JPH09211871A - Formation of resist pattern - Google Patents

Formation of resist pattern

Info

Publication number
JPH09211871A
JPH09211871A JP8014063A JP1406396A JPH09211871A JP H09211871 A JPH09211871 A JP H09211871A JP 8014063 A JP8014063 A JP 8014063A JP 1406396 A JP1406396 A JP 1406396A JP H09211871 A JPH09211871 A JP H09211871A
Authority
JP
Japan
Prior art keywords
baking
resist
phase transition
exposure
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8014063A
Other languages
Japanese (ja)
Other versions
JP2910654B2 (en
Inventor
Tadashi Fujimoto
匡志 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8014063A priority Critical patent/JP2910654B2/en
Publication of JPH09211871A publication Critical patent/JPH09211871A/en
Application granted granted Critical
Publication of JP2910654B2 publication Critical patent/JP2910654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to form fine patterns having good shapes with high dimensional accuracy and good reproducibility by first baking a chemical amplification type resist at its phase transition temp. or above after exposure, then baking this resist at the phase transition temp. or below after the next exposure. SOLUTION: The photoresist film 12 of the chemical amplification type is formed on a semiconductor substrate 11 and is irradiated with UV rays through a mask plotted with desired semiconductor integrated circuit patterns. The resist film is then subjected to development by using an alkaline developer after the post-exposure baking. The post-exposure baking is divided to two stages; the first baking is executed for 5 to 15 seconds at the phase transition temp. of the resist film 12 or above and the second baking at the phase transition temp. of the resist film or below. The diffusion length of acids increases in the first baking and, therefore, the distribution of the generated acid quantity in the film thickness direction by standing waves is made uniform. Since the baking is short in time, the softening of the resist to the extent of degrading the resolution does not arise. The chemical amplification reaction is completely progressed by the second baking to be executed for about 60 to 120 seconds at the phase transition temp. of the resist or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に関し、特に微細なレジストパターンの形成方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a fine resist pattern.

【0002】[0002]

【従来の技術】従来の光リソグラフィは、その露光光に
g(436nm)線、i(365nm)線を用いたもの
で、そのレジストとしては、ベース樹脂にノボラック樹
脂を用い、感光剤にナフトキノンジアジドを用いた溶解
抑止型ポジ型レジストが主流であった。しかし、より微
細化に有利な遠紫外光であるエキシマレーザ光(248
nm,193nm等)を用いたリソグラフィが必要とな
り、そのレジストとしては、従来のg線、i線用では光
吸収が大きすぎ、良好なレジストパターンが得られず、
また感度も大幅に低下するという状況であった。
2. Description of the Related Art Conventional photolithography uses g (436 nm) and i (365 nm) rays as its exposure light. As its resist, a novolak resin is used as a base resin and naphthoquinone diazide is used as a photosensitizer. Dissolution-inhibiting positive resists using were the mainstream. However, excimer laser light (248 nm), which is far-ultraviolet light advantageous for further miniaturization, is used.
nm, 193 nm, etc.) is required. As a resist for the conventional g-line and i-line, light absorption is too large, and a good resist pattern cannot be obtained.
In addition, the sensitivity was also significantly reduced.

【0003】しかし、光酸発生剤(PAG;Photo
Acid Generator)から発生する酸触媒
による増感反応を利用した化学増幅レジストが考案され
(Ito et al.1982 Symposium
on VLSI Technology)、現在では
エキシマレーザリソグラフィ用レジストとして主流にな
っている。この化学増幅レジストは、ポジ型レジストの
場合、溶解抑止基を導入した樹脂とPAGから構成され
る。このポジ型レジストに露光を行うと、露光部ではP
AGから酸が発生し、露光後ベークにより酸が溶解抑止
基に触媒として作用し、溶解抑止基の脱離が生じる。そ
の結果、露光部はアルカリ可溶性となるため、ポジパタ
ーンが形成される。一方、ネガ型レジストは、樹脂と架
橋剤とPAGから構成される。このネガ型レジストに露
光を行うと、露光部ではPAGから酸が発生し、露光後
ベークにより発生した酸が架橋剤に触媒として作用し、
樹脂の架橋が生じる。その結果、露光部はアルカリ難溶
性となるため、ネガパターンが形成される。
However, a photo-acid generator (PAG; Photo)
A chemically amplified resist utilizing an acid-catalyzed sensitization reaction generated from Acid Generator was devised (Ito et al. 1982 Symposium).
on VLSI Technology), and is now the mainstream resist for excimer laser lithography. In the case of a positive resist, this chemically amplified resist is composed of a resin having a dissolution inhibiting group introduced and PAG. When this positive resist is exposed, P
Acid is generated from AG, and the acid acts as a catalyst on the dissolution inhibiting group by baking after exposure, and the dissolution inhibiting group is eliminated. As a result, the exposed portion becomes alkali-soluble, so that a positive pattern is formed. On the other hand, the negative resist is composed of a resin, a cross-linking agent and PAG. When this negative resist is exposed, an acid is generated from PAG in the exposed portion, and the acid generated by baking after exposure acts as a catalyst on the crosslinking agent,
Crosslinking of the resin occurs. As a result, the exposed part becomes sparingly soluble in alkali, so that a negative pattern is formed.

【0004】上述のように、化学増幅レジストにおいて
は、露光後ベークがパターン形成に重要な役割をもち、
そのベーク方法としては特開平5−216233に提案
されているように、化学増幅反応が十分に生じる100
℃以上でかつレジスト相転移温度以下の温度で60秒〜
120秒程度行うのが一般的となっている。
As described above, in the chemically amplified resist, the post-exposure bake plays an important role in pattern formation,
As the baking method, a chemical amplification reaction sufficiently occurs as proposed in JP-A-5-216233.
60 seconds or more at a temperature above ℃ and below the resist phase transition temperature
It is generally performed for about 120 seconds.

【0005】[0005]

【発明が解決しようとする課題】一方、露光波長がi線
からエキシマ光へと短波長化することにより、下地基板
からの反射率は大きく増大する。レジストに入射した光
は基板との界面で反射し、この反射光が入射光と干渉す
ることによって、レジスト膜内には定在波が形成され
る。よって、レジスト膜内の光強度は膜厚方向に周期的
に変化することになる。そのため、図2に示すようにレ
ジスト膜内の発生酸濃度に膜厚方向の周期的な分布が生
じる。従来より行われているレジスト相転移温度以下の
単一ステップの露光後ベークの場合、酸の拡散長が小さ
いため、定在波による酸濃度の分布は平均化されず、そ
の結果、図3に示すようにレジストパターン33の側壁
に波状の凹凸(以後、「側壁の定在波」と呼ぶ)が形成
され、寸法精度が劣化するという問題が生じる。
On the other hand, when the exposure wavelength is shortened from i-line to excimer light, the reflectance from the underlying substrate is greatly increased. The light incident on the resist is reflected at the interface with the substrate, and the reflected light interferes with the incident light to form a standing wave in the resist film. Therefore, the light intensity in the resist film changes periodically in the film thickness direction. Therefore, as shown in FIG. 2, the generated acid concentration in the resist film has a periodic distribution in the film thickness direction. In the case of a single-step post-exposure bake that is performed below the conventional resist phase transition temperature, since the acid diffusion length is small, the acid concentration distribution due to the standing wave is not averaged. As shown, wavy unevenness (hereinafter referred to as “sidewall standing wave”) is formed on the side wall of the resist pattern 33, which causes a problem that dimensional accuracy is deteriorated.

【0006】本発明の目的は、上述の問題を解決し、高
解像かつ側壁の定在波のない矩形性・寸法精度の良好な
化学増幅レジストパターンを形成する方法を提供するこ
とである。
An object of the present invention is to solve the above-mentioned problems and to provide a method for forming a chemically amplified resist pattern having high resolution and good rectangularity and dimensional accuracy without standing waves on the side wall.

【0007】[0007]

【課題を解決するための手段】本発明は、半導体基板上
に化学増幅型のフォトレジスト膜を形成し、所望の半導
体集積回路パターンを描いたマスクを通して紫外線を照
射し、露光後ベークの後、アルカリ現像液を用いて現像
を行うレジストパターンの形成方法において、露光後ベ
ークを2段階とし、第1ベークをレジスト膜の相転移温
度以上の温度で5秒以上15秒以下のベーク時間で行
い、第2ベークをレジスト膜の相転移温度以下の温度で
行うことを特徴とする。
According to the present invention, a chemically amplified photoresist film is formed on a semiconductor substrate, ultraviolet rays are radiated through a mask on which a desired semiconductor integrated circuit pattern is drawn, and after post-exposure bake, In a method of forming a resist pattern in which development is performed using an alkali developing solution, post-exposure baking is performed in two steps, and first baking is performed at a temperature of the phase transition temperature of the resist film or higher and a baking time of 5 seconds or more and 15 seconds or less The second baking is performed at a temperature not higher than the phase transition temperature of the resist film.

【0008】高温で行う第1ベークでは、酸の拡散長が
大きくなるため、定在波による膜厚方向の発生酸量の分
布が均一化される。相転移温度以上の温度でベークを行
うため、レジストがわずかに軟化することも酸濃度分布
の均一化を助長する。第1ベークの時間は5秒以上15
秒以下と短いため、解像性が低下するほどレジストが軟
化することはない。ここで、15秒以下という短いベー
ク時間は、化学増幅反応を完了させるには不十分である
ため、第2ベークが行われる。
In the first baking performed at a high temperature, the diffusion length of the acid increases, so that the distribution of the amount of acid generated by the standing wave in the film thickness direction becomes uniform. Since the baking is performed at a temperature equal to or higher than the phase transition temperature, the softening of the resist slightly promotes uniform acid concentration distribution. First bake time is 5 seconds or more 15
Since it is as short as a second or less, the resist is not softened so much that the resolution is lowered. Here, since the short baking time of 15 seconds or less is insufficient for completing the chemical amplification reaction, the second baking is performed.

【0009】第2ベークは、従来の単一ステップの露光
後ベークに当たるもので、レジスト相転移温度以下の温
度で60秒〜120秒程度のベーク時間で行われ、この
第2ベークにより化学増幅反応が完全に進行する。
The second bake corresponds to a conventional single-step post-exposure bake, which is performed at a temperature below the resist phase transition temperature for a bake time of about 60 seconds to 120 seconds, and the second bake causes a chemical amplification reaction. Will progress completely.

【0010】[0010]

【発明の実施の形態】次に、本発明について図面を参照
して説明する。図1(a),(b)は本発明の実施の形
態のレジストパターンの形成方法を説明する断面図であ
る。ベース樹脂として、平均分子量15000のポリビ
ニルフェノール(PVP)を用い、フェノール性水酸基
の約30%をターシャリブトキシカルボニル基(t−B
OC)により保護し、酸発生剤として、約4重量%(対
樹脂比)のトリフェニルサルフォニウムヘキサフルオロ
アンティモネートを添加し、レジスト固体成分とした。
これらレジスト固体成分の相転移温度は約120℃であ
った。レジスト固体成分をプロピレングリコールメチル
エーテルアセテートに溶解させたものをレジスト溶液と
した。
Next, the present invention will be described with reference to the drawings. 1A and 1B are cross-sectional views illustrating a method of forming a resist pattern according to an embodiment of the present invention. As the base resin, polyvinylphenol (PVP) having an average molecular weight of 15,000 is used, and about 30% of the phenolic hydroxyl groups are tertiary butoxycarbonyl groups (t-B).
OC), and about 4% by weight (ratio to resin) of triphenylsulfonium hexafluoroantimonate was added as an acid generator to prepare a resist solid component.
The phase transition temperature of these resist solid components was about 120 ° C. A resist solution was prepared by dissolving the resist solid component in propylene glycol methyl ether acetate.

【0011】このレジスト溶液をSi基板11上にスピ
ン塗布し、120℃、90秒間の露光前ベークを行っ
て、膜厚0.7μmの化学増幅ポジ型レジスト膜12を
形成した。続いて、KrFエキシマレーザステッパによ
りマスクを通したパターン露光を行った(図1
(a))。
This resist solution was spin-coated on a Si substrate 11 and baked at 120 ° C. for 90 seconds before exposure to form a chemically amplified positive resist film 12 having a thickness of 0.7 μm. Subsequently, pattern exposure through a mask was performed using a KrF excimer laser stepper (FIG. 1).
(A)).

【0012】パターン露光の後、150℃、10秒間の
第1の露光後ベークを行い、引き続き100℃、90秒
間の第2露光後ベークを行った。続いて、2.38%の
テトラメチルアンモニウムハイドロオキサイド(TMA
H)水溶液により現像を行った。これにより、側壁の定
在波のない矩形の0.25μmL/Sレジストパターン
が得られた(図1(b))。
After the pattern exposure, a first post-exposure bake at 150 ° C. for 10 seconds was performed, and a second post-exposure bake at 100 ° C. for 90 seconds was subsequently performed. Then, 2.38% tetramethylammonium hydroxide (TMA
H) Development was performed with an aqueous solution. As a result, a rectangular 0.25 μmL / S resist pattern without standing waves on the side wall was obtained (FIG. 1 (b)).

【0013】一方、100℃、90秒間の単一ステップ
の露光後ベークを行った場合には、図3に示すようにパ
ターン側壁には大きな定在波がみられた。また、150
℃、90秒間の単一ステップの露光後ベークを行った場
合には、解像力が低下し、また、膜減りが大きく丸まっ
た形状の図4に示すようなパターンとなった。
On the other hand, when a single step post-exposure bake was performed at 100 ° C. for 90 seconds, a large standing wave was observed on the side wall of the pattern as shown in FIG. Also, 150
When the single step post-exposure bake was performed at 90 ° C. for 90 seconds, the resolution was lowered and the film loss was greatly rounded, resulting in a pattern as shown in FIG.

【0014】[0014]

【発明の効果】以上説明したように本発明の方法によ
り、従来の露光後ベーク方法による化学増幅レジストパ
ターンでみられる側壁の定在波を解消することができ、
良好な形状の0.30μm以下の微細なレジストパター
ンを得ることができる。また、解像力、焦点深度、寸法
精度とも10%以上の向上を図ることができる。
As described above, according to the method of the present invention, it is possible to eliminate the standing wave on the side wall which is observed in the chemically amplified resist pattern by the conventional post-exposure bake method.
A fine resist pattern of 0.30 μm or less having a good shape can be obtained. Further, it is possible to improve the resolution, the depth of focus, and the dimensional accuracy by 10% or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は本発明の実施の形態のレジス
トパターンの形成方法を説明する断面図である。
1A and 1B are cross-sectional views illustrating a method of forming a resist pattern according to an embodiment of the present invention.

【図2】レジスト膜内の膜厚方向の酸濃度分布を示す図
である。
FIG. 2 is a diagram showing an acid concentration distribution in a resist film in a film thickness direction.

【図3】従来の露光後ベーク(100℃、90秒)によ
るレジストパターンの断面図である。
FIG. 3 is a sectional view of a resist pattern formed by a conventional post-exposure bake (100 ° C., 90 seconds).

【図4】150℃、90秒の露光後ベークによるレジス
トパターンの断面図である。
FIG. 4 is a cross-sectional view of a resist pattern after baking after exposure at 150 ° C. for 90 seconds.

【符号の説明】[Explanation of symbols]

11,31,41 シリコン基板 12 化学増幅レジスト膜 13,33,43 レジストパターン 11, 31, 41 Silicon substrate 12 Chemically amplified resist film 13, 33, 43 Resist pattern

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に化学増幅型のフォトレジ
スト膜を形成し、所望の半導体集積回路パターンを描い
たマスクを通して紫外線あるいは遠紫外線を照射し、露
光後ベークの後、アルカリ現像液を用いて現像を行うレ
ジストパターンの形成方法において、露光後ベークを2
段階とし、第1露光後ベークをレジスト膜の相転移温度
以上の温度で、第2露光後ベークをレジスト膜の相転移
温度以下の温度で行うことを特徴とするレジストパター
ン形成方法。
1. A chemically amplified photoresist film is formed on a semiconductor substrate, irradiated with ultraviolet rays or deep ultraviolet rays through a mask on which a desired semiconductor integrated circuit pattern is drawn, and post-exposure bake is followed by using an alkali developing solution. In the method of forming a resist pattern in which development is performed by development, baking after exposure is performed by 2
And a second post-exposure bake is performed at a temperature not lower than the phase transition temperature of the resist film, and a second post-exposure bake is performed at a temperature not higher than the phase transition temperature of the resist film.
【請求項2】 前記第1露光後ベークのベーク時間は5
秒以上15秒以下であることを特徴とする請求項1記載
のレジストパターン形成方法。
2. The baking time of the first post-exposure bake is 5
The resist pattern forming method according to claim 1, wherein the resist pattern forming time is not less than 2 seconds and not more than 15 seconds.
JP8014063A 1996-01-30 1996-01-30 Method of forming resist pattern Expired - Fee Related JP2910654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8014063A JP2910654B2 (en) 1996-01-30 1996-01-30 Method of forming resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8014063A JP2910654B2 (en) 1996-01-30 1996-01-30 Method of forming resist pattern

Publications (2)

Publication Number Publication Date
JPH09211871A true JPH09211871A (en) 1997-08-15
JP2910654B2 JP2910654B2 (en) 1999-06-23

Family

ID=11850642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8014063A Expired - Fee Related JP2910654B2 (en) 1996-01-30 1996-01-30 Method of forming resist pattern

Country Status (1)

Country Link
JP (1) JP2910654B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220847A (en) * 2005-02-09 2006-08-24 Toshiba Corp Resist pattern forming method
US20150241783A1 (en) * 2014-02-24 2015-08-27 Tokyo Electron Limited Methods and Techniques to use with Photosensitized Chemically Amplified Resist Chemicals and Processes
US10048594B2 (en) 2016-02-19 2018-08-14 Tokyo Electron Limited Photo-sensitized chemically amplified resist (PS-CAR) model calibration
US10096528B2 (en) 2016-05-13 2018-10-09 Tokyo Electron Limited Critical dimension control by use of a photo agent
US10429745B2 (en) 2016-02-19 2019-10-01 Osaka University Photo-sensitized chemically amplified resist (PS-CAR) simulation
US10551743B2 (en) 2016-05-13 2020-02-04 Tokyo Electron Limited Critical dimension control by use of photo-sensitized chemicals or photo-sensitized chemically amplified resist
US11163236B2 (en) 2019-08-16 2021-11-02 Tokyo Electron Limited Method and process for stochastic driven detectivity healing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220847A (en) * 2005-02-09 2006-08-24 Toshiba Corp Resist pattern forming method
US20150241783A1 (en) * 2014-02-24 2015-08-27 Tokyo Electron Limited Methods and Techniques to use with Photosensitized Chemically Amplified Resist Chemicals and Processes
US9618848B2 (en) * 2014-02-24 2017-04-11 Tokyo Electron Limited Methods and techniques to use with photosensitized chemically amplified resist chemicals and processes
US10534266B2 (en) 2014-02-24 2020-01-14 Tokyo Electron Limited Methods and techniques to use with photosensitized chemically amplified resist chemicals and processes
US10048594B2 (en) 2016-02-19 2018-08-14 Tokyo Electron Limited Photo-sensitized chemically amplified resist (PS-CAR) model calibration
US10429745B2 (en) 2016-02-19 2019-10-01 Osaka University Photo-sensitized chemically amplified resist (PS-CAR) simulation
US10096528B2 (en) 2016-05-13 2018-10-09 Tokyo Electron Limited Critical dimension control by use of a photo agent
US10522428B2 (en) 2016-05-13 2019-12-31 Tokyo Electron Limited Critical dimension control by use of a photo agent
US10551743B2 (en) 2016-05-13 2020-02-04 Tokyo Electron Limited Critical dimension control by use of photo-sensitized chemicals or photo-sensitized chemically amplified resist
US11163236B2 (en) 2019-08-16 2021-11-02 Tokyo Electron Limited Method and process for stochastic driven detectivity healing

Also Published As

Publication number Publication date
JP2910654B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JPH07261392A (en) Chemical amplification resist and resist pattern forming method using the same
JP2829555B2 (en) Method of forming fine resist pattern
JP2004045513A (en) Chemically amplified resist material and patterning method using the same
JP2004086203A (en) Fine pattern forming material and method for manufacturing electronic device
KR20040094706A (en) Self-aligned pattern formation using dual wavelengths
JP5057530B2 (en) Positive photoresist composition and pattern forming method thereof
JP2005070319A (en) Photoresist for near field exposure and method for making fine pattern using the same
JP2910654B2 (en) Method of forming resist pattern
JP3031287B2 (en) Anti-reflective coating material
KR0160921B1 (en) Method for forming a resist pattern
JPH1195418A (en) Photoresist film and pattern forming method
JP2661317B2 (en) Pattern formation method
JP3261709B2 (en) Chemically amplified resist composition and method of forming resist pattern
JPH0786127A (en) Formation of resist pattern
JP3986911B2 (en) Pattern forming material and pattern forming method
JP2004012511A (en) Method of forming pattern
JPH0669118A (en) Formation of resist pattern
JP3638266B2 (en) Manufacturing method of semiconductor device
JPH11153867A (en) Resist pattern forming method
JPH11153872A (en) Forming method of resist pattern
JP2699971B2 (en) Pattern formation method
JP3129266B2 (en) Resist material
JPH1195436A (en) Pattern forming method
JP2647065B2 (en) Pattern formation method
JPH04342260A (en) Formation of resist pattern

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990309

LAPS Cancellation because of no payment of annual fees