JP3788110B2 - Method and apparatus for supplying pulverized coal from intermediate tank to blast furnace in blast furnace pulverized coal injection facility - Google Patents

Method and apparatus for supplying pulverized coal from intermediate tank to blast furnace in blast furnace pulverized coal injection facility Download PDF

Info

Publication number
JP3788110B2
JP3788110B2 JP17227999A JP17227999A JP3788110B2 JP 3788110 B2 JP3788110 B2 JP 3788110B2 JP 17227999 A JP17227999 A JP 17227999A JP 17227999 A JP17227999 A JP 17227999A JP 3788110 B2 JP3788110 B2 JP 3788110B2
Authority
JP
Japan
Prior art keywords
pulverized coal
tank
intermediate tank
blowing
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17227999A
Other languages
Japanese (ja)
Other versions
JP2001003106A (en
Inventor
修 川手
寿郎 澤田
哲也 山本
勝己 井野
隆弘 久米田
傑 井田
洋 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP17227999A priority Critical patent/JP3788110B2/en
Publication of JP2001003106A publication Critical patent/JP2001003106A/en
Application granted granted Critical
Publication of JP3788110B2 publication Critical patent/JP3788110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、常圧状態の微粉炭ホッパ(PCホッパ)から常圧と高圧とに切り換え可能な中間タンクを経由して高圧状態の吹き込みタンクへ微粉炭を供給する高炉微粉炭吹き込み設備での微粉炭供給方法および装置に関するものである。
【0002】
【従来の技術】
高炉への微粉炭の多量吹き込み操業は、エネルギーコストの低減のみならずコークス炉の老朽化対策として重要である。このため、炉頂から装入されるコークス比を低下する一方、羽口から熱風と共に炉内に吹き込まれる微粉炭比(PC比)を増加することに積極的に取り組んでいる。安定したPC比操業を継続するためには、PCホッパ内の微粉炭を中間タンクを経由して吹き込みタンクから高炉内へ所定量の微粉炭を変動を生じることなく安定した供給速度を維持することが重要となる。
【0003】
一般に、図2に示すように、高炉20の操業中には、高炉20の下部を包囲する環状管22およびブロー管21を経由して羽口23から炉内に熱風が吹き込まれる。このとき、吹き込みタンク5内の微粉炭は、所定のPC比で微粉炭供給管19を経由して高炉20の下部に配設した羽口23内に供給され、熱風と共に炉内に吹き込まれる。高炉20への微粉炭吹き込みにより吹き込みタンク5内の微粉炭量が次第に減少するので、適当なタイミングで微粉炭ホッパ1内の微粉炭を中間タンク4を経由して吹き込みタンク5に補給している。
【0004】
高炉20に吹き込む石炭は、粉砕機による粉砕により製造した微粉炭を、バグフィルタにより回収し、PCホッパ1に貯蔵される。PCホッパ1内は常圧状態であるのに対して高炉下部の炉内圧が4〜5kg/cm2程度であるため、吹き込みタンク5内は7kg/cm2程度の高圧にしてある。常圧状態のPCホッパ1から中間タンク4に微粉炭を供給するため、まず中間タンク4内を常圧としてPCホッパ1内の微粉炭を中間タンク4に供給し、次に中間タンク4内を高圧に加圧して中間タンク4内の微粉炭を高圧状態の吹き込みタンク5に供給するという操作を繰り返している。
【0005】
すなわち、常圧状態のPCホッパ1内に貯蔵された微粉炭は、微粉炭供給管2に設けた微粉炭供給弁3を開いて常圧状態下にある中間タンク4に供給される。このとき、中間タンク4と吹き込みタンク5とを連結する微粉炭供給管6に設けた調節弁7と微粉炭供給弁8、中間タンク4の上部と吹き込みタンク5の上部とを連結する均圧管9に設けた均圧弁10および窒素ガス供給管11に設けた遮断弁12と調節弁13並びに中間タンク4の上部に接続された排気管14上に並列に配設された小排気弁15は閉、大排気弁16は開となっている。
【0006】
PCホッパ1から中間タンク4に所定量の微粉炭を供給したら微粉炭供給弁3および大排気弁16を閉じた後、遮断弁12を開とすると共に調節弁13の開度を調節して窒素ガス供給管11から中間タンク4の下部に設けた窒素ガスレータ24に高圧窒素ガスを供給して中間タンク4内を加圧する。図3に示すように中間タンク4の下部に設けた窒素ガスレータ24は、中間タンク4の下部に接続した吹き込みボックス25の内部に設けた15mmφ程度の多数の孔を設けた多孔板26の内側に通気性キャンバス27をセットした構造であり、窒素ガス供給管11から吹き込みボックス25内に吹き込まれた窒素ガスを多孔板26および通気性キャンバス27を通過させ、中間タンク4内の微粉炭を浮遊、流動化させる窒素ガスレーションにより、窒素ガスをキャリアガスとして微粉炭を吹き込みタンク5にスムーズに導くものである。
【0007】
中間タンク4内の圧力が、吹き込みタンク5内の窒素ガス圧力に近い高圧になり、高炉20内への微粉炭吹き込みにより吹き込みタンク5内の微粉炭が減少した段階で、窒素ガス供給管11から中間タンク4内に供給される窒素ガスレーションにより微粉炭を流動化させつつ、微粉炭供給弁8の開と調節弁7の開度調節により中間タンク4から微粉炭供給管6を介して吹き込みタンク5に微粉炭を供給する。このとき、均圧弁10を開として中間タンク4と吹き込みタンク5の圧力を均圧化すると共に吹き込みタンク5内に供給された窒素ガスの一部は、均圧管9を通って中間タンク4の上部へ送られ、小排気弁15を通って排気管14を経由しPCホッパ1から系外に排気される。
【0008】
【発明が解決しようとする課題】
前記従来の技術によれば、中間タンク4から微粉炭供給管6を介して吹き込みタンク5に微粉炭を補給する段階で、窒素ガス供給管11から窒素ガスレータ24を介して中間タンク4内に吹き込んだ窒素ガスで微粉炭を吹き込みタンク5側へ輸送できないことが多かった。このため、微粉炭の供給速度は、微粉炭の重力とわずかな窒素ガスレーションにより吹き込みタンク5に供給されるだけでその供給速度は小さく、窒素ガスの流れが不定で、かつ微粉炭が堆積してブリッジを生成すると微粉炭供給速度のバラツキが大きくなって遂には制御不能となるので、高炉の微粉炭吹き込み操業上のネックになっていた。
【0009】
微粉炭がブリッジを形成し、中間タンク4内で棚吊り状態になると、窒素ガスレータ24を介して中間タンク4内に吹き込んだ窒素ガスが矢印Aのように壁部に沿って上方に抜けて中間タンク4の上部に至り、さらには小排気弁15を経由してPCホッパ1から系外に排出される現象が起こる。その結果、微粉炭が中間タンク4から吹き込みタンク5への供給速度を著しく低下させるか、全く供給されなくなってしまう。
【0010】
ところで、窒素ガスレーションによる中間タンク4から微粉炭供給管6を介する吹き込みタンク5への供給には、微粉炭の炭種によって難易度がある。微粉炭には粘着性が低く堆積したときの安息角度の小さいもの(流動性がよい)から粘着性が高く安息角の大きいもの(流動性が悪い)までその性状はさまざまであり、粘着性が低く流動性のよい微粉炭であれば従来の技術により対応することが可能であった。しかしながら、粘着性が高く流動性の悪い微粉炭を使用する場合には、中間タンクから吹き込みタンクへの微粉炭供給中に微粉炭の性状に由来する棚吊り現象が起こるので、その配合比を制限して操業する必要があり、コスト高になる。
【0011】
例えば、図4は従来例による中間タンク4から吹き込みタンク5へ流動性の悪い微粉炭を供給する過程における中間タンク重量変化を示したものであり、時間0分の微粉炭の供給開始から4分までの線Aで示す段階では微粉炭の重量が順調に減少しており供給速度が大きい。しかし、それ以降の線Bで示す段階では微粉炭の重量減少が少なく急激に供給速度が低下している。このように微粉炭の補給速度が不安定でかつ急減すると、供給時間が予定時間をオーバして吹き込みタンク5内の微粉炭残量がなくなる危険性があり、吹き込みタンク5から高炉20への微粉炭吹き込みを減少させる等の対策が必要となり、高炉操業に悪影響を及ぼすことになる。
【0012】
本発明は、前記従来技術の問題点を解消し、中間タンクから吹き込みタンクへの微炭の供給が炭種に左右されることなく常に安定して供給可能で、かつ微粉炭の供給速度を大幅に増加することができる高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給方法および装置を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
前記図2に示す従来の技術を使用する場合に中間タンク4から吹き込みタンク5への微粉炭供給速度が一定せず不安定である原因について検討したところ、両者を連結する均圧管9を介する均圧作用並びに中間タンク4の上部に接続された排気管14に配設した小排気弁15による排気作用が、中間タンク4から吹き込みタンク5への窒素ガス一方向流れを阻害していることを知見した。つまり、均圧管9および排気管14が窒素ガス一方向流れを確保するために必要な両タンク間の圧力条件〔中間タンク4の圧力>吹き込みタンク5の圧力〕が、〔中間タンク4の圧力<吹き込みタンク5の圧力〕に逆転し易い配置になっていたことにある。
【0014】
本発明は、前記知見に基づいてなされたものであり、従来から必要であると考えられていた均圧管を撤去すると共に、排気管の接続位置を根本的に見直した結果により達成されたものである。
前記目的を達成するための請求項1記載の本発明は、高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給方法において、前記中間タンクの下部に設けた窒素ガスレータを介して高圧窒素ガスを吹き込み、該中間タンク内を常圧から高圧に加圧して微粉炭を窒素ガスレーションして吹き込みタンクに供給すると共に、該吹き込みタンクの上部に接続した排気管に配設した小排気弁の開度を調節して吹き込みタンク内の高圧窒素ガスの一部を系外に排出することにより、前記吹き込みタンク内を中間タンク内より低圧にし、窒素ガスの一方向流れを保持して微粉炭の供給速度を目標値に保持することを特徴とする高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給方法である。
【0015】
請求項2記載の本発明は、前記中間タンクの中部および/または上部に接続した加圧配管から高圧窒素ガスを供給して、該中間タンクの加圧を増勢することにより吹き込みタンクへの微粉炭の供給速度を増強することを特徴とする請求項1記載の高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給方法である。
【0016】
請求項3記載の本発明は、高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給装置において、前記中間タンクの下部に、該中間タンク内を常圧から高圧に加圧すると共に微粉炭を窒素ガスレーションする窒素ガスレータを設ける一方、前記吹き込みタンクの上部に排気管を接続し、該排気管に吹き込みタンク内の高圧窒素ガスを系外に排出する開度調節可能な小排気弁を配設したことを特徴とする高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給装置である。
【0017】
請求項4記載の本発明は、前記中間タンクの中部および/または上部に、高圧窒素ガスを供給して該中間タンクの加圧を増勢する加圧配管を接続すると共に、該加圧配管に高圧窒素ガスの供給量を調節する調節弁を設けたことを特徴とする請求項3記載の高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給装置である。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1に示すように、高炉20の下部を包囲する環状管22からブロー管21を経由して羽口23から熱風が炉内に吹き込む際に、吹き込みタンク5内の微粉炭は、窒素ガス供給管11に設けた遮断弁17を開の状態で調節弁18の開度を調節により、吹き込みタンク5に吹き込まれる高圧窒素ガスにより微粉炭供給管19を経由し高炉20の下部に配設した羽口23内に供給され、熱風と共に炉内に吹き込まれている。
【0019】
常圧のPCホッパ1内に貯蔵された微粉炭を中間タンク4に供給する際には、大排気弁16を開放して中間タンク4内の窒素ガスを排気管14を経由してPCホッパ1に導いた後、系外に排出することにより、中間タンク4内を常圧に戻す。次に、微粉炭供給管2に設けた微粉炭供給弁3を開いてPCホッパ1から常圧状態下にある中間タンク4に微粉炭を供給する。このとき、中間タンク4と吹き込みタンク5とを連結する微粉炭供給管6に設けた調節弁7と微粉炭供給弁8および窒素ガス供給管11に設けた遮断弁12と調節弁13並びに排気管14に設けた小排気弁15並びに切替え弁28は閉じてあり、大排気弁16は開のままである。PCホッパ1から所定量の微粉炭を中間タンク4に供給したら微粉炭供給弁3および大排気弁16を閉じる。
【0020】
高炉20内への微粉炭吹き込みにより吹き込みタンク5内への微粉炭補給が必要になった段階で、遮断弁12を開とすると共に調節弁13の開度を調節して窒素ガス供給管11から中間タンク4の下部に設けた窒素ガスレータ24に高圧窒素ガスを供給して中間タンク4内の内部を加圧する。その後、中間タンク4内の微粒炭を窒素ガスレーションさせ、流動化させた後、吹き込みタンク5側へ供給する。このとき、中間タンク4の中部および上部に接続した加圧配管29を使用して中間タンク4に高圧窒素ガスを導いて、この内部でのガスレーションを助長する。これにより、中間タンク4内を吹き込みタンク5内より高圧に加圧することが容易になるばかりでなく、中間タンク4から吹き込みタンク5への窒素ガス量を増加できる。微粒炭を中間タンク4より吹き込みタンク5側へ運ぶ速度を増加できる。前述のように中間タンク4の下部に設けた窒素ガスレータ24は、中間タンク4の下部に接続した吹き込みボックス25と内部に設けた多孔板26とその内側にセットした通気性キャンバス27とからなっている(図3参照)。
【0021】
前述のようにして窒素ガス供給管11と29から中間タンク4内に供給される窒素ガスレーションにより微粉炭を流動化させつつ、微粉炭供給弁8の開と調節弁7の開度調節により中間タンク4から微粉炭供給管6を介して吹き込みタンク5に微粉炭を供給する。
図6は従来設備でのN2 ガスレーションMAX=26Nm3/min ( 100 %) を基準にして、AはN2 ガス流量を18 Nm3/min(70%)、BはN2 ガス流量を22 Nm3/min(85%)にした場合、またCは従来設備でのN2 ガスレーションMAX=30Nm3/min (100 %) を基準にして、N2 ガス流量を38 Nm3/min(127 %)にした場合におけるPC供給速度のテスト結果、すなわち本発明によりN2 ガスレーション流量を増減した場合のN2 ガスレーション流量(%)とPC供給速度(t/min )との関係を示している。図6のように、N2 ガスレーション流量(%)とPC供給速度(t/min )には、直線Dで示すような正比例関係があり、窒素ガスレーションを増減することによりPC供給速度を容易に調節することができる。それと共に、供給管11と29の両方を同時に使用することで従来のN2 ガスレーションMAX=30Nm3/min (100 %)に対して38 Nm3/min(127 %)まで増量することが可能であり、PC供給速度が従来の2.2 t/min から2.6 t/min にアップされ、これにより微粉炭供給時間を13分から10.5分に短縮できた。
【0022】
本発明によれば、中間タンク4から吹き込みタンク5に微粉炭を供給する過程で、窒素ガスレータ24を介して中間タンク4内に吹き込まれた窒素ガスにより微粉炭がその粘着性等の性状に左右されることなく十分に流動化されると共に、中間タンク4内を吹き込みタンク5内より安定して高圧に維持でき、窒素ガスが一方向に安定して流れ、棚吊り等のトラブルを起こすことなく微粉炭を一定の供給速度で吹き込みタンク5に供給できる。また、必要に応じて微粉炭の供給速度を増加することも容易であり、所望のPC比により高炉の微粉炭吹き込み操業を安定して行うことができる。
【0023】
例えば、図5は本発明例による中間タンク4から吹き込みタンク5へ流動性の悪い微粉炭を供給する過程における中間タンクの重量変化を示したものであり、時間0分の微粉炭供給開始から供給終了14分までの重量変化を示す線Cのように一定の供給速度により微粉炭を供給することができる。このように微粉炭の供給速度が一定で安定しているので短時間での供給が可能となり、吹き込みタンク5内の微粉炭残量が途切れることがなく、高炉20への微粉炭吹き込みを定常状態で継続でき高PC比の高炉操業が達成される。
【0024】
【発明の効果】
以上説明したように本発明によれば、中間タンク内を常圧から高圧に加圧して微粉炭を窒素ガスレーションして吹き込みタンクに供給すると共に、該吹き込みタンクの上部に接続した排気管に配設した小排気弁の開度を調節して吹き込みタンク内の高圧窒素ガスを系外に排出することにより、前記中間タンク内から吹き込みタンク内への窒素ガス一方向流れを保持することが可能である。多種多様な微粉炭の銘柄によることなく微粉炭の供給速度を常に一定かつ多量吹き込みができるので、短時間での供給が可能になり、高炉の高PC比による操業が安定化され、コスト削減が達成される。
【図面の簡単な説明】
【図1】本発明の高炉における中間タンクから吹き込みタンクへの微粉炭供給装置を示すフロー図である。
【図2】従来の高炉における中間タンクから吹き込みタンクへの微粉炭供給装置を示すフロー図である。
【図3】中間タンクの下部に設けた窒素ガスレータを示す断面図である。
【図4】従来例の中間タンク重量の時間推移を示すグラフである。
【図5】本発明例の中間タンク重量の時間推移を示すグラフである。
【図6】N2 ガスレーション流量(%)とPC供給速度(t/min )との関係を示すグラフである。
【符号の説明】
1 微粉炭ホッパ(PCホッパ)
2、6、19 微粉炭供給管
3、8 微粉炭供給弁
4 中間タンク
5 吹き込みタンク
7、13、18、31 調節弁
9 均圧管
10 均圧弁
11 窒素ガス供給管
12、17、30 遮断弁
14 排気管
15 小排気弁
16 大排気弁
20 高炉
21 ブロー管
22 環状管
23 羽口
24 窒素ガスレータ
25 吹き込みボックス
26 多孔板
27 通気性キャンバス
28 切替え弁
29 加圧配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to pulverized powder in a blast furnace pulverized coal blowing facility that supplies pulverized coal from a pulverized coal hopper (PC hopper) in a normal pressure state to a high pressure blowing tank via an intermediate tank that can be switched between normal pressure and high pressure. The present invention relates to a charcoal supply method and apparatus.
[0002]
[Prior art]
The operation of injecting a large amount of pulverized coal into the blast furnace is important not only for reducing energy costs, but also for coke oven aging. For this reason, while reducing the coke ratio charged from the top of the furnace, we are actively working to increase the ratio of pulverized coal (PC ratio) blown into the furnace together with hot air from the tuyere. In order to continue stable PC ratio operation, pulverized coal in the PC hopper is blown in via an intermediate tank, and a stable amount of pulverized coal is maintained from the tank to the blast furnace without fluctuation. Is important.
[0003]
In general, as shown in FIG. 2, during operation of the blast furnace 20, hot air is blown into the furnace from the tuyere 23 via the annular pipe 22 and the blow pipe 21 that surround the lower part of the blast furnace 20. At this time, the pulverized coal in the blowing tank 5 is supplied into the tuyere 23 disposed at the lower portion of the blast furnace 20 via the pulverized coal supply pipe 19 at a predetermined PC ratio, and is blown into the furnace together with hot air. Since the amount of pulverized coal in the blowing tank 5 is gradually reduced by blowing the pulverized coal into the blast furnace 20, the pulverized coal in the pulverized coal hopper 1 is supplied to the blowing tank 5 via the intermediate tank 4 at an appropriate timing. .
[0004]
Coal blown into the blast furnace 20 is collected by pulverized coal produced by pulverization using a pulverizer and stored in the PC hopper 1. While the PC hopper 1 is in the normal pressure state, the furnace pressure in the lower part of the blast furnace is about 4 to 5 kg / cm 2, so that the inside of the blowing tank 5 is at a high pressure of about 7 kg / cm 2 . In order to supply pulverized coal from the PC hopper 1 in the normal pressure state to the intermediate tank 4, first the pulverized coal in the PC hopper 1 is supplied to the intermediate tank 4 with normal pressure in the intermediate tank 4, and then in the intermediate tank 4. The operation of pressurizing to high pressure and supplying the pulverized coal in the intermediate tank 4 to the blowing tank 5 in a high pressure state is repeated.
[0005]
That is, the pulverized coal stored in the PC hopper 1 in the normal pressure state is supplied to the intermediate tank 4 under the normal pressure state by opening the pulverized coal supply valve 3 provided in the pulverized coal supply pipe 2. At this time, the regulating valve 7 and the pulverized coal supply valve 8 provided in the pulverized coal supply pipe 6 that connects the intermediate tank 4 and the blowing tank 5, the pressure equalizing pipe 9 that connects the upper part of the intermediate tank 4 and the upper part of the blowing tank 5. The pressure equalizing valve 10 provided in the above, the shutoff valve 12 provided in the nitrogen gas supply pipe 11, the control valve 13, and the small exhaust valve 15 provided in parallel on the exhaust pipe 14 connected to the upper part of the intermediate tank 4 are closed, The large exhaust valve 16 is open.
[0006]
When a predetermined amount of pulverized coal is supplied from the PC hopper 1 to the intermediate tank 4, the pulverized coal supply valve 3 and the large exhaust valve 16 are closed, then the shutoff valve 12 is opened and the opening of the control valve 13 is adjusted to adjust nitrogen. High-pressure nitrogen gas is supplied from the gas supply pipe 11 to the nitrogen gas generator 24 provided at the lower part of the intermediate tank 4 to pressurize the intermediate tank 4. As shown in FIG. 3, the nitrogen gasator 24 provided at the lower part of the intermediate tank 4 is disposed inside the perforated plate 26 provided with a large number of holes of about 15 mmφ provided inside the blowing box 25 connected to the lower part of the intermediate tank 4. A structure in which a breathable canvas 27 is set, the nitrogen gas blown into the blower box 25 from the nitrogen gas supply pipe 11 is passed through the porous plate 26 and the breathable canvas 27, and the pulverized coal in the intermediate tank 4 is floated. By liquefying nitrogen gasation, pulverized coal is blown into the tank 5 smoothly using nitrogen gas as a carrier gas.
[0007]
When the pressure in the intermediate tank 4 becomes a high pressure close to the nitrogen gas pressure in the blowing tank 5 and the pulverized coal in the blowing tank 5 is reduced by blowing the pulverized coal into the blast furnace 20, the nitrogen gas supply pipe 11 The pulverized coal is fluidized by nitrogen gas supplied into the intermediate tank 4 and the blast coal tank is blown from the intermediate tank 4 through the pulverized coal supply pipe 6 by opening the pulverized coal supply valve 8 and adjusting the opening of the control valve 7. 5 is supplied with pulverized coal. At this time, the pressure equalizing valve 10 is opened to equalize the pressure in the intermediate tank 4 and the blowing tank 5 and a part of the nitrogen gas supplied into the blowing tank 5 passes through the pressure equalizing pipe 9 and the upper part of the intermediate tank 4. And is exhausted from the PC hopper 1 through the small exhaust valve 15 and the exhaust pipe 14 to the outside of the system.
[0008]
[Problems to be solved by the invention]
According to the prior art, in the stage of replenishing pulverized coal from the intermediate tank 4 through the pulverized coal supply pipe 6, the intermediate tank 4 is blown into the intermediate tank 4 through the nitrogen gas supply 24 from the nitrogen gas supply pipe 11. However, pulverized coal was often blown with nitrogen gas and could not be transported to the tank 5 side. For this reason, the supply speed of the pulverized coal is merely supplied to the blowing tank 5 by the gravity of the pulverized coal and slight nitrogen gasation, and the supply speed is small, the flow of nitrogen gas is indefinite, and the pulverized coal is deposited. When the bridge is generated, the dispersion of the pulverized coal supply rate becomes large and finally it becomes uncontrollable, which has been a bottleneck in the operation of blast furnace pulverized coal injection.
[0009]
When the pulverized coal forms a bridge and is suspended in the intermediate tank 4, the nitrogen gas blown into the intermediate tank 4 through the nitrogen gasator 24 escapes upward along the wall as indicated by the arrow A, A phenomenon occurs in which the gas reaches the upper part of the tank 4 and is discharged from the PC hopper 1 through the small exhaust valve 15 to the outside of the system. As a result, the pulverized coal significantly reduces the supply speed from the intermediate tank 4 to the blowing tank 5 or is not supplied at all.
[0010]
By the way, the supply from the intermediate tank 4 to the blowing tank 5 via the pulverized coal supply pipe 6 by nitrogen gasation has difficulty depending on the coal type of the pulverized coal. The properties of pulverized coal vary widely, from those with a low repose angle when depositing (good fluidity) to those with a high repose angle and high repose angle (poor fluidity). A pulverized coal with low fluidity and good fluidity could be handled by conventional techniques. However, when using pulverized coal with high viscosity and poor fluidity, a shelf hanging phenomenon derived from the properties of the pulverized coal occurs during the supply of pulverized coal from the intermediate tank to the blowing tank. Cost and high cost.
[0011]
For example, FIG. 4 shows a change in the weight of the intermediate tank in the process of supplying the pulverized coal having poor fluidity from the intermediate tank 4 to the blowing tank 5 according to the conventional example. At the stage indicated by line A, the weight of the pulverized coal is steadily decreasing and the supply speed is large. However, at the stage indicated by the line B after that, the weight reduction of the pulverized coal is small and the supply speed is rapidly reduced. If the replenishment rate of pulverized coal is unstable and rapidly decreases in this way, there is a risk that the supply time will exceed the scheduled time and there will be a risk that the remaining amount of pulverized coal in the blowing tank 5 will disappear. Measures such as reducing the blowing of charcoal will be required, which will adversely affect blast furnace operation.
[0012]
The present invention is the solve the prior art problems, the supply of fine powdered coal to the tank blown from the intermediate tank is always possible stably supplied without being influenced by the type of coal, and the feed rate of pulverized coal An object of the present invention is to provide a method and an apparatus for supplying pulverized coal from an intermediate tank to an injection tank in a blast furnace pulverized coal injection facility that can be significantly increased.
[0013]
[Means for Solving the Problems]
When the conventional technique shown in FIG. 2 is used, the cause of the unstable and unstable pulverized coal supply rate from the intermediate tank 4 to the blowing tank 5 was examined. Knowledge that the pressure action and the exhaust action by the small exhaust valve 15 disposed in the exhaust pipe 14 connected to the upper part of the intermediate tank 4 hinder the one-way flow of nitrogen gas from the intermediate tank 4 to the blowing tank 5 did. In other words, the pressure condition between the two tanks [pressure of the intermediate tank 4> pressure of the blowing tank 5] necessary for the pressure equalizing pipe 9 and the exhaust pipe 14 to ensure one-way flow of nitrogen gas is [pressure of the intermediate tank 4 < The pressure of the blowing tank 5 is easily reversed.
[0014]
The present invention has been made based on the above findings, and has been achieved by removing the pressure equalizing pipe, which has been considered necessary from the past, and by fundamentally reviewing the connection position of the exhaust pipe. is there.
In order to achieve the above object, the present invention according to claim 1 is a method for supplying pulverized coal from an intermediate tank to a blowing tank in a blast furnace pulverized coal blowing facility, wherein high-pressure nitrogen is supplied via a nitrogen gasator provided at a lower portion of the intermediate tank. A small exhaust valve disposed in an exhaust pipe connected to the upper part of the blowing tank, while blowing gas, pressurizing the interior of the intermediate tank from normal pressure to high pressure and supplying pulverized coal to the blowing tank with nitrogen gas. By adjusting the opening and discharging part of the high-pressure nitrogen gas in the blowing tank out of the system, the inside of the blowing tank is made lower than in the intermediate tank, and the unidirectional flow of nitrogen gas is maintained to maintain the pulverized coal A method for supplying pulverized coal from an intermediate tank to an injection tank in a blast furnace pulverized coal injection facility characterized in that a supply speed is maintained at a target value.
[0015]
According to a second aspect of the present invention, pulverized coal is supplied to the blowing tank by supplying high-pressure nitrogen gas from a pressurized pipe connected to the middle and / or upper part of the intermediate tank and increasing the pressure of the intermediate tank. The pulverized coal supply method from the intermediate tank to the injection tank in the blast furnace pulverized coal injection facility according to claim 1, wherein the supply rate of the blast furnace is increased.
[0016]
According to a third aspect of the present invention, in the apparatus for supplying pulverized coal from an intermediate tank to an injection tank in a blast furnace pulverized coal injection facility, the interior of the intermediate tank is pressurized from normal pressure to high pressure at the lower part of the intermediate tank and pulverized coal. A nitrogen gasator is provided for nitrogen gasation, while an exhaust pipe is connected to the upper part of the blowing tank, and a small exhaust valve with an adjustable opening is arranged in the exhaust pipe to discharge the high-pressure nitrogen gas in the blowing tank out of the system. A pulverized coal supply device from an intermediate tank to a blowing tank in a blast furnace pulverized coal blowing facility characterized by being provided.
[0017]
According to a fourth aspect of the present invention, a high-pressure nitrogen gas is supplied to the middle and / or upper part of the intermediate tank to connect a pressure pipe for increasing the pressure of the intermediate tank. The apparatus for supplying pulverized coal from an intermediate tank to an injection tank in a blast furnace pulverized coal injection facility according to claim 3, further comprising a control valve for adjusting an amount of nitrogen gas supplied.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, when hot air is blown from a tuyere 23 through an annular pipe 22 surrounding a lower part of a blast furnace 20 through a blow pipe 21, the pulverized coal in the blowing tank 5 is supplied with nitrogen gas. By adjusting the opening of the control valve 18 with the shutoff valve 17 provided in the pipe 11 open, the high-pressure nitrogen gas blown into the blow-in tank 5 is passed through the pulverized coal supply pipe 19 and is disposed in the lower part of the blast furnace 20 It is supplied into the mouth 23 and blown into the furnace together with hot air.
[0019]
When supplying the pulverized coal stored in the PC hopper 1 at normal pressure to the intermediate tank 4, the large exhaust valve 16 is opened, and the nitrogen gas in the intermediate tank 4 is passed through the exhaust pipe 14 to the PC hopper 1. Then, the inside of the intermediate tank 4 is returned to normal pressure by discharging it out of the system. Next, the pulverized coal supply valve 3 provided in the pulverized coal supply pipe 2 is opened, and the pulverized coal is supplied from the PC hopper 1 to the intermediate tank 4 under normal pressure. At this time, the control valve 7 provided in the pulverized coal supply pipe 6 connecting the intermediate tank 4 and the blowing tank 5, the shut-off valve 12 provided in the nitrogen gas supply pipe 11, the control valve 13, and the exhaust pipe The small exhaust valve 15 and the switching valve 28 provided in 14 are closed, and the large exhaust valve 16 remains open. When a predetermined amount of pulverized coal is supplied from the PC hopper 1 to the intermediate tank 4, the pulverized coal supply valve 3 and the large exhaust valve 16 are closed.
[0020]
At the stage when pulverized coal needs to be refilled into the blast furnace 20 due to the blast furnace 20 being blown into the blast furnace 20, the shut-off valve 12 is opened and the opening of the control valve 13 is adjusted so that the nitrogen gas supply pipe 11 High-pressure nitrogen gas is supplied to a nitrogen gasator 24 provided at the lower part of the intermediate tank 4 to pressurize the inside of the intermediate tank 4. Thereafter, the fine coal in the intermediate tank 4 is nitrogen gasated and fluidized, and then supplied to the blowing tank 5 side. At this time, high-pressure nitrogen gas is introduced into the intermediate tank 4 using the pressurized pipe 29 connected to the middle and upper part of the intermediate tank 4 to promote gasation therein. This not only facilitates pressurization in the intermediate tank 4 to a pressure higher than that in the blowing tank 5, but also increases the amount of nitrogen gas from the intermediate tank 4 to the blowing tank 5. The speed at which the fine coal is blown from the intermediate tank 4 to the tank 5 can be increased. As described above, the nitrogen gasator 24 provided at the lower part of the intermediate tank 4 comprises a blowing box 25 connected to the lower part of the intermediate tank 4, a perforated plate 26 provided inside, and a breathable canvas 27 set inside thereof. (See FIG. 3).
[0021]
As described above, the pulverized coal is fluidized by the nitrogen gas supply supplied into the intermediate tank 4 from the nitrogen gas supply pipes 11 and 29, while the pulverized coal supply valve 8 is opened and the opening of the control valve 7 is adjusted. The pulverized coal is supplied from the tank 4 to the blowing tank 5 through the pulverized coal supply pipe 6.
Figure 6 is in the N 2 gas Configuration MAX = 26Nm 3 / min (100 %) based on the conventional equipment, A 18 Nm 3 / min ( 70%) of N 2 gas flow rate, B and the N 2 gas flow rate In the case of 22 Nm 3 / min (85%), C is N 2 gas flow rate of 38 Nm 3 / min (100%) based on N 2 gasation MAX = 30 Nm 3 / min (100%) in the conventional equipment. PC feed rate test results in the case where 127%), i.e. shows the relationship between the N 2 gas configuration flow in the case of increasing or decreasing the N 2 gas configuration flow rate (%) and PC feed rate (t / min) by the present invention ing. As shown in FIG. 6, the N 2 gasation flow rate (%) and the PC supply rate (t / min) have a direct proportional relationship as shown by the straight line D, and the PC supply rate can be easily increased or decreased by increasing or decreasing the nitrogen gasation. Can be adjusted to. At the same time, by using both supply pipes 11 and 29 at the same time, it is possible to increase to 38 Nm 3 / min (127%) compared to the conventional N 2 gasation MAX = 30 Nm 3 / min (100%). The PC supply rate was increased from 2.2 t / min to 2.6 t / min, and the pulverized coal supply time was reduced from 13 minutes to 10.5 minutes.
[0022]
According to the present invention, in the process of supplying pulverized coal from the intermediate tank 4 to the blowing tank 5, the pulverized coal is affected by the properties such as adhesiveness by the nitrogen gas blown into the intermediate tank 4 through the nitrogen gasator 24. It is fully fluidized without being blown, and the intermediate tank 4 can be stably maintained at a high pressure from the inside of the blowing tank 5, and nitrogen gas can flow stably in one direction without causing troubles such as shelf hanging. The pulverized coal can be supplied to the blowing tank 5 at a constant supply speed. Moreover, it is easy to increase the supply speed of pulverized coal as required, and the operation of blowing pulverized coal in the blast furnace can be performed stably with a desired PC ratio.
[0023]
For example, FIG. 5 shows the change in the weight of the intermediate tank in the process of supplying pulverized coal with poor fluidity from the intermediate tank 4 to the blowing tank 5 according to the present invention. The pulverized coal can be supplied at a constant supply rate as indicated by a line C indicating the change in weight until the end of 14 minutes. Since the supply speed of pulverized coal is constant and stable in this way, it can be supplied in a short time, the remaining amount of pulverized coal in the injection tank 5 is not interrupted, and the pulverized coal injection into the blast furnace 20 is in a steady state. The blast furnace operation with a high PC ratio can be achieved.
[0024]
【The invention's effect】
As described above, according to the present invention, the inside of the intermediate tank is pressurized from normal pressure to high pressure, and the pulverized coal is nitrogen-gasified and supplied to the blowing tank, and is disposed in the exhaust pipe connected to the upper part of the blowing tank. It is possible to maintain a one-way flow of nitrogen gas from the intermediate tank into the blowing tank by adjusting the opening of the small exhaust valve and discharging the high-pressure nitrogen gas in the blowing tank out of the system. is there. Because the pulverized coal supply rate can be constantly and constantly injected in large quantities without depending on a wide variety of pulverized coal brands, it is possible to supply in a short time, and the operation with the high PC ratio of the blast furnace is stabilized, reducing costs. Achieved.
[Brief description of the drawings]
FIG. 1 is a flow diagram showing an apparatus for supplying pulverized coal from an intermediate tank to a blowing tank in a blast furnace according to the present invention.
FIG. 2 is a flow diagram showing an apparatus for supplying pulverized coal from an intermediate tank to a blowing tank in a conventional blast furnace.
FIG. 3 is a cross-sectional view showing a nitrogen gasator provided in the lower part of the intermediate tank.
FIG. 4 is a graph showing the time transition of the intermediate tank weight in the conventional example.
FIG. 5 is a graph showing the time transition of the intermediate tank weight of the example of the present invention.
FIG. 6 is a graph showing the relationship between N 2 gasation flow rate (%) and PC supply rate (t / min).
[Explanation of symbols]
1 Pulverized coal hopper (PC hopper)
2, 6, 19 Pulverized coal supply pipe 3, 8 Pulverized coal supply valve 4 Intermediate tank 5 Blowing tank 7, 13, 18, 31 Control valve 9 Pressure equalizing pipe
10 Pressure equalizing valve
11 Nitrogen gas supply pipe
12, 17, 30 Shut-off valve
14 Exhaust pipe
15 Small exhaust valve
16 Large exhaust valve
20 Blast furnace
21 Blow pipe
22 Annular pipe
23 tuyere
24 Nitrogen gasrator
25 Blow box
26 Perforated plate
27 Breathable canvas
28 Switching valve
29 Pressurized piping

Claims (4)

高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給方法において、前記中間タンクの下部に設けた窒素ガスレータを介して高圧窒素ガスを吹き込み、該中間タンク内を常圧から高圧に加圧して微粉炭を窒素ガスレーションして吹き込みタンクに供給すると共に、該吹き込みタンクの上部に接続した排気管に配設した小排気弁の開度を調節して吹き込みタンク内の高圧窒素ガスの一部を系外に排出することにより、前記吹き込みタンク内を中間タンク内より低圧にし、窒素ガスの一方向流れを保持して微粉炭の供給速度を目標値に保持することを特徴とする高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給方法。In the method of supplying pulverized coal from an intermediate tank to a blast furnace in a blast furnace pulverized coal injection facility, high pressure nitrogen gas is injected through a nitrogen gasator provided at the lower part of the intermediate tank, and the inside of the intermediate tank is pressurized from normal pressure to high pressure. A part of the high-pressure nitrogen gas in the blowing tank by adjusting the opening of a small exhaust valve disposed in the exhaust pipe connected to the upper part of the blowing tank The blast furnace pulverized coal is characterized in that the inside of the blowing tank is made to be at a lower pressure than that in the intermediate tank, and the unidirectional flow of nitrogen gas is maintained to maintain the supply speed of the pulverized coal at a target value. A method for supplying pulverized coal from an intermediate tank to a blowing tank in a blowing facility. 前記中間タンクの中部および/または上部に接続した加圧配管から高圧窒素ガスを供給して、該中間タンクの加圧を増勢することにより吹き込みタンクへの微粉炭の供給速度を増強することを特徴とする請求項1記載の高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給方法。A high-pressure nitrogen gas is supplied from a pressurized pipe connected to the middle and / or upper part of the intermediate tank, and the pressure of the intermediate tank is increased to increase the supply speed of pulverized coal to the blowing tank. The method for supplying pulverized coal from the intermediate tank to the injection tank in the blast furnace pulverized coal injection facility according to claim 1. 高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給装置において、前記中間タンクの下部に、該中間タンク内を常圧から高圧に加圧すると共に微粉炭を窒素ガスレーションする窒素ガスレータを設ける一方、前記吹き込みタンクの上部に排気管を接続し、該排気管に吹き込みタンク内の高圧窒素ガスを系外に排出する開度調節可能な小排気弁を配設したことを特徴とする高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給装置。In the apparatus for supplying pulverized coal from an intermediate tank to an injection tank in a blast furnace pulverized coal injection facility, a nitrogen gas generator is provided below the intermediate tank to pressurize the intermediate tank from normal pressure to high pressure and to perform nitrogen gasation of the pulverized coal. On the other hand, a blast furnace fine powder characterized in that an exhaust pipe is connected to an upper part of the blowing tank, and a small exhaust valve capable of adjusting the opening is provided in the exhaust pipe to discharge high-pressure nitrogen gas in the blowing tank out of the system. Equipment for supplying pulverized coal from an intermediate tank to a blowing tank in a coal blowing facility. 前記中間タンクの中部および/または上部に、高圧窒素ガスを供給して該中間タンクの加圧を増勢する加圧配管を接続すると共に、該加圧配管に高圧窒素ガスの供給量を調節する調節弁を設けたことを特徴とする請求項3記載の高炉微粉炭吹き込み設備における中間タンクから吹き込みタンクへの微粉炭供給装置。An adjustment for supplying high-pressure nitrogen gas to the middle and / or upper part of the intermediate tank to connect a pressure pipe for increasing the pressure of the intermediate tank, and adjusting the supply amount of the high-pressure nitrogen gas to the pressure pipe The apparatus for supplying pulverized coal from the intermediate tank to the injection tank in the blast furnace pulverized coal injection facility according to claim 3, wherein a valve is provided.
JP17227999A 1999-06-18 1999-06-18 Method and apparatus for supplying pulverized coal from intermediate tank to blast furnace in blast furnace pulverized coal injection facility Expired - Fee Related JP3788110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17227999A JP3788110B2 (en) 1999-06-18 1999-06-18 Method and apparatus for supplying pulverized coal from intermediate tank to blast furnace in blast furnace pulverized coal injection facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17227999A JP3788110B2 (en) 1999-06-18 1999-06-18 Method and apparatus for supplying pulverized coal from intermediate tank to blast furnace in blast furnace pulverized coal injection facility

Publications (2)

Publication Number Publication Date
JP2001003106A JP2001003106A (en) 2001-01-09
JP3788110B2 true JP3788110B2 (en) 2006-06-21

Family

ID=15938983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17227999A Expired - Fee Related JP3788110B2 (en) 1999-06-18 1999-06-18 Method and apparatus for supplying pulverized coal from intermediate tank to blast furnace in blast furnace pulverized coal injection facility

Country Status (1)

Country Link
JP (1) JP3788110B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531348B2 (en) * 2003-06-03 2010-08-25 大同特殊鋼株式会社 Powder material supply device for moving hearth furnace
KR100971983B1 (en) 2003-07-18 2010-07-23 주식회사 포스코 Apparatus for controlling the pressure of feed hopper to prevent vent valve from being wearing, and controlling method the same
FI124217B (en) * 2012-08-27 2014-05-15 Outotec Oyj ARRANGEMENTS FOR SUPPLYING A GRINDING SUBSTANCE TO A SUSPENSION FROZEN OVEN OR A STONE BURNER
JP6695163B2 (en) * 2016-02-17 2020-05-20 三菱日立パワーシステムズ株式会社 Fine powder fuel supply device and method, integrated gasification combined cycle facility
CN115978574B (en) * 2023-03-20 2023-06-27 河南瑞德克气力输送设备有限公司 Pulverized coal quantitative feeding system for side-blown converter

Also Published As

Publication number Publication date
JP2001003106A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
US4883390A (en) Method and apparatus for effecting pneumatic conveyance of particulate solids
US5489166A (en) Method and device for removing solid residues from a gas purification installation
CN104169198B (en) powder supply device and powder supply method
CN105177201B (en) Improved blast furnace coal injection tank and injection method
WO2012115061A1 (en) Powder supply apparatus and powder supply method
JP3788110B2 (en) Method and apparatus for supplying pulverized coal from intermediate tank to blast furnace in blast furnace pulverized coal injection facility
JPH09324206A (en) Method for controlling rate of blowing pulverized powder to blast furnace and pulverized coal blowing device
JP2004035913A (en) Method and device for controlling blowing of granular powder
JP2742001B2 (en) Pulverized coal injection control method
US20120257934A1 (en) Metering system, dense phase conveying system and method for supplying bulk material in powder form
JPH01230706A (en) Method for blowing powdered coal into blast furnace
KR100393764B1 (en) Apparatus of controlling a coal feed quantity in a blast furnace
JP2004043889A (en) Method for stably injecting pulverized coal into blast furnace
KR20130020163A (en) Apparatus for pneumatically transporting powdered coal to a high pressure
JP2742000B2 (en) Pulverized coal injection control method
JP2004043849A (en) Method for injecting a large quantity of pulverized coal into blast furnace
JP3863359B2 (en) Blow operation method
KR19980043358A (en) Blowing amount control device in spectroscopic blowing device
JP3292257B2 (en) Granular material transfer control method
CN212512547U (en) Kiln combustion system
JPH08283805A (en) Method for controlling blowing of pulverized coal into blast furnace
CN117268117A (en) Direct-injection pulverized coal smelting furnace system
JP2002521563A (en) Method for producing zinc by IS method in IS vertical furnace plant and IS vertical furnace plant
KR100267269B1 (en) The control method of pressure difference
JPH051308A (en) Method for removing stuck material to furnace wall in blast furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees