JPH09208050A - Powder and granular material blowing-control device - Google Patents

Powder and granular material blowing-control device

Info

Publication number
JPH09208050A
JPH09208050A JP1516396A JP1516396A JPH09208050A JP H09208050 A JPH09208050 A JP H09208050A JP 1516396 A JP1516396 A JP 1516396A JP 1516396 A JP1516396 A JP 1516396A JP H09208050 A JPH09208050 A JP H09208050A
Authority
JP
Japan
Prior art keywords
pressure
powder
gas
blowing
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1516396A
Other languages
Japanese (ja)
Inventor
Ryoji Nagai
亮次 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1516396A priority Critical patent/JPH09208050A/en
Publication of JPH09208050A publication Critical patent/JPH09208050A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stabilize the blow by stably controlling the D/S differential pressure in blowing the powder and granular material, and to minimize the consumption of a gas to be used in the blow. SOLUTION: In a control device, the powder and granular material A, B stored in each pressure vessel is fluidized by the aeration gas 9 to be separately fed from pressure vessels 7, 8 through one blow line 4 connected to each pressure vessel, a pressure regulating valve 35 is adjusted in a powder and granular material-blowing facility to feed the powder and granular material into a tank 6 (a reaction vessel), the decompression is controlled to keep the differential pressure between the pressure vessel and the blow line 4 while a part of the gas in the pressure vessel is discharged into a discharge control line 14, and the blowing quantity of the powder and granular material to the tank 6 from the pressure vessel is controlled. An independently operable gas pressure replenishing means is provided in which the gas quantity for the pressure drop generated as at least the powder and granular material is discharged is replenished into the pressure vessel when the powder and grain is blown.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉粒体吹込制御装
置、特に1又は2以上の圧力容器から1本の吹込ライン
を介して反応容器へ粉粒体を吹込む際に適用して好適
な、粉粒体吹込制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for use when a powder or granular material blow-in control device is blown, and particularly when a powdery or granular material is blown into a reaction vessel from one or more pressure vessels through one blowing line. The present invention relates to a powder and granular material blowing control device.

【0002】[0002]

【従来の技術】粉粒体が収容されている圧力容器(以
下、ディスペンサ:D/Sともいう)と、それに接続さ
れている1本の吹込ラインとの圧力差(以下、D/S差
圧ともいう)を利用して、該吹込ラインを介して粉粒体
を反応容器に吹込むことが行われている。図5は、この
ような粉粒体の吹込みを行う製銑設備の一例を模式的に
示したものである。
2. Description of the Related Art The pressure difference between a pressure container (hereinafter, also referred to as a dispenser: D / S) containing a powder and granular material and a single blowing line connected thereto (hereinafter referred to as a D / S differential pressure). It is also used to blow powder particles into the reaction vessel through the blowing line. FIG. 5 schematically shows an example of the ironmaking equipment for blowing the powder or granular material.

【0003】この吹込設備は、搬送ガス1が、キャリア
ガスライン2を介して、又は必要に応じてブローガスラ
イン3をも介して吹込ライン4に供給され、最終的に該
吹込ライン4に接続されたランスの先端から鍋(反応容
器)6内に吹き出されるようになっている。そして、こ
の設備では、A、Bの2種類の粉粒体が、それぞれ収容
されているA−D/S7、B−D/S8から排出され、
配管を通して同一の上記吹込ライン4の途中に供給され
るため、これら粉粒体が上記搬送ガス1によりそれぞれ
搬送され、上記ランス5の先端から鍋6内に搬送ガスと
共に吹込まれ、供給されるようになっている。
In this blowing equipment, a carrier gas 1 is supplied to a blowing line 4 via a carrier gas line 2 or, if necessary, a blowing gas line 3 and finally connected to the blowing line 4. It is designed to be blown into the pot (reaction vessel) 6 from the tip of the lance. Then, in this equipment, two types of powder particles, A and B, are discharged from the respectively stored A-D / S7 and B-D / S8,
Since they are supplied to the middle of the same blowing line 4 through the pipes, these powder particles are carried by the carrier gas 1, respectively, and blown together with the carrier gas into the pan 6 from the tip of the lance 5 to be supplied. It has become.

【0004】上記D/S(圧力容器)7、8から、吹込
ライン4に対して粉粒体を排出する方法は、いずれの圧
力容器でも実質上同一なので、A−D/S7の場合を代
表させてその方法を詳細に説明する。
The method of discharging the powdery particles from the above D / S (pressure vessels) 7 and 8 to the blow-in line 4 is substantially the same in any pressure vessel, so the case of A-D / S7 is representative. Then, the method will be described in detail.

【0005】上記D/S7の下部には、粉粒体を流動状
態にするためのエアレーションガス9が、エアレーショ
ンライン10を通して流入され、収容されている粉粒体
と混和されるようになっている。又、上記D/S7の上
部には、加圧操作開始時に加圧ガス11を供給するため
等に使用する予加圧ライン12と、加圧操作が終了し、
粉粒体の排出を開始した後に、D/S差圧(圧力計26
による吹込ライン4の圧力の測定値と圧力計30による
D/S内の圧力測定値との差)が基準値未満の特に加圧
制御するため等に使用する加圧ライン13と、同差圧が
基準値を超えている特に減圧制御するため等に使用する
排気ライン14とが、1本の配管を介して連結され、且
つこれら各ラインがそれぞれ独立に操作できるようにな
っている。
An aeration gas 9 for bringing the powder or granules into a fluid state is introduced into the lower part of the D / S 7 through an aeration line 10 and mixed with the contained powder or granules. . In the upper part of the D / S7, a pre-pressurization line 12 used for supplying the pressurized gas 11 at the start of the pressurizing operation and the pressurizing operation are completed,
D / S differential pressure (pressure gauge 26
(The difference between the measured value of the pressure in the blowing line 4 by the pressure gauge and the measured value in the D / S by the pressure gauge 30) is less than the reference value, and the pressure difference is the same as the pressure line 13 used for controlling the pressure. Is above the reference value. Particularly, the exhaust line 14 used for pressure reduction control and the like is connected via a single pipe, and each of these lines can be operated independently.

【0006】上記D/S7では、D/S差圧が所定値に
なった後、可変弁27を調節すると共に、エアレーショ
ンライン10から、例えば0.2〜0.5Nm3 /min
の流速でガスを吹込んで粉粒体と混和し、それをD/S
の出口に導き出すと共に、該粉粒体を流動化してD/S
から排出することにより、目標とする吹込速度で鍋6に
供給する制御が行われる。
In the above D / S7, after the D / S differential pressure reaches a predetermined value, the variable valve 27 is adjusted and, for example, 0.2 to 0.5 Nm 3 / min from the aeration line 10.
Blow gas at a flow rate of 10
To the outlet of the D / S
By discharging from the pot, the supply to the pot 6 at a target blowing speed is controlled.

【0007】即ち、粉粒体の吹込速度とD/S差圧及び
可変弁27の開度との間には、一般的に図6に示すよう
な関係があるため、吹込速度に応じた目標D/S差圧設
定値を予め定めておき、D/S差圧の実績値がその目標
設定値になるように圧力調節弁35をPID(比例・積
分・微分)制御で定値制御しながら、上記可変弁27で
吹込速度実績が目標吹込速度設定値になるようにPID
制御を行っている。
That is, since the blowing speed of the granular material, the D / S differential pressure, and the opening degree of the variable valve 27 generally have a relationship as shown in FIG. 6, a target corresponding to the blowing speed is set. While setting the D / S differential pressure set value in advance and performing constant value control of the pressure control valve 35 by PID (proportional / integral / derivative) control so that the actual value of the D / S differential pressure becomes the target set value, Use the variable valve 27 so that the actual blow speed is set to the target blow speed set value by PID.
Control.

【0008】上記D/S差圧の定値制御は、上記圧力調
節弁35と共に、加圧制御ライン13、加圧弁33、排
気制御ライン14、排気弁34等で構成される差圧制御
手段により、以下のように実行される。
The constant value control of the D / S differential pressure is performed by the differential pressure control means including the pressure control valve 35, the pressure control line 13, the pressure control valve 33, the exhaust control line 14, the exhaust valve 34, etc. It is executed as follows.

【0009】即ち、例えば図7に示すように、D/S差
圧の実績値が、差圧目標値SVより低い偏差L(基準
値)より大きいときには、排気弁34を開け、排気制御
ライン(減圧系)14を使用してD/S7内のガスの一
部を排出しながらD/S圧力調節弁35を制御する「減
圧制御」を行い、D/S差圧実績が偏差L未満のときに
は、加圧弁33を開け、加圧制御ライン13を使用して
D/S7内に加圧ガスを流入させながらD/S圧力調節
弁35を制御する「加圧制御」を行うように、D/S差
圧の実績値に応じて制御方式を切換えることが行われて
いる。
That is, for example, as shown in FIG. 7, when the actual value of the D / S differential pressure is larger than the deviation L (reference value) lower than the differential pressure target value SV, the exhaust valve 34 is opened and the exhaust control line ( When the actual D / S differential pressure is less than the deviation L, the “pressure reduction system” 14 is used to perform “pressure reduction control” for controlling the D / S pressure control valve 35 while discharging a part of the gas in the D / S 7. , The D / S pressure adjusting valve 35 is controlled by opening the pressurizing valve 33 and using the pressurizing control line 13 to flow the pressurized gas into the D / S 7. The control method is switched according to the actual value of the S differential pressure.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前述し
た従来の粉粒体吹込制御装置では、制御の信頼性に問題
があった。例えば、ポストミックス吹込みをしていると
きには下記の問題があった。前記図5に示した設備のよ
うに、AとBと2種類の粉粒体を一本の吹込ライン4に
吹込んでポストミックスを行っている場合、該吹込ライ
ン4の圧力はAとBの粉粒体の吹込速度の合計に応じて
変化する。この吹込ライン4の圧力変化は、特に吹込速
度を変更したとき、あるいは何等かの原因で外乱が生じ
て吹込みが不安定になったときに顕著に現われる。
However, the above-mentioned conventional powdery-particle injection control device has a problem in control reliability. For example, there were the following problems when performing post mix injection. As in the equipment shown in FIG. 5, when two kinds of powders, A and B, are blown into one blowing line 4 to perform postmixing, the pressure of the blowing line 4 is A and B. It changes according to the total blowing speed of the powder. This pressure change in the blow-in line 4 appears remarkably when the blow-in speed is changed or when the blow-in becomes unstable due to some disturbance.

【0011】図8には、このような吹込中の状態変化の
様子を示した。上から順に、A−D/S、B−D/Sの
各吹込速度、同各圧力、吹込ライン圧力、A−D/S、
B−D/Sの各差圧に関する時間変化である。
FIG. 8 shows how the state changes during such blowing. In order from the top, each blowing speed of A-D / S, B-D / S, each pressure, blowing line pressure, A-D / S,
It is a time change regarding each differential pressure of B-D / S.

【0012】上記図8には、減圧制御方式で、A及びB
の粉粒体が共にD/S差圧が目標値どおりに正常に制御
された状態で吹込んでいるときに、t1 時点でBの目標
吹込速度設定が40kgから60kgに増えたときの変
化が示されている。このときB−D/Sの吹込速度実績
が増加するため、吹込ライン圧力は上昇し、それに連れ
てA−D/S差圧実績は減少する。この場合、同時に可
変弁27で吹込速度を制御するが、差圧実績の減少に伴
って粉粒体Aの吹込速度も減少するため、やがてA−D
/Sの差圧実績は前記偏差L未満になり、A−D/S7
では減圧制御から加圧制御に替わることが起り得る。こ
のように加圧制御に切替わると、A−D/S差圧実績は
回復して偏差L以上に戻ることになるため、再び減圧制
御に切替わる。それと同時に、粉粒体Aの吹込速度は回
復し、吹込ライン圧力もそれと共に上昇する。そうする
と、今度はB−D/S差圧実績が減少し、上記A−D/
Sの場合と同様にB−D/S差圧制御も減圧制御から加
圧制御へ、更に加圧制御から減圧制御に切替わることに
なる。このような両方式の制御の切替えが繰り返され、
やがては吹込速度は収束するが、場合によってはこれら
を繰り返すだけで収束しないこともある。
In FIG. 8, the pressure reduction control method is used for A and B.
When both the powder and granules of B are blowing under the condition that the D / S differential pressure is normally controlled according to the target value, the change when the target blowing speed setting of B is increased from 40 kg to 60 kg at time t 1 It is shown. At this time, since the actual blow speed of BD is increased, the blow line pressure is increased, and the actual differential pressure of AD is decreased accordingly. In this case, the blowing speed is controlled by the variable valve 27 at the same time, but since the blowing speed of the granular material A also decreases as the actual differential pressure decreases, eventually A-D.
The actual differential pressure of / S is less than the deviation L, and AD / S7
Then, the pressure reducing control may be changed to the pressure increasing control. When the pressure control is switched to the pressure control in this way, the actual AD pressure differential pressure is recovered and returns to the deviation L or more, and therefore the pressure control is switched again. At the same time, the blowing speed of the granular material A is recovered, and the blowing line pressure also rises with it. Then, the actual result of the B-D / S differential pressure decreases, and the A-D / S
As in the case of S, the BD / S differential pressure control is also switched from the pressure reduction control to the pressure control, and further from the pressure control to the pressure reduction control. Switching of both types of control is repeated,
Eventually, the blowing velocity converges, but in some cases it may not be converged only by repeating these.

【0013】又、減圧制御と加圧制御との間の切替え時
にはPIDパラメータのチューニングが行われるが、そ
のチューニングに限界があるために、制御方式切替え時
は応答遅れが生じて制御がうまくいかないという問題
や、調節弁35の開度が大きいときに切替わると急加圧
や急排気になったり、逆に調節弁35の開度が小さいと
きには、排気や加圧に時間がかかり過ぎたりするという
問題があった。
Further, tuning of the PID parameter is performed at the time of switching between the pressure reducing control and the pressurizing control, but there is a problem that the control is not successful due to a response delay at the time of switching the control system due to the limitation of the tuning. Also, when switching is performed when the opening of the control valve 35 is large, rapid pressurization and rapid exhaust may occur, and conversely, when the opening of the control valve 35 is small, exhausting and pressurizing may take too long. was there.

【0014】又、D/S差圧実績がマイナスになったと
きには、D/S内にガスが逆流するため、ランス先端か
らの吹込が一瞬止まり、ランスに熔銑が逆流して、それ
が差込み状態となり、操業できなくなることがある。
Further, when the actual D / S differential pressure becomes negative, the gas flows back into the D / S, so that the blow from the tip of the lance is stopped for a moment, and the hot metal flows back into the lance, which is then inserted. It may become in a state and become unable to operate.

【0015】そのため、吹込みの安定を第1に考えて、
加圧ライン12を強制的に開いた状態にして必要以上の
ガスで加圧しながら減圧制御だけでD/S差圧を制御す
ることもある。この場合には勿論のこと、必要以上のガ
スを消費することになるという問題がある。
Therefore, considering the stability of the blow as the first,
The D / S differential pressure may be controlled only by decompression control while pressurizing the pressurization line 12 forcibly and pressurizing with more gas than necessary. In this case, of course, there is a problem that more gas is consumed than necessary.

【0016】上述したこれらの問題は、ひいては吹込速
度が安定しなくなり、その結果として吹込ライン圧力が
変動するために安定したD/S差圧制御ができなくなる
ことにつながる。
[0016] These problems described above lead to the instability of the blowing speed, resulting in fluctuation of the blowing line pressure, which makes it impossible to perform stable D / S differential pressure control.

【0017】本発明は、前記従来の問題点を解決するべ
くなされたもので、粉粒体吹込時のD/S差圧を安定に
制御して、粉粒体の吹込みの安定化を図ると共に、吹込
みに使用するガスの消費量を最低限度に抑えることがで
きる粉粒体吹込制御装置を提供することを課題とする。
The present invention has been made to solve the above-mentioned conventional problems. The D / S differential pressure at the time of blowing a powder or granular material is stably controlled to stabilize the blowing of the powder or granular material. At the same time, it is an object of the present invention to provide a powdery or granular material blowing control device capable of suppressing the consumption of gas used for blowing to a minimum.

【0018】[0018]

【課題を解決するための手段】本発明は、1又は2以上
の圧力容器から、各圧力容器に接続されている1本の吹
込ラインを介して、各圧力容器に収容されている粉粒体
を、別途流入されるエアレーションガスで流動化した
後、それぞれ反応容器に吹込んで供給する粉粒体吹込設
備で、差圧制御手段により、圧力容器と吹込ラインとの
間の圧力差を、圧力容器内のガスの一部を減圧系に排気
しながら維持する減圧制御を行い、その圧力差に基づい
て該圧力容器から上記反応容器への粉粒体吹込量を制御
する粉粒体吹込制御装置において、粉粒体の吹込時に、
圧力容器に対して、少なくとも該圧力容器から粉粒体が
排出されるに伴って生じる圧力降下分のガス量を補充す
る、前記差圧制御手段とは独立に操作可能なガス圧補充
手段を備えたことにより、前記課題を解決したものであ
る。
DISCLOSURE OF THE INVENTION The present invention relates to a granular material contained in each pressure vessel from one or two or more pressure vessels via one blowing line connected to each pressure vessel. Is fluidized by aeration gas that is separately flowed in, and is then blown into the reaction vessel to be supplied by being blown into the reaction vessel, and the pressure difference between the pressure vessel and the blowing line is controlled by the pressure difference control means. In a powder-particle injection control device for performing a pressure-reduction control for maintaining a part of the gas in the pressure-reduction system while exhausting the gas to a pressure-reduction system, and controlling the powder-particle injection amount from the pressure vessel to the reaction vessel based on the pressure difference. , When blowing powder,
The pressure vessel is provided with a gas pressure replenishing means operable to replenish at least a gas amount corresponding to a pressure drop caused by the discharge of the granular material from the pressure vessel, the gas pressure replenishing means being operable independently of the differential pressure control means. As a result, the above problems have been solved.

【0019】即ち、本発明においては、自動で流量調整
可能な加圧ライン等で構成される前記ガス圧補充手段
を、本来の差圧制御手段とは別に独立して操作できるよ
うに設けるようにしたので、吹込時に圧力容器から粉粒
体が排出されることに伴って生じる圧力降下分(前記図
5に示した設備と同様の場合であれば、D/Sから排出
される粉粒体及びガスによる圧力降下分とエアレーショ
ンガス流量で加圧する分との差分)を最低のガス補充量
として、加圧ラインから流量制御してD/S内に補充
し、加圧することにより、D/S差圧を常に、例えば前
記偏差L以上の正圧に維持することが可能となるから、
D/S差圧制御は常に減圧制御方式で行うことが可能と
なるため、従来のような減圧制御と加圧制御との切換え
が不要となり、D/S差圧制御を安定させることが可能
となる。その結果、粉粒体の吹込みに使用するガス量を
最小限度に減少でき、粉粒体も安定して吹込むことがで
きるようになる。
That is, in the present invention, the gas pressure replenishing means constituted by a pressurizing line or the like capable of automatically adjusting the flow rate is provided so as to be operated independently of the original differential pressure control means. Therefore, the pressure drop caused by the discharge of the powder or granules from the pressure vessel during the blowing (in the same case as the equipment shown in FIG. 5, the powder or granules discharged from the D / S and The difference between the pressure drop due to the gas and the amount pressurized by the aeration gas flow rate) is used as the minimum gas replenishment amount, and the flow rate is controlled from the pressurization line to replenish and pressurize the D / S to obtain the D / S difference. Since it is possible to maintain the pressure at a constant positive pressure that is equal to or greater than the deviation L,
Since the D / S differential pressure control can always be performed by the pressure reducing control method, it is not necessary to switch between the conventional pressure reducing control and the pressure increasing control, and the D / S differential pressure control can be stabilized. Become. As a result, the amount of gas used for blowing the powder or granules can be reduced to a minimum, and the powder or granules can be stably blown.

【0020】[0020]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態について詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0021】図1は、本発明に係る一実施の形態である
粉粒体吹込制御装置が適用される粉粒体吹込設備の概略
構成を示し、図2は、該制御装置の全体構成を概念的に
示したブロック図である。
FIG. 1 shows a schematic structure of a powder or granular material injection facility to which a powder or granular material injection control device according to an embodiment of the present invention is applied, and FIG. 2 shows the overall structure of the control device. It is the block diagram shown typically.

【0022】この実施の形態で用いられる上記設備は、
D/Sに対する差圧制御手段とは独立して操作すること
ができるガス圧補充手段として、加圧ライン12に加圧
ガス流量調節弁39を付設した以外は、前記図5に示し
たものと実質的に同一である。なお、符号38は、前記
図5では省略したが、粉粒体をD/Sに収容する際に使
用する切出弁であり、粉粒体の収容後は通常閉じられて
いる。
The equipment used in this embodiment is
As the gas pressure replenishing means that can be operated independently of the differential pressure control means for the D / S, except that the pressurized gas flow rate control valve 39 is attached to the pressurizing line 12, as shown in FIG. Are substantially the same. Although not shown in FIG. 5, reference numeral 38 is a cut-out valve used when the powder or granular material is stored in the D / S, and is normally closed after the powder or granular material is stored.

【0023】この実施の形態の制御装置は、上記図1に
示した粉粒体吹込設備40と、該設備40に対して各種
制御信号を作成し、出力するための制御計算機(DD
C)50と、該制御計算機50に接続されたプロセスコ
ンピュータ60と、該計算機50に情報を入力するため
の操作デスク70とを備えた構成となっている。
The control device of this embodiment comprises a powder and particle blowing facility 40 shown in FIG. 1 and a control computer (DD) for producing and outputting various control signals to the facility 40.
C) 50, a process computer 60 connected to the control computer 50, and an operation desk 70 for inputting information to the computer 50.

【0024】以下、上述した粉粒体吹込制御装置による
制御操作について詳述する。切出弁38から粉粒体Aと
BをそれぞれD/S7、8に受け入れた後、各D/S内
が所定圧力になるように、エアレーション弁37を開に
すると共に、加圧弁33と予加圧弁32とを共に開にし
て加圧する。このとき、D/S圧力調節弁35と上記加
圧ガス流量調節弁39とは予め決めておいた開度に設定
しておく。
The control operation by the above-described powdery or granular material blowing control device will be described in detail below. After accepting the powders A and B from the cut-out valve 38 into the D / S 7 and 8, respectively, the aeration valve 37 is opened and the pressurizing valve 33 and the pre-aeration valve 33 are preheated so that each D / S has a predetermined pressure. Both the pressurizing valve 32 and the pressurizing valve 32 are opened to apply pressure. At this time, the D / S pressure control valve 35 and the pressurized gas flow rate control valve 39 are set to predetermined openings.

【0025】D/S内が所定圧力に到達した後、加圧弁
33と予加圧弁32を閉じて、排気弁34を開くことに
より、D/Sの圧力が所定圧力になるようにD/S圧力
調節弁35を制御する。この状態の制御をD/S圧力制
御と呼ぶ。
After the inside of the D / S reaches a predetermined pressure, the pressurizing valve 33 and the pre-pressurizing valve 32 are closed and the exhaust valve 34 is opened so that the D / S pressure becomes a predetermined pressure. The pressure control valve 35 is controlled. Control in this state is called D / S pressure control.

【0026】次いで、吹込操作を開始するが、その際キ
ャリアガス弁24とブローガス弁22を開にし、その状
態でランス5を下降させる。このとき、キャリアガス流
量調節弁25は予め決めておいた開度だけ開いておく。
この調節弁25は、後記出口弁28の開操作からタイマ
による所定時間経過後に吹込速度に応じた目標キャリア
ガス流量設定値になるように制御される。
Next, the blowing operation is started. At that time, the carrier gas valve 24 and the blow gas valve 22 are opened, and the lance 5 is lowered in this state. At this time, the carrier gas flow rate control valve 25 is opened by a predetermined opening.
The control valve 25 is controlled so as to reach a target carrier gas flow rate set value according to the blowing speed after a lapse of a predetermined time by a timer from the opening operation of the outlet valve 28 described later.

【0027】上記ランス5は所定位置に到達すると、D
/S7の出口弁28を開にし、粉粒体の吹込みを開始す
る。このD/S7の出口弁28の開操作から、タイマに
よる所定時間経過後に、上記D/S圧力制御からD/S
差圧制御に移る。このD/S差圧制御は、排気制御ライ
ン(減圧系)14、排気弁34、圧力調節弁35等で構
成される差圧制御手段により、D/Sタンク圧力計30
による測定値と、吹込ライン圧力計26による測定値と
の差、即ちD/S差圧を吹込速度設定値に応じて予め決
めておいた目標D/S差圧設定値になるように、圧力調
節弁35を制御し、排気制御ライン14からD/S7内
のガスの一部を排出しながら減圧制御を行っていること
にあたる。
When the lance 5 reaches a predetermined position, D
/ The outlet valve 28 of S7 is opened, and the blowing of the granular material is started. From the opening operation of the outlet valve 28 of the D / S 7, after a predetermined time has elapsed by the timer, the D / S pressure control is started.
Move to differential pressure control. This D / S differential pressure control is performed by a differential pressure control means including an exhaust control line (pressure reducing system) 14, an exhaust valve 34, a pressure control valve 35, etc.
The difference between the measured value by the blow line pressure gauge 26 and the measured value by the blow line pressure gauge 26, that is, the D / S differential pressure is set to a target D / S differential pressure set value which is predetermined according to the blow speed set value. This corresponds to performing the pressure reduction control while controlling the regulating valve 35 and discharging a part of the gas in the D / S 7 from the exhaust control line 14.

【0028】又、上記D/S差圧制御と同時に、粉粒体
の吹込みによるD/S圧力降下分を補充するために、予
加圧弁32を開にし、粉粒体吹込みによるD/S圧力降
下と、エアレーションによるD/S圧力加圧との差を補
充する分のガス流量を、前記計算機(DDC)50で計
算し、計算されたガス流量を少なくとも補充し、D/S
差圧が常に、例えば前記偏差L以上の正圧に維持される
ように、前記加圧ガス流量調節弁39を制御してD/S
7を加圧する。
Simultaneously with the above D / S differential pressure control, the pre-pressurization valve 32 is opened to supplement the D / S pressure drop due to the blowing of the powder or granular material, and the D / S due to the blowing of the powder or granular material is opened. The gas flow rate for supplementing the difference between the S pressure drop and the D / S pressure pressurization by aeration is calculated by the computer (DDC) 50, and the calculated gas flow rate is at least supplemented to obtain the D / S.
The pressurized gas flow rate control valve 39 is controlled so that the differential pressure is always maintained at, for example, a positive pressure equal to or more than the deviation L, and the D / S is controlled.
7 is pressurized.

【0029】以上のD/S差圧制御は、B−D/8につ
いても同様に実行される。
The above D / S differential pressure control is similarly executed for BD-8.

【0030】上記計算機50で実行する補充分のガス流
量の算出方法については、後に詳述するが、この計算に
用いる粉粒体吹込速度は、D/S重量計29からの流量
Wの検出信号を移動平均処理して求める。又、それが粉
粒体吹込速度設定値になるように、可変弁27を制御す
る。そして、各D/Sでは、自己の出口弁28が開のと
き、即ち、そのD/S自体が吹込中のときには、D/S
差圧は排気制御ライン14を開にして行う前記減圧制御
だけで制御する。
The method of calculating the gas flow rate of the supplemental amount, which is executed by the computer 50, will be described in detail later. The powder / particle blowing rate used in this calculation is the detection signal of the flow rate W from the D / S weight scale 29. Is calculated by moving average. Further, the variable valve 27 is controlled so that it becomes the set value of the powder and particle blowing speed. Then, in each D / S, when its own outlet valve 28 is open, that is, when the D / S itself is blowing, the D / S
The differential pressure is controlled only by the pressure reduction control performed by opening the exhaust control line 14.

【0031】前記計算機50で行う、加圧ガス流量調節
弁39を制御する際の補充分のガス流量設定値の算出
は、図3に示すように、必要加圧ガス流量Fを求める式
に、フィールド計器であるD/S重量計29、吹込ライ
ン圧力計26、D/Sタンク圧力計30による検出値か
ら求まる値等を代入することにより算出することができ
る。ここで、計算機50で実行する演算に用いる上記図
3に示した式の導出方法を説明する。
The calculation of the gas flow rate set value for the replenishment when controlling the pressurized gas flow rate control valve 39, which is carried out by the computer 50, is performed by the equation for obtaining the required pressurized gas flow rate F as shown in FIG. It can be calculated by substituting the values obtained from the detected values of the D / S weight gauge 29, the blow line pressure gauge 26, and the D / S tank pressure gauge 30, which are field instruments. Here, a method of deriving the formula shown in FIG. 3 used for the calculation executed by the computer 50 will be described.

【0032】D/S差圧を適切に制御するには、D/S
からの排気と、D/Sへの加圧が必要である。しかしな
がら、従来法でD/S差圧を不安定にしている要因の1
つは、前述した如く、排気ラインと加圧ラインを切換え
て1つの調節弁35で2方向の制御を行っているからで
ある。そのため、吹込安定を第1に考えて、加圧ライン
を強制的に開にして、必要以上のガス流して加圧しなが
ら減圧制御だけで、D/S差圧制御することもあるが、
経済的損失が大きい。そこで、以下の考えに従って算出
されるガス量を補充する制御を行う。
To properly control the D / S differential pressure, the D / S
It is necessary to exhaust the air from and to pressurize the D / S. However, one of the factors that make the D / S differential pressure unstable by the conventional method
The reason is that, as described above, the exhaust line and the pressurizing line are switched to perform two-way control with one control valve 35. Therefore, in consideration of the blowing stability as a first priority, the D / S differential pressure control may be performed by forcibly opening the pressurization line and only by reducing the pressure while pressurizing the gas flow more than necessary.
Economic loss is large. Therefore, control is performed to supplement the gas amount calculated according to the following idea.

【0033】D/S圧力は、D/Sから排出される粉粒
体とガスの量、D/Sへ流入されるガスの量で決まる。
そこで、D/Sから排出される粉粒体によりD/S圧力
が降下する分を補充するに必要なガス量と、粉粒体と共
に排出されるガスの量とを、吹込速度から計算で求め、
これら両者の和からD/Sへ流入されるガスの量、つま
りエアレーションガスを減じた量のガスを補充すればよ
いことになる。
The D / S pressure is determined by the amount of powder and particles discharged from the D / S and the amount of gas flowing into the D / S.
Therefore, the amount of gas required to replenish the amount of the D / S pressure that drops due to the particles discharged from the D / S and the amount of the gas discharged together with the particles are calculated from the blowing speed. ,
It is sufficient to supplement the amount of gas flowing into the D / S from the sum of these two, that is, the amount of gas obtained by subtracting the aeration gas.

【0034】D/Sから排出される粉粒体による圧力降
下分を補充するに必要なガス量は次の(1)式から求め
ることができる。又、粉粒体と共に排出されるガス量
は、固気比を想定することにより、(2)式から求めら
れる。従って、必要とする加圧ガス量F1は、下記
(3)式から求めることができる。なお、この(3)式
に含まれるF4のフラッシングガス流量はエアレーショ
ンガス量にあたる。
The amount of gas required to replenish the pressure drop due to the particulate matter discharged from the D / S can be obtained from the following equation (1). Further, the amount of gas discharged together with the granular material can be obtained from the equation (2) by assuming the solid-gas ratio. Therefore, the required pressurized gas amount F1 can be obtained from the following equation (3). The F4 flushing gas flow rate included in the equation (3) corresponds to the aeration gas amount.

【0035】 F2=(Ws/γs)×(Ps+1.0332)/1.0332 …(1) F2:D/Sから排出される粉粒体により圧力降下する
分を保持するのに必要なガス流量(Nm3 /min ) Ws:粉粒体吹込速度(kg/min ) γs:粉粒体嵩密度(kg/m3 ) Ps:D/S圧力(kg/cm2 G) F3=Ws/(S/G ×γg) …(2) F3:粉粒体と共に排出されるガス流量(Nm3 /min
) S/G :固気比 γg:搬送ガス密度(kg/m3 ) F1=F2+F3−F4 …(3) F1:定常時に必要な加圧ガス流量(Nm3 /min ) F4:フラッシングガス流量(Nm3 /min )
F2 = (Ws / γs) × (Ps + 1.0332) /1.0332 (1) F2: Gas flow rate required to hold the amount of pressure drop due to the particulate matter discharged from D / S (Nm 3 / min) Ws: Injecting speed of powdery particles (kg / min) γs: Bulk density of powdery particles (kg / m 3 ) Ps: D / S pressure (kg / cm 2 G) F3 = Ws / (S / G x γg) (2) F3: Gas flow rate (Nm 3 / min) discharged together with the granular material.
) S / G: Solid-gas ratio γg: Carrier gas density (kg / m 3 ) F1 = F2 + F3-F4 (3) F1: Pressurized gas flow rate (Nm 3 / min) required at steady state F4: Flushing gas flow rate ( Nm 3 / min)

【0036】上記(3)式で与えられるガス流量は、定
常時において必要なガス量である。粉粒体の吹込速度を
変更したとき等の非定常時においては、目標D/S差圧
設定値が変わるため、その分の加算又は減算を行う必要
があり、そのための式を次の(4)式に示す。
The gas flow rate given by the above equation (3) is the amount of gas required in a steady state. In a non-steady state such as when changing the blowing speed of the powder or granules, the target D / S differential pressure setting value changes, so it is necessary to add or subtract that amount. ) Equation.

【0037】 F5=〔(Q−W/γs)×{(ΔP2 −ΔP1 ) +(P02−P01)}〕/T1 …(4) F5:非定常時に必要な加圧又は減圧ガス流量(Nm3
/min ) Q:D/S有効容積(m3 ) W:D/S重量(kg) ΔP2 :変更後のD/S差圧(kg/cm2 ) ΔP1 :変更前のD/S差圧(kg/cm2 ) T1 :加圧又は減圧時間(min ) P02:変更後の吹込ライン圧力(kg/cm2 G) P01:変更前の吹込ライン圧力(kg/cm2 G)
F5 = [(Q−W / γs) × {(ΔP2−ΔP1) + (P02−P01)}] / T1 (4) F5: Required pressurized or depressurized gas flow rate (Nm 3
/ Min) Q: D / S effective volume (m 3) W: D / S Weight (kg) [Delta] P2: D / S differential pressure after the change (kg / cm 2) ΔP1: before the change D / S differential pressure ( kg / cm 2 ) T1: Pressurization or depressurization time (min) P02: Blow line pressure after change (kg / cm 2 G) P01: Blow line pressure before change (kg / cm 2 G)

【0038】従って、非定常時では、加圧ガス流量は次
の(5)式で与えられることになるが、この理論的な計
算式のままでは、計器誤差や応答遅れ等があるために過
不足が生じる可能性がある。そのため、粉粒体吹込みが
不安定にならず、且つD/S圧力調節弁が小さい開度で
制御できる分のガスを補充するために、実際の加圧ガス
流量設定値Fを、補正ガス量を加算した下記(6)式で
求める。この(6)式が前記図3に示した式にあたる。
Therefore, in the non-steady state, the pressurized gas flow rate is given by the following equation (5). However, if this theoretical calculation equation is used as it is, it will be excessive due to instrument errors and response delays. There may be a shortage. Therefore, in order to prevent the powder and granular material from being unstable and to replenish the amount of gas that can be controlled with a small opening of the D / S pressure control valve, the actual pressurized gas flow rate set value F is set to the correction gas. It is calculated by the following equation (6) in which the amount is added. The equation (6) corresponds to the equation shown in FIG.

【0039】 F6=F1+F5 …(5) F6:補正した加圧流量設定値(Nm3 /min ) F=F6+F7 …(6) F:加圧流量設定値(Nm3 /min ) F7:補正ガス量(Nm3 /min )F6 = F1 + F5 (5) F6: Corrected pressurization flow rate setting value (Nm 3 / min) F = F6 + F7 (6) F: Pressurization flow rate setting value (Nm 3 / min) F7: Correction gas amount (Nm 3 / min)

【0040】次に、この実施の形態で算出された加圧ガ
ス流量設定値を用いて制御した際の、定常時(変更
前)、及び非定常時(変更時)の各種データの一例を、
次の表1に示す。なお、ここで、固気比は吹込ラインで
の固気比を求め、それから吹込配管と可変弁27での断
面積の比から求めた。
Next, an example of various data in the steady state (before change) and the non-steady state (change) when the control is performed using the pressurized gas flow rate set value calculated in this embodiment,
It is shown in Table 1 below. Here, the solid-gas ratio was obtained from the solid-gas ratio in the blowing line, and then from the ratio of the cross-sectional areas of the blowing pipe and the variable valve 27.

【0041】[0041]

【表1】 [Table 1]

【0042】又、この実施の形態による制御を、前記図
8の場合と同様の例について行った結果を図4に示し
た。この結果より、A−D/S、B−D/Sの吹込速度
が安定して制御できていることが分かる。
FIG. 4 shows the result of performing the control according to this embodiment for the same example as in the case of FIG. From this result, it can be seen that the blowing speeds of AD / S and BD / S can be controlled stably.

【0043】以上、詳述した如く、この実施の形態で
は、粉粒体吹込中に必要なD/S加圧ガス流量を求め
て、これによってD/Sを加圧しながら減圧制御のみで
D/S差圧制御を行うようにしたから、D/S差圧設定
値どおりの制御ができるようになった。又、吹込みに必
要なガスの量を計算して加圧するようにしたから、吹込
制御ガスが最小になった。又、D/S差圧の安定によ
り、安定した粉粒体の吹込みができるようになった。
As described above in detail, in this embodiment, the D / S pressurization gas flow rate required during the blowing of the powdery or granular material is obtained, and the D / S pressurization is performed while pressurizing the D / S. Since the S differential pressure control is performed, the control can be performed according to the D / S differential pressure set value. Further, since the amount of gas required for blowing was calculated and the pressure was increased, the amount of blow control gas was minimized. In addition, the stable D / S differential pressure enables stable blowing of the powder or granular material.

【0044】以上、本発明について具体的に説明した
が、本発明は、前記実施の形態に示したものに限られる
ものでなく、その要旨を逸脱しない範囲で種々変更可能
である。
Although the present invention has been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

【0045】例えば、前記実施の形態では、2種類の粉
粒体を混合する吹込設備の場合について説明したが、こ
れに限定されるものでなく、単独吹込や3種類以上の粉
粒体を混合する吹込設備であっても、又、D/S内圧制
御による粉粒体吹込設備でもよい。
For example, in the above-mentioned embodiment, the case of the blowing equipment for mixing two kinds of powder and granules has been described, but the present invention is not limited to this, and a single blowing or a mixture of three or more kinds of powder and granules is possible. It may be a blow-in facility or a powder-grain blow-in facility by controlling the D / S internal pressure.

【0046】又、ガス圧補充手段は、調節弁39等で流
量調整可能にした加圧ライン12に限らず、エアレーシ
ョンガスの流量を制御できるようにした、エアレーショ
ン手段と兼用のものであってもよい。
Further, the gas pressure replenishing means is not limited to the pressurizing line 12 whose flow rate can be adjusted by the adjusting valve 39 or the like, but may be a means for controlling the flow rate of the aeration gas, which is also used as the aeration means. Good.

【0047】[0047]

【発明の効果】以上説明したとおり、本発明によれば、
粉粒体吹込時のD/S差圧を安定に制御して吹込みの安
定化を図ると共に、吹込みに使用するガス消費量を最低
限度に抑えることができる。
As described above, according to the present invention,
It is possible to stabilize the blowing by controlling the D / S differential pressure at the time of blowing the powder and granules, and to minimize the gas consumption amount used for the blowing.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施の形態の粉粒体吹込制御装置が適用され
る粉粒体吹込設備の概略構成を示す説明図
FIG. 1 is an explanatory diagram showing a schematic configuration of a powder or granular material injection facility to which a powder or granular material injection control device according to an embodiment is applied.

【図2】上記粉粒体吹込制御装置の概略を示すブロック
FIG. 2 is a block diagram showing an outline of the above-mentioned powdery or granular material blowing control device.

【図3】上記実施の形態による必要加圧ガス流量設定値
の計算手順を示す説明図
FIG. 3 is an explanatory diagram showing a calculation procedure of a required pressurized gas flow rate set value according to the above embodiment

【図4】上記実施の形態による制御結果を示す線図FIG. 4 is a diagram showing a control result according to the above embodiment.

【図5】従来の制御の用いられる粉粒体吹込設備の概略
を示す説明図
FIG. 5 is an explanatory view showing an outline of a powdery or granular material blowing facility used for conventional control.

【図6】吹込速度とD/S差圧、可変弁開度との関係を
示す線図
FIG. 6 is a diagram showing a relationship between a blowing speed, a D / S differential pressure, and a variable valve opening.

【図7】従来のD/S差圧制御の方法を説明する線図FIG. 7 is a diagram illustrating a conventional D / S differential pressure control method.

【図8】従来の粉粒体吹込制御装置による制御結果を示
す線図
FIG. 8 is a diagram showing a control result by a conventional powder / particle injection control device.

【符号の説明】[Explanation of symbols]

1…搬送ガス 2…キャリアガスライン 3…ブローガスライン 4…吹込みライン 5…ランス 6…鍋 7…A−D/S 8…B−D/S 9…エアレーションガス 10…エアレーションライン 11…加圧ガス 12…加圧ライン 13…加圧制御ライン 14…排気制御ライン 27…可変弁 28…出口弁 35…圧力調節弁 39…加圧ガス流量調節弁 1 ... Carrier gas 2 ... Carrier gas line 3 ... Blow gas line 4 ... Blow line 5 ... Lance 6 ... Pan 7 ... A / D / S 8 ... BD-S 9 ... Aeration gas 10 ... Aeration line 11 ... Addition Pressure gas 12 ... Pressurization line 13 ... Pressure control line 14 ... Exhaust control line 27 ... Variable valve 28 ... Outlet valve 35 ... Pressure control valve 39 ... Pressurized gas flow rate control valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】1又は2以上の圧力容器から、各圧力容器
に接続されている1本の吹込ラインを介して、各圧力容
器に収容されている粉粒体を、別途流入されるエアレー
ションガスで流動化した後、それぞれ反応容器に吹込ん
で供給する粉粒体吹込設備で、差圧制御手段により、圧
力容器と吹込ラインとの間の圧力差を、圧力容器内のガ
スの一部を減圧系に排気しながら維持する減圧制御を行
い、その圧力差に基づいて該圧力容器から上記反応容器
への粉粒体吹込量を制御する粉粒体吹込制御装置におい
て、 粉粒体の吹込時に、圧力容器に対して、少なくとも該圧
力容器から粉粒体が排出されるに伴って生じる圧力降下
分のガス量を補充する、前記差圧制御手段とは独立に操
作可能なガス圧補充手段を備えたことを特徴とする粉粒
体吹込制御装置。
1. An aeration gas in which powder particles contained in each pressure vessel are separately introduced from one or more pressure vessels via one blowing line connected to each pressure vessel. After being fluidized in, the powder and granules are blown into the reaction vessel, and the pressure difference between the pressure vessel and the blowing line is controlled by the pressure difference control unit to reduce the pressure of a part of the gas in the pressure vessel. Performing depressurization control to maintain while exhausting to the system, in the powder and granular material blowing control device for controlling the powder and granular material blowing amount from the pressure vessel to the reaction vessel based on the pressure difference, at the time of blowing the powder and granular material, The pressure vessel is provided with a gas pressure replenishing means operable to replenish at least a gas amount corresponding to a pressure drop caused by the discharge of the granular material from the pressure vessel, the gas pressure replenishing means being operable independently of the differential pressure control means. Control device for blown powder Place.
【請求項2】請求項1において、 圧力降下分のガス量を、実測される粉粒体吹込速度に基
づいて算出することを特徴とする粉粒体吹込制御装置。
2. The powder / particle injection control device according to claim 1, wherein the gas amount corresponding to the pressure drop is calculated based on an actually measured powder / particle injection speed.
JP1516396A 1996-01-31 1996-01-31 Powder and granular material blowing-control device Pending JPH09208050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1516396A JPH09208050A (en) 1996-01-31 1996-01-31 Powder and granular material blowing-control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1516396A JPH09208050A (en) 1996-01-31 1996-01-31 Powder and granular material blowing-control device

Publications (1)

Publication Number Publication Date
JPH09208050A true JPH09208050A (en) 1997-08-12

Family

ID=11881142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1516396A Pending JPH09208050A (en) 1996-01-31 1996-01-31 Powder and granular material blowing-control device

Country Status (1)

Country Link
JP (1) JPH09208050A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004030A1 (en) * 1999-07-08 2001-01-18 Nkk Corporation Method and device for cutting out and transporting powder and granular material
CN102698654A (en) * 2012-05-08 2012-10-03 北京航天动力研究所 Feeding and batching system
JP2014097873A (en) * 2012-11-15 2014-05-29 Nippon Steel & Sumitomo Metal Powder transport method and powder transporting device
JP2015168490A (en) * 2014-03-05 2015-09-28 Jfeスチール株式会社 powder supply equipment
JP6139763B1 (en) * 2016-07-26 2017-05-31 ダイヤモンドエンジニアリング株式会社 Powder parallel blowing system and powder parallel blowing method
JP6139762B1 (en) * 2016-07-26 2017-05-31 ダイヤモンドエンジニアリング株式会社 Powder parallel blowing system and powder parallel blowing method
CN111944954A (en) * 2020-09-02 2020-11-17 武汉钢铁有限公司 PCM steel ladle bottom argon blowing control system and control method
US11858757B2 (en) 2021-12-28 2024-01-02 Mitsubishi Heavy Industries, Ltd. Control device, granular material supply system, control method, and program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004030A1 (en) * 1999-07-08 2001-01-18 Nkk Corporation Method and device for cutting out and transporting powder and granular material
CN102698654A (en) * 2012-05-08 2012-10-03 北京航天动力研究所 Feeding and batching system
JP2014097873A (en) * 2012-11-15 2014-05-29 Nippon Steel & Sumitomo Metal Powder transport method and powder transporting device
JP2015168490A (en) * 2014-03-05 2015-09-28 Jfeスチール株式会社 powder supply equipment
JP6139763B1 (en) * 2016-07-26 2017-05-31 ダイヤモンドエンジニアリング株式会社 Powder parallel blowing system and powder parallel blowing method
JP6139762B1 (en) * 2016-07-26 2017-05-31 ダイヤモンドエンジニアリング株式会社 Powder parallel blowing system and powder parallel blowing method
JP2018016423A (en) * 2016-07-26 2018-02-01 ダイヤモンドエンジニアリング株式会社 Powder parallel blowing system and powder parallel blowing method
JP2018016422A (en) * 2016-07-26 2018-02-01 ダイヤモンドエンジニアリング株式会社 Powder parallel blowing system and powder parallel blowing method
CN111944954A (en) * 2020-09-02 2020-11-17 武汉钢铁有限公司 PCM steel ladle bottom argon blowing control system and control method
US11858757B2 (en) 2021-12-28 2024-01-02 Mitsubishi Heavy Industries, Ltd. Control device, granular material supply system, control method, and program

Similar Documents

Publication Publication Date Title
EP0081622B1 (en) Method and apparatus for distributing powdered particles
US4146370A (en) Process and apparatus for the partial combustion of coal powder
JPH0255335B2 (en)
JPH09208050A (en) Powder and granular material blowing-control device
US3432208A (en) Fluidized particle dispenser
JPH048334B2 (en)
JPH0410014B2 (en)
WO2012115061A1 (en) Powder supply apparatus and powder supply method
US4835701A (en) Post-mix method and system for supply of powderized materials
JPH11293475A (en) Powder coating apparatus and method for supplying and mixing powder into coating apparatus
US3807602A (en) Method and apparatus for dispensing a fluidizable solid from a pressure vessel
JP2569324B2 (en) Method and apparatus for mixing and conveying powder
JPS60292B2 (en) Quantitative extraction method and device for gas fluidized powder
JPS5834375B2 (en) It's hard to see what's going on.
JPH09324206A (en) Method for controlling rate of blowing pulverized powder to blast furnace and pulverized coal blowing device
JPS58101734A (en) Method and apparatus for producing reaction mixture forming flowable substance or foam substance
JPS5823301B2 (en) Powder supply method and device
JP3788110B2 (en) Method and apparatus for supplying pulverized coal from intermediate tank to blast furnace in blast furnace pulverized coal injection facility
USRE31676E (en) Method and apparatus for dispensing a fluidizable solid from a pressure vessel
JPH025896Y2 (en)
JPH08283805A (en) Method for controlling blowing of pulverized coal into blast furnace
JP2004043849A (en) Method for injecting a large quantity of pulverized coal into blast furnace
JPS5913940B2 (en) A device that feeds casting powder flux into continuous casting molds.
JP2004043889A (en) Method for stably injecting pulverized coal into blast furnace
JPH05208415A (en) Method and device for manufacturing ready-mixed concrete

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050517