は混合
物をシート状に成形後円形に打ち抜いたものが使用され
る。コイン型電池では、これらの正極と負極の間に不織
布からなるセパレーターを挟んで素子とし、この素子を
コイン型容器に収容して非水系電解液を含浸したもので
ある。
In the coin-type non-aqueous secondary battery, the positive electrode is a disk-shaped molded product of a mixture of a positive electrode material, a conductive material and a binder, or a material obtained by molding these materials into a sheet and punching them into a circle. It Further, as the negative electrode, a disk obtained by pressure-molding a mixture of the negative electrode material and a binder, or a mixture obtained by molding the mixture into a sheet and punching it into a circle is used. In a coin-type battery, a separator made of a non-woven fabric is sandwiched between the positive electrode and the negative electrode to form an element, which is housed in a coin-shaped container and impregnated with a non-aqueous electrolyte solution.

【0007】[0007]

【発明が解決しようとする課題】非水系二次電池では、
通常電極の厚さを0.5〜5mmの厚さとしている。電
極をこの程度の厚さにする場合、金属箔のような平面的
な集電体を電極の片面に配置して電池とすると、電極と
集電体との間に距離があり、電極の厚さ方向の電気抵
抗、すなわち内部抵抗が大きく、リチウムイオンの拡散
距離が長いため、電極材料の利用率が著しく低く、この
分エネルギ密度と容量が小さいという問題がある。
In the non-aqueous secondary battery,
The thickness of the electrode is usually 0.5 to 5 mm. When making the electrode to this thickness, if a flat collector such as a metal foil is placed on one side of the electrode to form a battery, there is a distance between the electrode and the collector, and Since the electric resistance in the vertical direction, that is, the internal resistance is large and the diffusion distance of lithium ions is long, the utilization factor of the electrode material is remarkably low, and there is a problem that the energy density and the capacity are small accordingly.

【0008】また、正極材料と負極材料は、充放電サイ
クルの繰り返しによって膨張、収縮を繰り返すため、電
極内の電極材料の粒子間の接触が絶たれて内部抵抗が増
大したり、電極から電極材料の粒子が脱落して部分的に
充放電に利用されない電極材料が生じ、この分電池の容
量が減少し、内部抵抗が増大したりするなどの問題があ
る。
Further, since the positive electrode material and the negative electrode material repeatedly expand and contract due to repeated charge and discharge cycles, the contact between the particles of the electrode material in the electrode is cut off to increase the internal resistance, or the electrode to electrode material is increased. There is a problem in that the particles of the particles fall off and an electrode material that is not used for charging and discharging is partially generated, and the capacity of the battery is reduced and the internal resistance is increased.

【0009】本発明は、従来技術におけるこれらの問題
点を解決し、内部抵抗が小さく、充放電サイクルを繰り
返しても電極材料が電極から脱落せず、電池容量が減少
したり内部抵抗が増大したりしない高エネルギ密度の非
水系二次電池を提供することを目的とする。
The present invention solves these problems in the prior art, has a small internal resistance, the electrode material does not fall off from the electrode even after repeated charge and discharge cycles, and the battery capacity decreases and the internal resistance increases. It is an object of the present invention to provide a high energy density non-aqueous secondary battery that does not burn.

【0010】[0010]

【課題を解決するための手段】本発明の非水系二次電池
は、リチウムを吸蔵、離脱可能な負極と、リチウムを吸
蔵、離脱可能な正極と、リチウム塩を含む非水系電解液
と、これらを収容する容器とを備え、前記負極が、ニッ
ケルを主成分とする発泡状金属又は繊維状金属焼結体
に、リチウムを吸蔵、離脱可能な炭素材料がバインダと
ともに充填されプレスされたものであり、その厚さが
0.1mm以上で、空隙率が20〜50%であることを
特徴とする。
The non-aqueous secondary battery of the present invention comprises a negative electrode capable of occluding and releasing lithium, a positive electrode capable of occluding and releasing lithium, a non-aqueous electrolyte containing a lithium salt, and And a container for accommodating the negative electrode, wherein the negative electrode is formed by pressing a foamed metal or fibrous metal sintered body containing nickel as a main component, a lithium-storing and desorbing carbon material together with a binder. The thickness is 0.1 mm or more, and the porosity is 20 to 50%.

【0011】リチウムを吸蔵、離脱可能な炭素材料とし
ては、人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、燐片
状黒鉛又はこれらの熱処理物のほか、有機物を様々な条
件で熱分解した炭素材料を用いることができる。炭素材
料の粉末としては、粒子径(直径)が1〜50μmのも
のを用いるのが好ましい。その理由は、粒子径が1μm
未満であると嵩張って取扱いにくく、粒子径が50μm
超であると電池容量が減少する傾向があるためである。
Examples of carbon materials capable of inserting and extracting lithium include artificial graphite, natural graphite, soil graphite, expansive graphite, scaly graphite and heat-treated materials thereof, as well as carbon materials obtained by thermally decomposing organic substances under various conditions. Can be used. As the carbon material powder, it is preferable to use a powder having a particle diameter (diameter) of 1 to 50 μm. The reason is that the particle size is 1 μm
If it is less than 1, it is bulky and difficult to handle, and the particle size is 50 μm.
This is because the battery capacity tends to decrease if it exceeds the limit.

【0012】上記炭素材料の内、好ましくはメソフェー
ズ球状カーボン又はメソフェーズカーボン短繊維が使用
される。メソフェーズ球状カーボン用いると、球状であ
ることによって高密度に充填でき単位体積当りの容量が
大きくなる。好ましくは50μm以下の粒径のメソフェ
ーズ球状カーボンを使用することによって大きい電池容
量を得られる。メソフェーズカーボン短繊維を用いる
と、短繊維の隙間をぬって効率よく電解液が電極材料に
供給され、大電流による充放電特性が良好となる。好ま
しくは長さが100μm以下のメソフェーズカーボン短
繊維であると、集電体の気孔中への充填が容易となる。
Of the above carbon materials, mesophase spherical carbon or mesophase short carbon fiber is preferably used. When the mesophase spherical carbon is used, it can be packed at a high density due to its spherical shape, and the capacity per unit volume becomes large. A large battery capacity can be obtained by using mesophase spherical carbon having a particle size of preferably 50 μm or less. When the mesophase short carbon fibers are used, the electrolytic solution is efficiently supplied to the electrode material through the gaps between the short fibers, and the charge / discharge characteristics due to a large current are improved. When the mesophase short carbon fibers having a length of 100 μm or less are preferable, it becomes easy to fill the pores of the current collector.

【0013】また、炭素材料として、チャー、ピッチ、
コークス等の縮合多環炭化水素化合物の熱分解物を用い
ると高容量の二次電池が得られるので好ましい。
As carbon materials, char, pitch,
It is preferable to use a thermal decomposition product of a condensed polycyclic hydrocarbon compound such as coke because a high capacity secondary battery can be obtained.

【0014】本発明の非水系二次電池の負極では、ニッ
ケルを主成分とする発泡状金属又は繊維状金属焼結体の
集電体に、バインダ、好ましくは含フッ素樹脂のバイン
ダを含む炭素材料が充填される。すなわち、集電体が負
極材料中に三次元的に広がった状態で負極材料と一体化
されているので、負極材料と集電体の間の平均距離が小
さく負極の内部抵抗が小さい。したがって、負極材料の
ほとんどがその機能を発揮するため、容量の大きい電池
が得られ大電流にも耐える。
In the negative electrode of the non-aqueous secondary battery of the present invention, a carbon material containing a binder, preferably a binder of a fluorine-containing resin, in a current collector of a foamed metal or a fibrous metal sintered body containing nickel as a main component. Is filled. That is, since the current collector is integrated with the negative electrode material in a three-dimensionally spread state in the negative electrode material, the average distance between the negative electrode material and the current collector is small, and the internal resistance of the negative electrode is small. Therefore, most of the negative electrode materials exhibit their functions, so that a battery with a large capacity can be obtained and can withstand a large current.

【0015】負極は、たとえば、炭素材料と含フッ素樹
脂からなるバインダに溶媒を混合してスラリとし、この
スラリを発泡状金属のシート又はマット状の繊維状金属
焼結体に塗工後乾燥して得る。好ましくは、次いでプレ
ス等で圧縮し、空隙率を調整する。また、含フッ素樹脂
と架橋剤をトルエン、キシレン等の有機溶媒に溶解し、
これに炭素材料の粉末を混合してスラリとし、このスラ
リを発泡状金属のシートや繊維状金属焼結体のマットに
塗工し、50〜100℃で乾燥して溶剤を除去し、10
0〜180℃に加熱しつつプレス等で圧縮し硬化させて
もよい。
For the negative electrode, for example, a binder made of a carbon material and a fluorine-containing resin is mixed with a solvent to prepare a slurry, and the slurry is applied to a foam metal sheet or a mat-like fibrous metal sintered body and then dried. Get Preferably, it is then compressed with a press or the like to adjust the porosity. Further, the fluorine-containing resin and the crosslinking agent are dissolved in an organic solvent such as toluene or xylene,
Powder of a carbon material is mixed with this to form a slurry, which is applied to a foam metal sheet or a mat of a fibrous metal sintered body, and dried at 50 to 100 ° C. to remove the solvent, and
You may compress and harden with a press etc., heating at 0-180 degreeC.

【0016】負極中では、発泡状金属又は繊維状金属焼
結体と含フッ素樹脂等のバインダが負極材料を縛り付け
ているので、炭素質材料が、充放電サイクルによって膨
張、収縮を繰り返すことがあっても、炭素質材料の粒子
間の接触が保持されて負極の内部抵抗の増大が抑制さ
れ、また、充放電に際して炭素質材料の粒子が負極から
脱落することがなく電池の初期容量を保持できる。
In the negative electrode, since the foamed metal or fibrous metal sintered body and the binder such as the fluorine-containing resin bind the negative electrode material, the carbonaceous material may repeatedly expand and contract due to the charge / discharge cycle. Even if the particles of the carbonaceous material are held in contact with each other, the increase in the internal resistance of the negative electrode is suppressed, and the particles of the carbonaceous material do not fall off from the negative electrode during charge / discharge, and the initial capacity of the battery can be maintained. .

【0017】また、この負極は、プレス等で好ましくは
100〜1000kg/cm2 にて圧縮してその空隙率
を調整することができるので、負極の体積当たりの容量
を大きくできる。また、負極中に適量の隙間を確保して
電解液を容易に負極内に含浸させることができ、リチウ
ムイオンの拡散に必要な経路が確保されるので、大電流
を流したときにも電極材料の利用率が高い。
Since the negative electrode can be compressed with a press or the like, preferably at 100 to 1000 kg / cm 2, to adjust the porosity, the capacity per volume of the negative electrode can be increased. In addition, since an appropriate amount of clearance can be secured in the negative electrode to allow the electrolytic solution to be easily impregnated into the negative electrode, and a route necessary for diffusion of lithium ions is secured, the electrode material can be used even when a large current is applied. Is highly used.

【0018】このように、負極の厚さと空隙率の調整は
発泡状金属又は繊維状金属焼結体にバインダを含む炭素
材料を充填したものをプレス等で圧縮して行うが、その
厚さは、0.1mm以上、好ましくは0.2mm以上と
する。厚さが0.1mm未満であると、電極材料の担持
量が少なく電池容量が小さくなる。また、余りに厚い
と、圧縮による気孔率の調整がしにくいなど、実用性が
劣るため10mm以下とするのが好ましい。この場合、
バインダの融点以上に加熱しつつプレスすると、負極の
強度が大きくなって電池特性が顕著に向上する。また、
空隙率が小さいと電解液の含浸が難しくなり、電解液を
経由するイオン伝導性が低下し、負極材料の働きが制限
されて電池容量が低下するので、空隙率は20〜50
%、好ましくは25〜40%とするのが好ましい。空隙
率は、空隙のしめる体積÷見かけの体積×100で表さ
れ、空隙のしめる体積は水銀圧入法で測定される。
As described above, the thickness and porosity of the negative electrode are adjusted by compressing a foamed metal or fibrous metal sintered body filled with a carbon material containing a binder with a press or the like. 0.1 mm or more, preferably 0.2 mm or more. When the thickness is less than 0.1 mm, the amount of electrode material carried is small and the battery capacity becomes small. If it is too thick, it is difficult to adjust the porosity by compression. in this case,
When pressed while being heated to the melting point of the binder or higher, the strength of the negative electrode is increased and the battery characteristics are significantly improved. Also,
If the porosity is small, impregnation with the electrolytic solution becomes difficult, the ionic conductivity via the electrolytic solution decreases, the function of the negative electrode material is limited, and the battery capacity decreases, so the porosity is 20 to 50.
%, Preferably 25-40%. The porosity is represented by the volume of the void / apparent volume × 100, and the volume of the void is measured by mercury porosimetry.

【0019】ニッケルを主成分とする発泡状金属は、好
ましくは連続した気泡を有する海綿状の多孔体である。
内部抵抗が小さく、充放電サイクルを繰り返しても容量
の低下が少なく、内部抵抗の増大を防止できるという本
発明の効果が顕著となるように、負極に用いるニッケル
を主成分とする発泡状金属の単位泡の開孔径は、10μ
m〜1.0mmであるのが好ましい。開孔径が10μm
未満であると、炭素材料とバインダからなる混合物の気
泡内への充填が難しくなり、また1.0mm超であると
集電体である発泡状金属と負極材料であるリチウムを吸
蔵させた炭素質材料との間の平均距離が大きくなり、電
極の内部抵抗が増加することになる。
The foamed metal containing nickel as a main component is preferably a spongy porous body having continuous cells.
In order to make the effect of the present invention that the internal resistance is small, the capacity decrease little even after repeating charge and discharge cycles, and the internal resistance can be prevented from increasing, the foamed metal mainly composed of nickel used for the negative electrode is Opening diameter of unit bubble is 10μ
It is preferably m to 1.0 mm. Open hole diameter is 10 μm
When it is less than 1.0, it becomes difficult to fill the mixture of the carbon material and the binder into the air bubbles, and when it is more than 1.0 mm, the carbonaceous material in which the foamed metal as the current collector and lithium as the negative electrode material are occluded The average distance to the material will increase and the internal resistance of the electrode will increase.

【0020】また、ニッケルを主成分とする発泡状金属
の気孔率は、70〜98%であるのが好ましい。気孔率
が70%未満であると、気泡内に充填しうる炭素材料と
バインダからなる混合物の量が減少し、電池の容量が小
さくなる。また、気孔率が98%超であると発泡状金属
の強度が小さくなり、負極材料を縛りつける力が小さく
なるからである。
The porosity of the foamed metal containing nickel as a main component is preferably 70 to 98%. When the porosity is less than 70%, the amount of the mixture of the carbon material and the binder that can be filled in the bubbles decreases, and the battery capacity decreases. Further, when the porosity is more than 98%, the strength of the foamed metal becomes small and the force for binding the negative electrode material becomes small.

【0021】発泡状金属の単位泡の開孔径の場合と同じ
理由によって、ニッケルを主成分とする繊維状金属焼結
体としては、繊維径(直径)が1〜50μmであるのが
好ましい。繊維状金属焼結体としては、短繊維又は長繊
維の焼結体が使用される。その気孔率は、発泡状金属の
場合と同じ理由によって、50〜95%のものを使用す
るのが好ましい。
For the same reason as the case of the open pore diameter of the unit foam of the foam metal, the fiber diameter (diameter) of the sintered fiber metal containing nickel as the main component is preferably 1 to 50 μm. As the fibrous metal sintered body, a sintered body of short fibers or long fibers is used. It is preferable to use a porosity of 50 to 95% for the same reason as in the case of the foamed metal.

【0022】本発明の負極に使用される発泡状金属や繊
維状金属焼結体は、ニッケルを主成分とするものであれ
ば、ニッケル銅合金、ニッケル鉄−クロム合金などのリ
チウムに対して耐食性を有する材料がいずれも使用され
る。また、ニッケルの発泡状金属や繊維状金属焼結体は
市販品の入手が容易であり、前者の例は、住友電気工業
(株)の商品名「CELMET」であり、後者の例は、
日本精線(株)の商品名「CNP−Ni−MAT」であ
る。
The foamed metal or fibrous metal sintered body used for the negative electrode of the present invention is corrosion-resistant to lithium such as nickel-copper alloy and nickel-iron-chromium alloy as long as it has nickel as a main component. Any material with is used. Further, the foamed metal or fibrous metal sintered body of nickel is easily available as a commercial product. The former example is a product name “CELMET” of Sumitomo Electric Industries, Ltd., and the latter example is
The product name of Nippon Seisen Co., Ltd. is "CNP-Ni-MAT".

【0023】電解液には、分解電圧が高い非水系電解液
を採用し、負極と正極のバインダには、電解液の溶媒に
溶けず、電気化学的に非水系二次電池が機能する条件下
で安定な含フッ素樹脂を用いるのが好ましい。含フッ素
樹脂は耐熱性と耐薬品性に優れており、含フッ素樹脂を
バインダに使用すると、電極材料の粒子間の接触の保持
と電極材料の電極からの脱落防止効果が安定し、かつ高
い。バインダに使用する含フッ素樹脂は、ポリテトラフ
ルオロエチレン(PTFE)、ポリビニリデンフロオラ
イド(PVDF)の如き、有機溶剤に分散又は可溶なも
のを使用するのが好ましい。この場合、バインダを有機
溶剤に分散又は溶かしこれと電極材料とを混合して電極
材料のスラリを作り、スラリを集電体に担持するのが好
ましい。なお、含フッ素樹脂としては、硬化剤(架橋剤
等)を使用するものも好ましく使用できる。
As the electrolytic solution, a non-aqueous electrolytic solution having a high decomposition voltage is adopted, and the binder for the negative electrode and the positive electrode is not dissolved in the solvent of the electrolytic solution and the non-aqueous secondary battery functions electrochemically. It is preferable to use a stable fluororesin. The fluororesin has excellent heat resistance and chemical resistance, and when the fluororesin is used as a binder, the effect of maintaining contact between particles of the electrode material and the effect of preventing the electrode material from falling off the electrode are stable and high. As the fluorine-containing resin used for the binder, it is preferable to use a resin that is dispersed or soluble in an organic solvent, such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF). In this case, it is preferable to disperse or dissolve the binder in an organic solvent, mix this with an electrode material to form a slurry of the electrode material, and carry the slurry on the current collector. As the fluorine-containing resin, those using a curing agent (crosslinking agent etc.) can also be preferably used.

【0024】本発明のコイン型の二次電池では、容器の
蓋が好ましくは負極の端子を兼ねており、負極と蓋内面
との間が、好ましくは圧縮状態のニッケル製メッシュに
よって電気的に接続されている。
In the coin-type secondary battery of the present invention, the lid of the container preferably doubles as a negative electrode terminal, and the negative electrode and the inner surface of the lid are electrically connected, preferably by a nickel mesh in a compressed state. Has been done.

【0025】また、本発明のコイン型の二次電池では、
容器の蓋が負極の端子を兼ねている場合、負極と蓋内面
との間は、溶接で電気的に接続することができる。溶接
することによって、電気的な接続がより低抵抗になり、
電極材料を縛り付ける力も増す。溶接は、短時間電流を
流す電気溶接によるのが好ましい。溶接を圧縮状態のニ
ッケル製メッシュと併用するとさらに好ましい。
Further, in the coin type secondary battery of the present invention,
When the lid of the container also serves as the terminal of the negative electrode, the negative electrode and the inner surface of the lid can be electrically connected by welding. By welding, the electrical connection has a lower resistance,
The force to bind the electrode material is also increased. The welding is preferably electric welding in which electric current is passed for a short time. It is more preferred to use the welding with a nickel mesh in the compressed state.

【0026】本発明の好ましい非水系二次電池は、正極
が、アルミニウム、チタニウム、SUS316又はSU
S316Lを主成分とする発泡状金属あるいは繊維状金
属焼結体に、リチウムを吸蔵、離脱可能な正極材料と導
電材との混合物がバインダとともに充填されたものであ
り、その厚さが0.1mm以上で空隙率が20〜50%
であるものが好ましい。
In the preferred non-aqueous secondary battery of the present invention, the positive electrode is aluminum, titanium, SUS316 or SU.
A foamed metal or fibrous metal sintered body containing S316L as a main component is filled with a binder and a mixture of a positive electrode material capable of inserting and extracting lithium and a conductive material, and the thickness thereof is 0.1 mm. With the above, the porosity is 20 to 50%
Is preferred.

【0027】上記のような正極においては、上記した負
極の場合と同様に、正極材料中に三次元的に広がった状
態で正極材料と集電体とが一体化されているので、正極
材料と集電体の間の平均距離が小さく、正極の内部抵抗
がその分小さくなる。その結果、正極材料がすべてその
機能を発揮することになり、容量の大きい電池が得られ
る。
In the positive electrode as described above, as in the case of the negative electrode described above, the positive electrode material and the current collector are integrated in a three-dimensionally spread state in the positive electrode material. The average distance between the current collectors is small, and the internal resistance of the positive electrode is correspondingly small. As a result, all the positive electrode materials will exert their functions, and a battery with a large capacity can be obtained.

【0028】また、リチウムを吸蔵、離脱可能な正極材
料には、例えば、周期表の4、5、6、7、8、9、1
0、11、12、13及び14属に属する金属を主体と
する酸化物、複合酸化物、硫化物等のカルコゲン化物、
及び同じ金属を主体とするオキシハロゲン化物が使用さ
れる。また、ポリアニリン、ポリピロール、ポリチオフ
ェン、ポリアセン、ポリパラフェニレン、又はそれらの
誘導体等の導電性高分子材料がある。
The positive electrode material capable of occluding and releasing lithium is, for example, 4, 5, 6, 7, 8, 9, 1 in the periodic table.
Chalcogenides such as oxides, complex oxides, and sulfides mainly containing metals belonging to groups 0, 11, 12, 13 and 14;
And oxyhalides based on the same metals are used. Further, there are conductive polymer materials such as polyaniline, polypyrrole, polythiophene, polyacene, polyparaphenylene, or their derivatives.

【0029】これらのうち、作動電位が高く、リチウム
を吸蔵、離脱する容量が大きいことによって電池のエネ
ルギ密度を高くできるので、化学式がLiCoO2 、L
iNiO2 、LiMnO2 又はLiMn24 で示され
るスピネル型リチウムマンガン複合酸化物を用いるのが
好ましい。このうち、LiMn24 は特に資源的に豊
富であり、工業的に安価に製造できる点で好ましい正極
材料である。
Among these, since the operating potential is high and the capacity for occluding and desorbing lithium is large, the energy density of the battery can be increased. Therefore, the chemical formulas are LiCoO 2 , L
It is preferable to use a spinel type lithium manganese composite oxide represented by iNiO 2 , LiMnO 2 or LiMn 2 O 4 . Of these, LiMn 2 O 4 is a preferable positive electrode material because it is particularly rich in resources and can be manufactured industrially at low cost.

【0030】また、スピネル型リチウムマンガン系複合
酸化物で、LiMn2-X FeX4(Xは0.4以
下)、LiMn2-Y ZnY4 (YはO.4以下)、L
iMn2- X-Y FeX ZnY4 (Xが0.2〜0.4、
Yが0.04〜0.15)であるものが好ましい。
The spinel-type lithium manganese-based composite oxides include LiMn 2-X Fe X O 4 (X is 0.4 or less), LiMn 2-Y Zn Y O 4 (Y is O.4 or less), L
iMn 2- XY Fe X Zn Y O 4 (X is 0.2 to 0.4,
It is preferable that Y is 0.04 to 0.15).

【0031】なお、正極材料の粉末の粒径は、集電体の
隙間に充填しやすく、リチウムの吸蔵と離脱がスムーズ
に行なわれ、かつあまり嵩高くならないように1〜80
μmとするのが好ましい。
The particle size of the powder of the positive electrode material is 1 to 80 so that the gap between the current collectors can be easily filled, lithium can be smoothly absorbed and desorbed, and can be prevented from becoming too bulky.
It is preferably set to μm.

【0032】本発明の好ましい二次電池では、上記のよ
うな正極材料だけでなく、正極材料と導電材との混合物
がバインダとともに集電体の隙間に充填されている。上
記のような正極材料には粉末が使用されるので、導電材
との混合物としてバインダと共に集電体に充填すること
により、正極の内部抵抗を小さくでき、かつ充放電サイ
クルによって正極がふくらんだり、正極材料が脱落する
のを防止できる。
In the preferred secondary battery of the present invention, not only the positive electrode material as described above, but also the mixture of the positive electrode material and the conductive material is filled in the gap of the current collector together with the binder. Since powder is used for the positive electrode material as described above, by filling the current collector together with a binder as a mixture with a conductive material, the internal resistance of the positive electrode can be reduced, and the positive electrode swells due to charge / discharge cycles, It is possible to prevent the positive electrode material from falling off.

【0033】なお、導電材としては、好ましくは導電性
が良好な天然黒鉛、カーボンブラック又は高度に黒鉛化
した人造黒鉛が使用される。
The conductive material is preferably natural graphite, carbon black or highly graphitized artificial graphite having good conductivity.

【0034】正極材料と導電材とバインダとの混合物
が、集電体である発泡状金属あるいは繊維状金属焼結体
に担持される。正極の集電体に使用する材料は、正極が
作動する電位範囲で安定であって、溶解や溶出が起きな
いものであり、かつ導電性に優れたものであるのが好ま
しく、アルミニウム、チタニウム、SUS316又はS
US316Lを主成分とする発泡状金属あるいは繊維状
金属焼結体はこれらの条件を満たすものである。また、
これらは工業的に製造されている。例えば、アルミニウ
ムの発泡状金属は、Energy Research
and Generation Inc.の商品名「D
uocel Al Foam」であり、SUS316の
焼結体は、日本精線(株)の「Naslon Web
Sintered」である。
A mixture of the positive electrode material, the conductive material and the binder is supported on a foamed metal or fibrous metal sintered body which is a current collector. The material used for the current collector of the positive electrode is stable in the potential range in which the positive electrode operates, preferably does not dissolve or dissolve, and is preferably excellent in conductivity, aluminum, titanium, SUS316 or S
The foamed metal or fibrous metal sintered body containing US316L as a main component satisfies these conditions. Also,
These are manufactured industrially. For example, the foam metal of aluminum is Energy Research.
and Generation Inc. Product name of "D
uocel Al Foam ”, and the sintered body of SUS316 is“ Naslon Web ”manufactured by Nippon Seisen Co., Ltd.
Sintered ".

【0035】発泡状金属は、好ましくは連通する気泡を
有する海綿状の多孔体である。正極の集電体に用いられ
る発泡状金属の単位泡の開孔径は負極の場合と同じ理由
により10μm〜1.0mmであるのが好ましい。
The foam metal is preferably a sponge-like porous material having communicating cells. For the same reason as in the case of the negative electrode, the opening diameter of the unit foam of the foamed metal used for the current collector of the positive electrode is preferably 10 μm to 1.0 mm.

【0036】また、発泡状金属の気孔率は、負極の場合
と同じ理由により70〜98%とするのが好ましい。
The porosity of the foamed metal is preferably 70 to 98% for the same reason as in the case of the negative electrode.

【0037】負極の集電体で説明したのと同じ理由で、
正極に使用するアルミニウム、チタニウム、SUS31
6又はSUS316Lからなる繊維状金属焼結体は、繊
維径を1〜50μmとし、気孔率は、50〜95%とす
るのが好ましい。これら繊維状金属焼結体の好ましい形
態としては、短繊維の焼結体、長繊維の綿状集合体又は
長繊維の焼結体がある。
For the same reason as explained for the negative electrode current collector,
Aluminum, titanium, SUS31 used for positive electrode
The fibrous metal sintered body made of 6 or SUS316L preferably has a fiber diameter of 1 to 50 μm and a porosity of 50 to 95%. Preferred forms of these fibrous metal sintered bodies include a sintered body of short fibers, a cotton-like aggregate of long fibers, and a sintered body of long fibers.

【0038】正極は、たとえば次のようにして製造され
る。すなわち、正極材料の粉末、導電材及びバインダで
ある含フッ素樹脂からなる混合物に、有機溶媒を加えて
スラリとし、このスラリを発泡状金属のシート又は繊維
状金属焼結体のマットに塗工し、乾燥して有機溶媒を除
去する。次いで、プレス等によって好ましくは100〜
1000kg/cm2 にて圧縮し、正極の厚さと空隙率
を調整する。
The positive electrode is manufactured, for example, as follows. That is, an organic solvent is added to a mixture of a positive electrode material powder, a conductive material, and a fluororesin that is a binder to form a slurry, and the slurry is applied to a sheet of foam metal or a mat of a fibrous metal sintered body. , Dry to remove organic solvent. Then, preferably by a press or the like
Compress at 1000 kg / cm 2 to adjust the thickness and porosity of the positive electrode.

【0039】また、含フッ素樹脂のバインダと硬化剤
(架橋剤)を先ず有機溶剤に溶かし、これに正極材料の
粉末、導電材の粉末を添加混合してスラリとしてもよ
い。硬化剤を使用するバインダを使用する場合、スラリ
を発泡状金属又は繊維状金属焼結体に塗工した後、乾燥
及び加熱する時に有機溶剤の除去と樹脂のポリマーの架
橋が進行する。
Further, the binder of the fluorine-containing resin and the curing agent (crosslinking agent) may be first dissolved in an organic solvent, and the powder of the positive electrode material and the powder of the conductive material may be added and mixed to form a slurry. When a binder containing a curing agent is used, the organic solvent is removed and the resin polymer is crosslinked when the slurry is applied to the foamed metal or fibrous metal sintered body and then dried and heated.

【0040】バインダとして使用される含フッ素樹脂や
架橋剤を用いる含フッ素樹脂は上記した負極の場合に使
用したものと同様なものが好適に使用できる。
As the fluorine-containing resin used as the binder and the fluorine-containing resin containing the crosslinking agent, the same resins as those used in the above-mentioned negative electrode can be preferably used.

【0041】正極中では、発泡状金属又は繊維状金属焼
結体とバインダが電極材料を縛り付けているので、正極
材料が、充放電サイクルによって膨張、収縮を繰り返す
ことがあっても、正極材料の粒子間の接触が保持されて
正極の内部抵抗の増大が抑制され、また、正極材料の粒
子が正極から脱落することがなく電池の初期容量を長時
間保持できる。
In the positive electrode, since the foamed metal or fibrous metal sintered body and the binder bind the electrode material together, even if the positive electrode material expands and contracts repeatedly during charge and discharge cycles, the positive electrode material The contact between the particles is maintained, the increase in the internal resistance of the positive electrode is suppressed, and the initial capacity of the battery can be maintained for a long time without the particles of the positive electrode material dropping off from the positive electrode.

【0042】また、正極はプレス等で圧縮してその空隙
率を少なくすることができるので、正極の体積当たりの
容量を大きくできる。また、正極中に適量の隙間を確保
して電解液を容易に正極内に含浸させることができ、リ
チウムイオンの拡散に必要な経路が確保されるので、大
電流を流したときにも電極材料の利用率が高い。
Further, since the positive electrode can be compressed by a press or the like to reduce its porosity, the capacity per volume of the positive electrode can be increased. In addition, since an appropriate amount of gap can be secured in the positive electrode to allow the electrolyte solution to be easily impregnated into the positive electrode, and a route necessary for diffusion of lithium ions can be secured, the electrode material can be used even when a large current is applied. Is highly used.

【0043】また、負極の場合と同じ理由によって、正
極の厚さは0.1mm以上好ましくは、0.2mm以上
であるのが好ましく、また、好ましくは10mm以下で
ある。空隙率は20〜50%好ましくは25〜40%と
するのが好ましい。なお、負極の場合と同様に、バイン
ダの融点以上に加熱しつつプレスすると、正極の強度が
大きくなって電池特性が顕著に向上する。
For the same reason as in the case of the negative electrode, the thickness of the positive electrode is 0.1 mm or more, preferably 0.2 mm or more, and more preferably 10 mm or less. The porosity is 20 to 50%, preferably 25 to 40%. Note that, as in the case of the negative electrode, when the material is pressed while being heated to the melting point of the binder or higher, the strength of the positive electrode is increased and the battery characteristics are remarkably improved.

【0044】本発明の非水系二次電池がコイン型の場
合、好ましくは、容器の金属製ケースが正極の端子を兼
ねており、前記正極と、前記ケース内面との間が、圧縮
状態のアルミニウム、チタニウム、SUS316あるい
はSUS316L製のメッシュを介して電気的に接続さ
れている。このようにすることにより、正極と正極端子
を兼ねるケースとの間の接触抵抗を低減することができ
る。
When the non-aqueous secondary battery of the present invention is a coin type, it is preferable that the metal case of the container also serves as a terminal of the positive electrode, and the space between the positive electrode and the inner surface of the case is compressed aluminum. , Titanium, SUS316, or SUS316L through a mesh. By doing so, the contact resistance between the positive electrode and the case that also serves as the positive electrode terminal can be reduced.

【0045】また、容器のケースが好ましくは正極の端
子を兼ねている場合、正極とケース内面との間は、溶接
で電気的に接続することができる。溶接することによっ
て、電気的な接続がより低抵抗になり、電極材料を縛り
付ける力も増す。溶接は、短時間電流を流す電気溶接が
好ましい。溶接を圧縮状態の上記金属製メッシュと併用
するとさらに好ましい。
If the case of the container also serves as the positive electrode terminal, the positive electrode and the inner surface of the case can be electrically connected by welding. Welding results in a lower resistance electrical connection and also increases the force with which the electrode material is bound. The welding is preferably electric welding in which an electric current is passed for a short time. It is more preferable to use welding together with the metal mesh in a compressed state.

【0046】また、コイン型電池の好ましい別の態様で
は、円板状の正極が、その周囲には、金属リングが正極
と接触して設けられ、その上面及び/又は下面には、前
記金属リングと電気的に接触された金属メッシュが埋設
されている。
In another preferable mode of the coin-type battery, a disk-shaped positive electrode is provided around the periphery thereof with a metal ring in contact with the positive electrode, and the metal ring is provided on the upper surface and / or the lower surface thereof. A metal mesh that is in electrical contact with is buried.

【0047】このように正極の上面及び/又は下面に金
属メッシュが埋設されているから、金属箔のような平面
的な集電体を正極の片面に配置した場合と比較して、正
極材料と金属メッシュとの接触が良くなる。また、金属
メッシュを正極の上下面に設けると、正極の厚さ方向の
電気抵抗、すなわち内部抵抗が小さくなってリチウムイ
オンの拡散距離が短くなる。その結果、正極材料の利用
率が高くなり、エネルギ密度と容量が大きくなる。
Since the metal mesh is embedded in the upper surface and / or the lower surface of the positive electrode as described above, the positive electrode material and the positive electrode material are different from those in the case where a flat collector such as a metal foil is arranged on one side of the positive electrode. Good contact with the metal mesh. Further, when the metal mesh is provided on the upper and lower surfaces of the positive electrode, the electric resistance in the thickness direction of the positive electrode, that is, the internal resistance is reduced and the diffusion distance of lithium ions is shortened. As a result, the utilization factor of the positive electrode material is increased, and the energy density and the capacity are increased.

【0048】また、正極の周囲には、金属リングが正極
と接触して設けられ、上記正極に埋設された金属メッシ
ュが金属リングと接触しているので、正極の上面や下面
に平行にメッシュ内を流れる電流を金属リングによって
効率よく集めることができる。
A metal ring is provided around the positive electrode in contact with the positive electrode, and the metal mesh embedded in the positive electrode is in contact with the metal ring. The current flowing through can be efficiently collected by the metal ring.

【0049】正極中では、さらに、金属リングによって
正極材料が縛り付けられているので、正極材料が、充放
電サイクルによって膨張、収縮を繰り返すことがあって
も、正極材料の粒子間の接触が保持されて正極の内部抵
抗の増大が抑制され、また、正極材料の粒子が正極から
脱落することがなく電池の初期容量を長時間保持でき
る。
Since the positive electrode material is further bound by the metal ring in the positive electrode, the contact between the particles of the positive electrode material is maintained even if the positive electrode material repeatedly expands and contracts due to charge and discharge cycles. Therefore, the internal resistance of the positive electrode is prevented from increasing, and the initial capacity of the battery can be maintained for a long time without the particles of the positive electrode material dropping off from the positive electrode.

【0050】なお、金属リングや金属メッシュに使用す
る材料としてはアルミニウム、チタニウム、SUS31
6又はSUS316Lが、正極が作動する電位範囲で安
定であって、溶解や溶出が起きず、また導電性にも優れ
ているので、好ましい。
Materials used for the metal ring and the metal mesh are aluminum, titanium and SUS31.
6 or SUS316L is preferable because it is stable in the potential range in which the positive electrode operates, does not dissolve or elute, and has excellent conductivity.

【0051】また、本発明の電池の非水系電解液の有機
溶媒には、たとえば、プロピレンカーボネート、エチレ
ンカーボネート等の環状カーボネート類、ジメチルカー
ボネート、ジエチルカーボネート、エチルメチルカーボ
ネート等の直鎖状カーボネート類、γ−ブチロラクト
ン、1,3−ジオキソラン、スルホラン、ジオキソラ
ン、1,3−ジオキサン、1,2−ジメトキシエタン、
テトラヒドロフラン、2−メチルテトラヒドロフランが
好ましく使用できる。
The organic solvent of the non-aqueous electrolyte of the battery of the present invention includes, for example, cyclic carbonates such as propylene carbonate and ethylene carbonate, linear carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, γ-butyrolactone, 1,3-dioxolane, sulfolane, dioxolane, 1,3-dioxane, 1,2-dimethoxyethane,
Tetrahydrofuran and 2-methyltetrahydrofuran can be preferably used.

【0052】また、本発明の電池に使用される電解質で
あるリチウム塩には、たとえば、ClO4 -、CF3 SO
3 -,BF4 -、PF6 -、AsF6 -、SbF6 -、CF3 CO
2 -、B10Cl10 2-、(CF3 SO22- 等をアニオ
ンとするリチウム塩から選ばれる1種以上を好ましく使
用できる。非水電解液は、上記有機溶媒に上記リチウム
塩を0. 2〜2.0モル/リットルの濃度に溶かすのが
好ましい。この濃度の範囲を逸脱すると、イオン伝導度
が低下したり、リチウム塩が析出したりすることにな
る。
The lithium salt which is the electrolyte used in the battery of the present invention includes, for example, ClO 4 , CF 3 SO 4.
3 -, BF 4 -, PF 6 -, AsF 6 -, SbF 6 -, CF 3 CO
At least one selected from lithium salts having anions such as 2 , B 10 Cl 10 2− , (CF 3 SO 2 ) 2 N − and the like can be preferably used. The non-aqueous electrolytic solution is preferably prepared by dissolving the lithium salt in the organic solvent at a concentration of 0.2 to 2.0 mol / liter. If the concentration is out of this range, the ionic conductivity will decrease and the lithium salt will precipitate.

【0053】[0053]

【実施例】以下にコイン型電池の実施例により本発明を
具体的に説明するが、本発明はこれらのコイン型電池の
実施例に限定されるものではなく、本発明の原理は、捲
回型、例えば米国特許5370710号、又は積層型
(特開平4−294071号)に適用できることはもち
ろんである。
EXAMPLES The present invention will be specifically described below with reference to examples of coin type batteries, but the present invention is not limited to these examples of coin type batteries, and the principle of the present invention is to wind Needless to say, it can be applied to a mold, for example, US Pat. No. 5,370,710, or a laminated mold (JP-A-4-294071).

【0054】図1及び図2は本発明の実施例において試
作した直径24.5mm、厚さ3.0mmのコイン型非
水系二次電池の縦断面図である。図1及び図2におい
て、1は正極端子を兼ねるコイン型容器のケースであ
り、3は負極端子を兼ねるコイン型容器の蓋である。容
器のケース1と蓋3は、ガスケット2を介してかしめ封
口してある。この容器の内部には、負極4、セパレータ
5及び正極6が収容されている。また、負極4、セパレ
ータ5及び正極6には非水系電解液が含浸してある。正
極ケース1と正極6間には圧縮状態のメッシュ又はエキ
スパンドメタル8があり、負極蓋3と負極4の間には圧
縮状態のメッシュ又はエキスパンドメタル7があり、そ
れぞれ電気的に接続された状態とされている。図1にお
ける金属リング9が正極6のシートの周囲に嵌められて
いる
FIG. 1 and FIG. 2 are vertical sectional views of a coin type non-aqueous secondary battery having a diameter of 24.5 mm and a thickness of 3.0 mm, which was prototyped in the embodiment of the present invention. In FIGS. 1 and 2, 1 is a case of a coin-shaped container that also serves as a positive electrode terminal, and 3 is a lid of a coin-shaped container that also serves as a negative electrode terminal. The case 1 and the lid 3 of the container are caulked and sealed via a gasket 2. A negative electrode 4, a separator 5 and a positive electrode 6 are housed inside the container. The negative electrode 4, the separator 5 and the positive electrode 6 are impregnated with a non-aqueous electrolyte solution. There is a compressed mesh or expanded metal 8 between the positive electrode case 1 and the positive electrode 6, and a compressed mesh or expanded metal 7 between the negative electrode lid 3 and the negative electrode 4, which are electrically connected to each other. Has been done. The metal ring 9 in FIG. 1 is fitted around the sheet of the positive electrode 6.

【0055】[実施例1]負極4は、厚さが1.4mm
のニッケルの発泡状金属(気孔率96%、単位泡の平均
孔径0.4mm)のシートに、縮合多環炭化水素化合物
熱処理物である石油コークス焼成品(平均粒径約15μ
m、d002=0.344nm、Lc=5nm)47重
量部、ポリビニリデンフルオライド(PVDF)3重量
部及びN−メチル−2−ピロリドン50重量部からなる
スラリを塗工し、180℃で加熱乾燥したシートを、直
径19mmの円形に打ち抜き、プレスで加圧して、その
厚さを0.8mmに圧縮した。この負極中に含まれる水
分を完全に除くため、0.1torrの減圧下で180
℃に4時間保持して乾燥した。この負極の空隙率は36
%であった。
Example 1 The negative electrode 4 has a thickness of 1.4 mm.
On a sheet of nickel foam metal (porosity 96%, average pore size of unit foam 0.4 mm), fired petroleum coke, which is a heat-treated condensed polycyclic hydrocarbon compound (average particle size: about 15 μm
m, d002 = 0.344 nm, Lc = 5 nm) 47 parts by weight, polyvinylidene fluoride (PVDF) 3 parts by weight and N-methyl-2-pyrrolidone 50 parts by weight are applied as a slurry, and dried by heating at 180 ° C. The formed sheet was punched into a circle having a diameter of 19 mm and pressed with a press to have a thickness of 0.8 mm. In order to completely remove the water content contained in this negative electrode, the pressure was reduced to 180 under a reduced pressure of 0.1 torr.
It was kept at ℃ for 4 hours and dried. The porosity of this negative electrode is 36.
%Met.

【0056】正極6は、LiMn24 80重量部、天
然黒鉛15重量部、ポリテトラフルオロエチレン(PT
FE)5重量部からなる混合物を、厚さ1.7mmのシ
ート状に成形し、これを打抜いて直径18mmの円板と
し、円板の周囲にSUS316Lからなる金属リング9
を嵌め、円板の両面に厚さ0.05mm、直径8mmの
アルミニウムのエクスパンドメタル8(以下EXMとい
う)を載せ、プレスで加圧して厚さ1.5mmに圧縮
し、同時にEXMを金属リングと電気的に接続させ、次
いで水分を完全に除くため、圧力0.1torrの減圧
下で180℃に4時間保持して乾燥した。得られた正極
の空隙率は33%であった。なお、空隙率は、Quan
ta Chrome社の商品名Autoscan−50
0 Durosimeterで測定した。以下の実施例
及び比較例も同じである。
The positive electrode 6 is composed of 80 parts by weight of LiMn 2 O 4 , 15 parts by weight of natural graphite, polytetrafluoroethylene (PT).
FE) 5 parts by weight of a mixture is formed into a sheet having a thickness of 1.7 mm, which is punched to form a disk having a diameter of 18 mm, and a metal ring 9 made of SUS316L is formed around the disk.
Then, place aluminum expanded metal 8 (hereinafter referred to as EXM) with a thickness of 0.05 mm and a diameter of 8 mm on both sides of the disk, press it with a press to compress it to a thickness of 1.5 mm, and at the same time use EXM as a metal ring. After being electrically connected, in order to completely remove water, the product was dried at 180 ° C. for 4 hours under a reduced pressure of 0.1 torr. The porosity of the obtained positive electrode was 33%. The porosity is Quan
TaChrome's trade name Autoscan-50
0 Durometer was used for measurement. The same applies to the following examples and comparative examples.

【0057】次に、ポリプロピレン製不織布とポリプロ
ピレンの微孔性フィルムからなるセパレータを用い、電
解液は、エチレンカーボネートとエチルメチルカーボネ
ートの容積比1:1の混合溶媒に、1モル/リットルの
濃度となるようにLiPF6を溶かしたものを使用し
た。
Next, using a separator composed of a polypropylene non-woven fabric and a polypropylene microporous film, the electrolyte solution was mixed with a mixed solvent of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 1 and a concentration of 1 mol / liter. It was used after dissolving LiPF 6 so.

【0058】次いで、正極6をアルミニウム製EXMと
共にケース1の内面に電気溶接した。また、負極4と蓋
3の内面がそれぞれ接触するように配置して電気的に接
続させ、正極6と負極4の間にセパレータ5を挟んで、
コイン型容器に収容し、上記の電解液を容器中の正極
6、負極4及びセパレータ5に含浸した。なお、電解液
の電極等への含浸と容器の封口は、露点がマイナス70
℃のアルゴン雰囲気としたグローブボックス中で行っ
た。このようにして、図1のようなコイン型二次電池を
作製した。
Next, the positive electrode 6 was electrically welded to the inner surface of the case 1 together with the aluminum EXM. Further, the negative electrode 4 and the inner surface of the lid 3 are arranged so as to be in contact with each other and electrically connected, and the separator 5 is sandwiched between the positive electrode 6 and the negative electrode 4,
It was housed in a coin-shaped container, and the positive electrode 6, the negative electrode 4 and the separator 5 in the container were impregnated with the above electrolytic solution. In addition, the impregnation of the electrode with the electrolytic solution and the sealing of the container have a dew point of minus 70.
It was carried out in a glove box with an argon atmosphere at 0 ° C. In this way, a coin-type secondary battery as shown in FIG. 1 was produced.

【0059】[実施例2]本実施例では、負極4の集電
体として、プレス前の厚さが1.4mmのニッケルの繊
維状金属焼結体(気孔率91%、繊維径20μm)を用
いて製造した負極(厚み0.8mm、空隙率36%)で
ある点を除き、他の点は実施例1と同様である。
[Embodiment 2] In this embodiment, as the current collector of the negative electrode 4, a nickel fibrous metal sintered body (porosity 91%, fiber diameter 20 μm) having a thickness of 1.4 mm before pressing is used. Other points are the same as in Example 1 except that the produced negative electrode (thickness 0.8 mm, porosity 36%).

【0060】[実施例3]上記実施例1では、負極4と
蓋3が接触するように配置して電気的に接続させたのみ
であったが、本実施例では負極4のニッケルの発泡状金
属を蓋3の内面に電気溶接した点が異なるが他の点は実
施例1の場合と同様である。
[Embodiment 3] In Embodiment 1 described above, the anode 4 and the lid 3 were arranged so as to be in contact with each other and electrically connected. However, in this embodiment, the foamed nickel of the anode 4 is formed. The difference is that the metal is electrically welded to the inner surface of the lid 3, but the other points are the same as in the first embodiment.

【0061】[実施例4]上記実施例2では、負極4と
蓋3が接触するように配置して電気的に接続させたのみ
であったが、本実施例では負極4のニッケルの繊維状金
属を蓋3の内面に電気溶接した点が異なるが他の点は実
施例2の場合と同様である。
[Embodiment 4] In Embodiment 2, the anode 4 and the lid 3 were arranged so as to be in contact with each other and electrically connected, but in this embodiment, the nickel fiber of the anode 4 is in a fibrous shape. The difference is that the metal is electrically welded to the inner surface of the lid 3, but the other points are the same as in the case of the second embodiment.

【0062】[実施例5]負極4は、厚さが1.4mm
のニッケルの発泡状金属(気孔率96%、単位泡の開孔
径0.4mm)のシートに、縮合多環炭化水素化合物熱
処理物である石油コークス焼成品(平均粒径約15μ
m、d002 =0.344nm、Lc=5nm)47重量
部、PVDF3重量部及びN−メチル−2−ピロリドン
50重量部からなるスラリを塗工し、180℃で加熱乾
燥後、直径19mmの円形に打ち抜き、ニッケルのEX
M(厚さ0.08mm、直径19mm)を片面に配置し
てプレスで加圧して、その厚さを0.8mmに圧縮し
た。この負極中に含まれる水分を完全に除くため、0.
1torrの減圧下で180℃に4時間保持して乾燥し
た。この負極の空隙率は36%であった。
[Embodiment 5] The negative electrode 4 has a thickness of 1.4 mm.
A sheet of nickel foamed metal (porosity 96%, unit cell open pore size 0.4 mm) was heat-treated with a condensed polycyclic hydrocarbon compound, a petroleum coke calcined product (average particle size: about 15 μm).
m, d 002 = 0.344 nm, Lc = 5 nm) 47 parts by weight, 3 parts by weight of PVDF and 50 parts by weight of N-methyl-2-pyrrolidone are applied to the slurry, dried by heating at 180 ° C., and then circular with a diameter of 19 mm. Punched into nickel EX
M (thickness 0.08 mm, diameter 19 mm) was placed on one side and pressed by a press to compress its thickness to 0.8 mm. In order to completely remove water contained in this negative electrode,
It was kept at 180 ° C. for 4 hours under a reduced pressure of 1 torr and dried. The porosity of this negative electrode was 36%.

【0063】正極6は実施例1と同様にして作製した。
セパレータや電解液も実施例1と同じものを使用した。
The positive electrode 6 was manufactured in the same manner as in Example 1.
The same separator and electrolytic solution as in Example 1 were used.

【0064】正極6をアルミニウム製EXMと共にケー
ス1の内面に電気溶接した。また、負極4もニッケル製
EXMと共に蓋3の内面に溶接した。次に、正極6と負
極4の間にセパレータ5を挟んで、コイン型容器に収容
し、上記の電解液を容器中の正極6、負極4及びセパレ
ータ5に含浸した。なお、電解液の電極等への含浸と容
器の封口は、露点がマイナス70℃のアルゴン雰囲気と
したグローブボックス中で行った。このようにして、図
1のようなコイン型電池を作製した。
The positive electrode 6 was electrically welded to the inner surface of the case 1 together with the aluminum EXM. The negative electrode 4 was also welded to the inner surface of the lid 3 together with the nickel EXM. Next, the separator 5 was sandwiched between the positive electrode 6 and the negative electrode 4 and housed in a coin-shaped container, and the positive electrode 6, the negative electrode 4 and the separator 5 in the container were impregnated with the electrolytic solution. The impregnation of the electrodes with the electrolytic solution and the sealing of the container were performed in a glove box in an argon atmosphere with a dew point of −70 ° C. In this way, a coin type battery as shown in FIG. 1 was produced.

【0065】[実施例6]負極4は実施例5と同様にし
て作製した。
Example 6 The negative electrode 4 was manufactured in the same manner as in Example 5.

【0066】正極6は、アルミニウム製の発泡状金属
(気孔率93%、単位泡の平均孔径0.4mm,厚さ
3.0mm)に、LiMn24 42重量部、天然黒鉛
を5重量部、PVDF3重量部、、N−メチル−2−ピ
ロリドン50重量部を混合することによって得られたス
ラリを充填し、温度180℃で加熱乾燥した。次に直径
18mmの円板に打ち抜き、加圧して厚さ1.5mmと
し、水分除去のため、温度180℃、圧力0.1tor
r減圧下で4時間乾燥した。得られた正極の空隙率は3
5%であった。
The positive electrode 6 is made of a foam metal made of aluminum (porosity 93%, average pore size of unit foam 0.4 mm, thickness 3.0 mm), 42 parts by weight of LiMn 2 O 4 and 5 parts by weight of natural graphite. , PVDF (3 parts by weight), and N-methyl-2-pyrrolidone (50 parts by weight) were mixed, and the resulting slurry was charged and dried by heating at a temperature of 180 ° C. Next, it was punched into a disk with a diameter of 18 mm and pressed to a thickness of 1.5 mm, and at a temperature of 180 ° C. and a pressure of 0.1 tor for removing water.
r dried under reduced pressure for 4 hours. The porosity of the obtained positive electrode is 3
5%.

【0067】また、セパレーターと電解液は実施例1と
同じものを使用した。
The same separator and electrolytic solution as in Example 1 were used.

【0068】正極6のアルミニウム発砲状金属をケース
1の内面に電気溶接した。また、負極4もニッケル製E
XMと共に蓋3の内面に電気溶接した。次に正極6と負
極4の間にセパレータ5を挟んで、コイン型容器に収容
し、上記の電解液を容器中の正極6、負極4及びセパレ
ータ5に含浸した。なお、電解液の電極等への含浸と容
器の封口は、露点がマイナス70℃のアルゴン雰囲気と
したグローブボックス中で行った。このようにして、図
2のようなコイン型二次電池を作製した。
The aluminum foam metal of the positive electrode 6 was electrically welded to the inner surface of the case 1. Also, the negative electrode 4 is made of nickel E
It was electrically welded to the inner surface of the lid 3 together with XM. Next, the separator 5 was sandwiched between the positive electrode 6 and the negative electrode 4 and housed in a coin-shaped container, and the positive electrode 6, the negative electrode 4 and the separator 5 in the container were impregnated with the electrolytic solution. The impregnation of the electrodes with the electrolytic solution and the sealing of the container were performed in a glove box in an argon atmosphere with a dew point of −70 ° C. In this way, a coin-type secondary battery as shown in FIG. 2 was produced.

【0069】[実施例7]本実施例では、SUS316
L製の繊維状金属の焼結体(気孔率91%、繊維径15
μm、厚さ3.0mm)を使用して空隙率36%の正極
6を作製し、正極6のSUS316L製の繊維状金属を
ケース1の内面に電気溶接した点を除き、他の点を実施
例6と同様にして、電池を作製した。
[Embodiment 7] In this embodiment, SUS316 is used.
Sintered fibrous metal made of L (porosity 91%, fiber diameter 15
μm, thickness 3.0 mm) was used to manufacture the positive electrode 6 with a porosity of 36%, and the other points were implemented except that the SUS316L fibrous metal of the positive electrode 6 was electrically welded to the inner surface of the case 1. A battery was produced in the same manner as in Example 6.

【0070】[実施例8]負極は実施例5と同様にして
作製した。
[Example 8] A negative electrode was produced in the same manner as in Example 5.

【0071】正極5は、厚さ3.0mmのアルミニウム
製の発泡状金属(気孔率93%、単位泡の平均孔径0.
4mm)に、LiMn24 42重量部、天然黒鉛を5
重量部、PVDF3重量部、、N−メチル−2−ピロリ
ドン50重量部を混合することによって得られたスラリ
を充填し、温度180℃で加熱乾燥した後、直径18m
mの円板に打ち抜き、アルミニウムのEXM(厚さ0.
05mm、直径18mm)を円板の片面に配置してプレ
スで加圧して厚さ1.5mmとし、水分除去のため、温
度180℃、圧力0.1torrの減圧下で4時間乾燥
した。得られた正極の空隙率は35%であった。
The positive electrode 5 is a foamed metal made of aluminum having a thickness of 3.0 mm (porosity: 93%, average pore diameter of unit foam: 0.
4 mm), 42 parts by weight of LiMn 2 O 4 and 5 parts of natural graphite
The slurry obtained by mixing 50 parts by weight of PVDF, 3 parts by weight of PVDF, and 50 parts by weight of N-methyl-2-pyrrolidone was filled, dried by heating at a temperature of 180 ° C., and then had a diameter of 18 m.
stamped into a disc of aluminum and made of aluminum EXM (thickness: 0.
(05 mm, diameter 18 mm) was placed on one side of the disk and pressed by a press to a thickness of 1.5 mm, and dried at a temperature of 180 ° C. under a reduced pressure of 0.1 torr for 4 hours to remove water. The porosity of the obtained positive electrode was 35%.

【0072】セパレータと電解液は実施例1と同じもの
を使用した。
The same separator and electrolyte as in Example 1 were used.

【0073】正極6をアルミニウム製EXMと共にケー
ス1の内面に電気溶接した。また、負極4もニッケル製
EXMと共に蓋3の内面に電気溶接した。次に正極6と
負極4の間にセパレータ5を挟んで、コイン型容器に収
容し、上記の電解液を容器中の正極6、負極4及びセパ
レータ5に含浸した。なお、電解液の電極等への含浸と
容器の封口は、露点がマイナス70℃のアルゴン雰囲気
としたグローブボックス中で行った。このようにして、
電池を作製した。
The positive electrode 6 was electrically welded to the inner surface of the case 1 together with the aluminum EXM. The negative electrode 4 was also electrically welded to the inner surface of the lid 3 together with the nickel EXM. Next, the separator 5 was sandwiched between the positive electrode 6 and the negative electrode 4 and housed in a coin-shaped container, and the positive electrode 6, the negative electrode 4 and the separator 5 in the container were impregnated with the electrolytic solution. The impregnation of the electrodes with the electrolytic solution and the sealing of the container were performed in a glove box in an argon atmosphere with a dew point of −70 ° C. In this way,
A battery was made.

【0074】[実施例9]本実施例では、SUS316
L製の繊維状金属の焼結体(気孔率91%、繊維径15
μm、厚さ3.0mm)とSUS316LのEXM(厚
さ0.05mm、直径18mm)を使用して空隙率36
%の正極6を作製し、正極6をSUS316L製EXM
と共にケース1の内面に電気溶接した点が実施例8の場
合と異なる。他の点は実施例8と同様にして、電池を作
製した。
[Embodiment 9] In this embodiment, SUS316 is used.
Sintered fibrous metal made of L (porosity 91%, fiber diameter 15
(μm, thickness 3.0 mm) and SUS316L EXM (thickness 0.05 mm, diameter 18 mm) are used for porosity 36
% Of the positive electrode 6 and the positive electrode 6 is made of SUS316L EXM
In addition, it is different from the case of Example 8 in that it is electrically welded to the inner surface of the case 1. A battery was produced in the same manner as in Example 8 except for the above points.

【0075】[実施例10]上記実施例9の縮合多環炭
化水素化合物熱処理物に代えて黒鉛化メソフェーズ球状
カーボン粉末(平均粒径約20μm、d002 =0.33
65nm、Lc=30nm)47重量部を使用して空隙
率37%の負極を作製し、他の点は実施例9と同様にし
て、電池を作製した。
Example 10 Graphitized mesophase spherical carbon powder (average particle size of about 20 μm, d 002 = 0.33) was used in place of the heat-treated condensed polycyclic hydrocarbon compound of Example 9 above.
A battery was produced in the same manner as in Example 9 except that a negative electrode having a porosity of 37% was produced using 47 parts by weight of (65 nm, Lc = 30 nm).

【0076】[実施例11]上記実施例10の黒鉛化メ
ソフェーズ球状カーボン粉末に代えて黒鉛化メソフェー
ズカーボン繊維状粉末(繊維径8.3μm、繊維長60
μm、d002 =0.337nm、Lc=64nm)47
重量部を使用して空隙率39%の負極を作製し、他の点
は実施例10と同様にして、電池を作製した。
Example 11 Graphitized mesophase carbon fibrous powder (fiber diameter 8.3 μm, fiber length 60) was used in place of the graphitized mesophase spherical carbon powder of Example 10 above.
μm, d 002 = 0.337 nm, Lc = 64 nm) 47
A battery was prepared in the same manner as in Example 10 except that a negative electrode having a porosity of 39% was prepared using parts by weight.

【0077】[実施例12]上記実施例11のLiMn
24 に代えてLiZn0.05Fe0.35Mn1.6 442
重量部を使用して正極を作製し、他の点は実施例11と
同様にして、電池を作製した。
Example 12 LiMn of Example 11 above
LiZn 0.05 Fe 0.35 Mn 1.6 O 4 42 instead of 2 O 4
A battery was produced in the same manner as in Example 11 except that the parts by weight were used to produce a positive electrode.

【0078】[比較例1]負極4は、縮合多環炭化水素
化合物熱処理物である石油コークス焼成品(平均粒径1
5μm、d002 =0.344、Lc=5nm)95重量
部と、(PTFE)5重量部を混合し圧延することによ
って厚さ1.0mmのシート状成形物とし、直径19m
mの円板に打ち抜いた後、さらに、厚さ0.08mm、
直径19mmのニッケル製EXMを円板の片面に配置し
てプレスで加圧して厚さ0.8mmとし、水分除去のた
め、温度180℃、圧力0.1torrの減圧下で4時
間乾燥した。この負極の空隙率は31%であった。
[Comparative Example 1] The negative electrode 4 was a calcined product of petroleum coke, which was a heat-treated condensed polycyclic hydrocarbon compound (average particle size 1
5 μm, d 002 = 0.344, Lc = 5 nm) 95 parts by weight and 5 parts by weight of (PTFE) were mixed and rolled to form a sheet-like molded product having a thickness of 1.0 mm and a diameter of 19 m.
After punching into a disk of m, the thickness is 0.08 mm,
A nickel EXM having a diameter of 19 mm was placed on one side of a disk and pressed by a press to a thickness of 0.8 mm, and dried for 4 hours under a reduced pressure of 180 ° C. and a pressure of 0.1 torr to remove water. The porosity of this negative electrode was 31%.

【0079】正極6は、LiMn24 80重量部、天
然黒鉛15重量部、PTFE5重量部を混合し、圧延す
ることによって厚さ1.7mmのシート状成形物とし、
直径18mmの円板に打ち抜いた後、さらに、厚さ0.
05mm、直径18mmのアルミニウム製EXMを円板
の片面に配置してプレスで加圧して厚さ1.5mmと
し、水分除去のため、温度180℃、圧力0.1tor
rの減圧下で4時間乾燥した。得られた正極の空隙率は
33%であった。
The positive electrode 6 was made into a sheet-shaped molded product having a thickness of 1.7 mm by mixing 80 parts by weight of LiMn 2 O 4 , 15 parts by weight of natural graphite and 5 parts by weight of PTFE and rolling.
After punching into a disc having a diameter of 18 mm, the thickness is further reduced to 0.
An aluminum EXM with a diameter of 05 mm and a diameter of 18 mm is placed on one side of a disk and pressed by a press to a thickness of 1.5 mm. To remove water, a temperature of 180 ° C. and a pressure of 0.1 torr.
It was dried under reduced pressure of r for 4 hours. The porosity of the obtained positive electrode was 33%.

【0080】また、セパレータにポリプロピレン不織布
とポリプロピレンの微孔性フィルムを用い、非水系電解
液にエチレンカーボネートとエチルメチルカーボネート
の容積比1:1の混合溶液に1モル/リットル濃度のL
iClO4 を溶解したものを用いた。なお、正極のアル
ミニウム製EXM面とケースの内面、負極のニッケル製
EXM面と蓋の内面がそれぞれ向き合うように配置して
電気的に接触させた。なお、電解液の注液と封口は、露
点−70℃のアルゴン雰囲気グローブボックス中で行
い、図2のようなコイン型二次電池を作製した。
Further, a polypropylene non-woven fabric and a polypropylene microporous film were used as the separator, and a non-aqueous electrolyte solution containing a mixture of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 1 had an L concentration of 1 mol / liter.
It was prepared by dissolving the iClO 4. The aluminum EXM surface of the positive electrode and the inner surface of the case, and the nickel EXM surface of the negative electrode and the inner surface of the lid were arranged so as to face each other, and were electrically contacted. The injection of the electrolytic solution and the sealing were performed in an argon atmosphere glove box with a dew point of −70 ° C. to manufacture a coin-type secondary battery as shown in FIG.

【0081】[比較例2]上記比較例1の縮合多環炭化
水素化合物熱処理物に代えて黒鉛化メソフェーズ球状カ
ーボン粉末(平均粒径約20μm、d002 =0.336
5nm、Lc=30nm)95重量部を使用して負極を
作製し、他の点は比較例1と同様にして、電池を作製し
た。
Comparative Example 2 Graphitized mesophase spherical carbon powder (average particle size of about 20 μm, d 002 = 0.336) was used in place of the heat-treated condensed polycyclic hydrocarbon compound of Comparative Example 1 above.
5 nm, Lc = 30 nm) was used to prepare a negative electrode, and otherwise the same as in Comparative Example 1 to prepare a battery.

【0082】[比較例3]上記比較例2の黒鉛化メソフ
ェーズ球状カーボン粉末に代えて黒鉛化メソフェーズカ
ーボン繊維状粉末(繊維径8.3μm、繊維長60μ
m、d002 =0.337nm、Lc=64nm)95重
量部を使用して負極を作製し、他の点は比較例2と同様
にして、電池を作製した。
Comparative Example 3 Graphitized mesophase carbon fibrous powder (fiber diameter 8.3 μm, fiber length 60 μ) was used in place of the graphitized mesophase spherical carbon powder of Comparative Example 2 above.
m, d 002 = 0.337 nm, Lc = 64 nm) was used to prepare a negative electrode, and otherwise the same as in Comparative Example 2 to prepare a battery.

【0083】作製した実施例1〜12および比較例1〜
3の電池の放電特性の評価として、4.2Vの電圧とな
るまで最大電流1mAで100時間充電後、0.5mA
の定電流で2.5Vになるまで放電してその容量を測定
した。次に大電流放電特性の評価として4.2Vの電圧
となるまで最大電流1mAで100時間充電後、5mA
の定電流で2.5Vになるまで放電してその容量を測定
した。また、充放電サイクル特性の評価として、4.2
Vの電圧になるまで最大電流2mAで50時間充電し、
1mAの定電流で3.0Vになるまで放電するサイクル
を20回繰り返し、初期の放電容量に対する20サイク
ル目の容量の比を測定した。これらの結果を表1に示し
た。
The produced Examples 1 to 12 and Comparative Examples 1 to 1
As an evaluation of the discharge characteristics of the battery of No. 3, 0.5 mA after charging for 100 hours at the maximum current of 1 mA until the voltage of 4.2 V was reached.
Was discharged at a constant current of 2.5 V to measure its capacity. Next, as an evaluation of the large current discharge characteristics, after charging for 100 hours with a maximum current of 1 mA until the voltage reaches 4.2 V, 5 mA
Was discharged at a constant current of 2.5 V to measure its capacity. In addition, as an evaluation of charge / discharge cycle characteristics, 4.2
Charge up to a voltage of V for 50 hours with a maximum current of 2 mA,
The cycle of discharging at a constant current of 1 mA to 3.0 V was repeated 20 times, and the ratio of the capacity at the 20th cycle to the initial discharge capacity was measured. The results are shown in Table 1.

【0084】[0084]

【表1】 [Table 1]

【0085】[0085]

【発明の効果】これらの実施例ならびに比較例の結果か
ら明らかなように、本発明を適用したコイン型非水系電
解液二次電池では、大電流放電特性が改善され、高いエ
ネルギー密度を実現でき、充放電サイクル耐久性が顕著
に優れたものとなる。
As is clear from the results of these Examples and Comparative Examples, the coin-type non-aqueous electrolyte secondary battery to which the present invention is applied has improved large current discharge characteristics and can realize high energy density. The charge / discharge cycle durability is remarkably excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1−5で使用した電池の断面図
である。
FIG. 1 is a sectional view of a battery used in Examples 1-5 of the present invention.

【図2】本発明の実施例6−12及び比較例で使用した
電池の断面図である。
FIG. 2 is a cross-sectional view of batteries used in Examples 6-12 of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1:正極ケース 2:ガスケット 3:負極蓋 4:負極 5:セパレータ 6:正極 7:メッシュ 8:メッシュ 9:金属リング 1: Positive electrode case 2: Gasket 3: Negative electrode lid 4: Negative electrode 5: Separator 6: Positive electrode 7: Mesh 8: Mesh 9: Metal ring

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/80 H01M 4/80 C 10/40 10/40 Z (72)発明者 森本 剛 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 松本 伸二 神奈川県藤沢市辻堂新町2丁目2番1号 エルナー株式会社内Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location H01M 4/80 H01M 4/80 C 10/40 10/40 Z (72) Inventor Go Morimoto Kanagawa Yokohama, Kanagawa Asahi Glass Co., Ltd. Central Research Laboratory, 1150, Hazawa-machi, Tokyo (72) Inventor Shinji Matsumoto 2-2-1 Tsujido Shinmachi, Fujisawa-shi, Kanagawa Elner Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵、離脱可能な負極と、リチ
ウムを吸蔵、離脱可能な正極と、リチウム塩を含む非水
系電解液と、これらを収容する容器とを備え、前記負極
が、ニッケルを主成分とする発泡状金属又は繊維状金属
焼結体に、リチウムを吸蔵、離脱可能な炭素材料がバイ
ンダとともに充填されプレスされたものであり、その厚
さが0.1mm以上で空隙率が20〜50%であること
を特徴とする非水電解液系二次電池。
1. A negative electrode capable of occluding and releasing lithium, a positive electrode capable of occluding and releasing lithium, a non-aqueous electrolyte containing a lithium salt, and a container accommodating these, the negative electrode containing nickel. A foamed metal or fibrous metal sintered body as a main component is filled with a carbon material capable of absorbing and desorbing lithium together with a binder and pressed, and the thickness thereof is 0.1 mm or more and the porosity is 20. A non-aqueous electrolyte-based secondary battery characterized by being -50%.
【請求項2】前記炭素材料がメソフェーズ球状カーボン
又はメソフェーズカーボン短繊維である請求項1記載の
電池。
2. The battery according to claim 1, wherein the carbon material is mesophase spherical carbon or mesophase short carbon fiber.
【請求項3】前記炭素材料が縮合多環炭化水素化合物の
熱分解物である請求項1記載の電池。
3. The battery according to claim 1, wherein the carbon material is a thermal decomposition product of a condensed polycyclic hydrocarbon compound.
【請求項4】前記容器の蓋が前記負極の端子を兼ねてお
り、前記負極と前記蓋内面との間が、圧縮状態のニッケ
ル製メッシュを介して電気的に接続されている請求項1
〜3のいずれか記載の電池。
4. The lid of the container also serves as a terminal of the negative electrode, and the negative electrode and the inner surface of the lid are electrically connected via a nickel mesh in a compressed state.
~ The battery according to any one of 3 to 3.
【請求項5】前記容器の蓋が前記負極の端子を兼ねてお
り、前記負極と前記蓋内面との間が、溶接で電気的に接
続されている請求項1〜3のいずれか記載の電池。
5. The battery according to claim 1, wherein the lid of the container also serves as a terminal of the negative electrode, and the negative electrode and the inner surface of the lid are electrically connected by welding. .
【請求項6】前記正極が、発泡状金属又は繊維状金属焼
結体に、リチウムを吸蔵、離脱可能な正極材料と導電材
との混合物がバインダとともに充填されたものであり、
その厚さが0.1mm以上で空隙率が20〜50%であ
る請求項1〜5のいずれか記載の電池。
6. The positive electrode is formed by filling a foamed metal or fibrous metal sintered body with a mixture of a positive electrode material capable of inserting and extracting lithium and a conductive material together with a binder,
The battery according to claim 1, which has a thickness of 0.1 mm or more and a porosity of 20 to 50%.
【請求項7】前記発泡状金属又は繊維状金属焼結体が、
アルミニウム、チタニウム、SUS316又はSUS3
16Lからなる請求項6記載の電池。
7. The foamed metal or fibrous metal sintered body,
Aluminum, titanium, SUS316 or SUS3
The battery according to claim 6, which is composed of 16 L.
【請求項8】前記正極が、その周囲には、アルミニウ
ム、チタニウム、SUS316又はSUS316Lから
なる金属リングが設けられ、その上面及び/又は下面に
は、前記金属リングと電気的に接触された、アルミニウ
ム、チタニウム、SUS316又はSUS316Lから
なる金属メッシュが埋設されており、かつ前記正極の厚
さが0.1mm以上で空隙率が20〜50%である請求
項1〜5のいずれか記載の電池。
8. The positive electrode is provided with a metal ring made of aluminum, titanium, SUS316, or SUS316L around the positive electrode, and the upper surface and / or the lower surface of the metal ring are in electrical contact with the metal ring. 6. The battery according to claim 1, wherein a metal mesh made of titanium, titanium, SUS316, or SUS316L is embedded, and the positive electrode has a thickness of 0.1 mm or more and a porosity of 20 to 50%.
【請求項9】前記容器のケースが前記正極の端子を兼ね
ており、前記正極と前記ケース内面との間が、圧縮状態
のアルミニウム、チタニウム、SUS316又はSUS
316Lからなる金属メッシュを介して電気的に接続さ
れている請求項6又は7記載の電池。
9. The case of the container also serves as a terminal of the positive electrode, and aluminum, titanium, SUS316 or SUS in a compressed state is provided between the positive electrode and the inner surface of the case.
The battery according to claim 6 or 7, which is electrically connected through a metal mesh made of 316L.
【請求項10】前記容器のケースが前記正極の端子を兼
ねており、前記正極と前記ケース内面との間が、溶接で
電気的に接続されている請求項6〜9のいずれか記載の
電池。
10. The battery according to claim 6, wherein the case of the container also serves as a terminal of the positive electrode, and the positive electrode and the inner surface of the case are electrically connected by welding. .
【請求項11】前記正極材料が、LiMn24 又はL
iMn2-X-Y FeX ZnY4 (Xが0.2〜0.4、
Yが0.04〜0.15である)である請求項1〜10
のいずれか記載の電池。
11. The positive electrode material is LiMn 2 O 4 or L.
iMn 2-XY Fe X Zn Y O 4 (X is 0.2 to 0.4,
Y is 0.04 to 0.15).
The battery according to any one of 1.
JP8330398A 1995-11-30 1996-11-25 Nonaqueous electrolyte system secondary cell Withdrawn JPH09213307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8330398A JPH09213307A (en) 1995-11-30 1996-11-25 Nonaqueous electrolyte system secondary cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33613295 1995-11-30
JP7-336132 1995-11-30
JP8330398A JPH09213307A (en) 1995-11-30 1996-11-25 Nonaqueous electrolyte system secondary cell

Publications (1)

Publication Number Publication Date
JPH09213307A true JPH09213307A (en) 1997-08-15

Family

ID=26573516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8330398A Withdrawn JPH09213307A (en) 1995-11-30 1996-11-25 Nonaqueous electrolyte system secondary cell

Country Status (1)

Country Link
JP (1) JPH09213307A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023603A (en) * 1999-07-13 2001-01-26 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2002008729A (en) * 2000-06-19 2002-01-11 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2006100149A (en) * 2004-09-30 2006-04-13 Sharp Corp Lithium ion secondary battery
JP2007087758A (en) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd Electrode for battery
US7384707B2 (en) 2003-09-02 2008-06-10 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery having electrode active material membrane layer
JP2009043536A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Lithium secondary battery
JP2011096444A (en) * 2009-10-28 2011-05-12 Mitsubishi Materials Corp Positive electrode for nonaqueous electrolyte secondary battery
JP2012503278A (en) * 2008-09-19 2012-02-02 ハーエー3デーアー エス.エル.オー. Lithium storage battery and manufacturing method thereof
WO2012111738A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Electrochemical element
WO2012111707A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Electrode for electrochemical element, and manufacturing method therefor
JP2013127964A (en) * 2011-12-16 2013-06-27 Prologium Holding Inc Electricity supply system and electricity supply elements thereof
KR101373229B1 (en) * 2012-09-11 2014-03-13 주식회사 루트제이드 Stacked secondary battery
JPWO2012111659A1 (en) * 2011-02-18 2014-07-07 住友電気工業株式会社 Three-dimensional reticulated aluminum porous body for current collector, electrode using the aluminum porous body, nonaqueous electrolyte battery, capacitor, and lithium ion capacitor
JPWO2012111665A1 (en) * 2011-02-18 2014-07-07 住友電気工業株式会社 Three-dimensional network aluminum porous body for current collector, electrode using the aluminum porous body, battery using the electrode, capacitor, and lithium ion capacitor
US9203123B2 (en) 2010-09-23 2015-12-01 He3Da S.R.O. Lithium accumulator
JP2018190679A (en) * 2017-05-11 2018-11-29 古河電池株式会社 Method for charging/discharging lithium secondary battery
CN110165289A (en) * 2019-06-21 2019-08-23 中天储能科技有限公司 Lithium ion battery and preparation method
CN112470321A (en) * 2018-08-24 2021-03-09 株式会社村田制作所 Nonaqueous electrolyte secondary battery
JP2021128889A (en) * 2020-02-14 2021-09-02 本田技研工業株式会社 Electrode for lithium-ion secondary battery and lithium-ion secondary battery
CN113921899A (en) * 2021-10-15 2022-01-11 珠海冠宇电池股份有限公司 Battery with a battery cell
CN114223077A (en) * 2021-03-31 2022-03-22 宁德新能源科技有限公司 Battery and electric equipment
JP2022110671A (en) * 2021-01-19 2022-07-29 本田技研工業株式会社 Coin-type all-solid-state battery and manufacturing method thereof
WO2023238926A1 (en) * 2022-06-10 2023-12-14 マクセル株式会社 Electrode stack, method for producing same and electrochemical element

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023603A (en) * 1999-07-13 2001-01-26 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2002008729A (en) * 2000-06-19 2002-01-11 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP4656698B2 (en) * 2000-06-19 2011-03-23 日立マクセル株式会社 Flat non-aqueous electrolyte secondary battery
US7384707B2 (en) 2003-09-02 2008-06-10 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery having electrode active material membrane layer
JP2006100149A (en) * 2004-09-30 2006-04-13 Sharp Corp Lithium ion secondary battery
JP2007087758A (en) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd Electrode for battery
JP2009043536A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Lithium secondary battery
JP2012503278A (en) * 2008-09-19 2012-02-02 ハーエー3デーアー エス.エル.オー. Lithium storage battery and manufacturing method thereof
US10581083B2 (en) 2008-09-19 2020-03-03 He3Da S.R.O. Lithium accumulator and the method of producing thereof
US9437855B2 (en) 2008-09-19 2016-09-06 He3Da S.R.O. Lithium accumulator and the method of producing thereof
JP2011096444A (en) * 2009-10-28 2011-05-12 Mitsubishi Materials Corp Positive electrode for nonaqueous electrolyte secondary battery
US9203123B2 (en) 2010-09-23 2015-12-01 He3Da S.R.O. Lithium accumulator
JPWO2012111659A1 (en) * 2011-02-18 2014-07-07 住友電気工業株式会社 Three-dimensional reticulated aluminum porous body for current collector, electrode using the aluminum porous body, nonaqueous electrolyte battery, capacitor, and lithium ion capacitor
WO2012111738A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Electrochemical element
CN103380518A (en) * 2011-02-18 2013-10-30 住友电气工业株式会社 Electrochemical element
JP2012256584A (en) * 2011-02-18 2012-12-27 Sumitomo Electric Ind Ltd Electrochemical element
JPWO2012111665A1 (en) * 2011-02-18 2014-07-07 住友電気工業株式会社 Three-dimensional network aluminum porous body for current collector, electrode using the aluminum porous body, battery using the electrode, capacitor, and lithium ion capacitor
US9184435B2 (en) 2011-02-18 2015-11-10 Sumitomo Electric Industries, Ltd. Electrode for electrochemical element and method for producing the same
JP2012186143A (en) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd Electrode for electrochemical element, and method for manufacturing the same
US9270073B2 (en) 2011-02-18 2016-02-23 Sumitomo Electric Industries, Ltd. Three-dimensional network aluminum porous body for current collector, electrode using the aluminum porous body, and battery, capacitor and lithium-ion capacitor each using the electrode
US9337492B2 (en) 2011-02-18 2016-05-10 Sumitomo Electric Industries, Ltd. Electrochemical element
WO2012111707A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Electrode for electrochemical element, and manufacturing method therefor
JP2013127964A (en) * 2011-12-16 2013-06-27 Prologium Holding Inc Electricity supply system and electricity supply elements thereof
KR101373229B1 (en) * 2012-09-11 2014-03-13 주식회사 루트제이드 Stacked secondary battery
JP2018190679A (en) * 2017-05-11 2018-11-29 古河電池株式会社 Method for charging/discharging lithium secondary battery
CN112470321A (en) * 2018-08-24 2021-03-09 株式会社村田制作所 Nonaqueous electrolyte secondary battery
CN112470321B (en) * 2018-08-24 2024-01-05 株式会社村田制作所 Nonaqueous electrolyte secondary battery
CN110165289A (en) * 2019-06-21 2019-08-23 中天储能科技有限公司 Lithium ion battery and preparation method
JP2021128889A (en) * 2020-02-14 2021-09-02 本田技研工業株式会社 Electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2022110671A (en) * 2021-01-19 2022-07-29 本田技研工業株式会社 Coin-type all-solid-state battery and manufacturing method thereof
CN114223077A (en) * 2021-03-31 2022-03-22 宁德新能源科技有限公司 Battery and electric equipment
WO2022205140A1 (en) * 2021-03-31 2022-10-06 宁德新能源科技有限公司 Battery and electric device
CN113921899A (en) * 2021-10-15 2022-01-11 珠海冠宇电池股份有限公司 Battery with a battery cell
WO2023238926A1 (en) * 2022-06-10 2023-12-14 マクセル株式会社 Electrode stack, method for producing same and electrochemical element

Similar Documents

Publication Publication Date Title
JPH09213307A (en) Nonaqueous electrolyte system secondary cell
US5795680A (en) Non-aqueous electrolyte type secondary battery
KR100227764B1 (en) Rechargeable lithium battery having an improved cathode and process for the production thereof
JP2004071305A (en) Non-aqueous electrolyte rechargeable battery
JP2004259636A (en) Nonaqueous electrolyte secondary battery
WO2002054512A1 (en) Positive electrode active material and nonaqueous electrolyte secondary cell
JP2005044794A (en) Electrochemical element
JP3285520B2 (en) Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP2008166156A (en) Storage element
JP4632020B2 (en) Non-aqueous electrolyte secondary battery
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JP3992529B2 (en) Nonaqueous electrolyte secondary battery
JP4968766B2 (en) Carbon material for negative electrode of lithium ion secondary battery and method for producing the same
KR101190026B1 (en) Negative electrode material and battery using the same
JP4077294B2 (en) Nonaqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP4120439B2 (en) Lithium ion secondary battery
JP2000113872A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2000164211A (en) Positive electrode material and battery using the same
CN108292752B (en) Electric storage element
JP2000277119A (en) Lithium battery
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP4811699B2 (en) Negative electrode for lithium secondary battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2002343341A (en) Negative electrode for lithium secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203