JPH09206946A - Three electrode submerged arc welding method - Google Patents

Three electrode submerged arc welding method

Info

Publication number
JPH09206946A
JPH09206946A JP1864796A JP1864796A JPH09206946A JP H09206946 A JPH09206946 A JP H09206946A JP 1864796 A JP1864796 A JP 1864796A JP 1864796 A JP1864796 A JP 1864796A JP H09206946 A JPH09206946 A JP H09206946A
Authority
JP
Japan
Prior art keywords
electrode
welding
bead
arc
submerged arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1864796A
Other languages
Japanese (ja)
Inventor
Mikio Nanbu
幹夫 南部
Masami Yamaguchi
将美 山口
Naoaki Matsutani
直明 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP1864796A priority Critical patent/JPH09206946A/en
Publication of JPH09206946A publication Critical patent/JPH09206946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain superior results in the corner joint welding of an extremely thick box column by welding while a gas blow phenomenon is generated from only the rear side of the third electrode and not from the rear side in the weld ing direction of the first and the second electrode. SOLUTION: The voids A, B of the arc of the first electrode L and the second M are maintained in a stable size and shape by avoiding a gas blow in the rear side of these electrodes. Consequently, the arc generating point of the third electrode T becomes a constant position, so that welding is performed stably without fluctuation in voltage. Then, with welding performed while a gas blow phenomenon is generated in the rear side of the third electrode T, a bead waveform is finely stabilized, making it possible to obtain the bead width sufficient to melt the groove width on the surface of a mesh plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建築構造物に使用
する極厚ボックス柱を製造する際の角継手溶接に適用す
る3電極サブマージアーク溶接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-electrode submerged arc welding method applied to corner joint welding when manufacturing an extremely thick box column used for a building structure.

【0002】[0002]

【従来の技術】近年、都市部においてボックス柱を用い
たビル建築が盛んになり、ビルは益々高層化している。
これに伴って使用する鋼材は益々厚肉化し、多層盛り溶
接等により板厚100mmまで実用化されている。ボック
ス柱は4枚の鋼板を四角柱に組み、その角継手部を高能
率溶接であるサブマージアーク溶接で溶接している。現
状、2電極サブマージアーク溶接が一般的に採用され、
50mm程度まで1層で溶接する方法が実用化されてい
る。
2. Description of the Related Art In recent years, building construction using box pillars has become popular in urban areas, and the building is becoming higher and higher.
Along with this, the steel materials used have become increasingly thicker and have been put to practical use up to a plate thickness of 100 mm by multi-layer welding or the like. The box column is made by assembling four steel plates into a square column and welding the corner joint part by submerged arc welding which is high efficiency welding. At present, two-electrode submerged arc welding is generally adopted,
A method of welding one layer up to about 50 mm has been put into practical use.

【0003】さらに、50mmを超える極厚鋼板にまでサ
ブマージアーク1層溶接を適用する目的で3電極法も実
用化されている。3電極サブマージアーク溶接法として
は、例えば溶接法委員会第67回資料「厚板の多電極1
ランサブマージアーク溶接」(溶接学会編 昭和53年
5月23日)に板厚40mmまで適用した例が報告されて
いる。また最近では、サブマージアーク1層溶接による
板厚70〜80mmまで適用が検討されている。
Further, the three-electrode method has been put into practical use for the purpose of applying the submerged arc single-layer welding even to an extremely thick steel plate exceeding 50 mm. Examples of the three-electrode submerged arc welding method include, for example, the Welding Method Committee 67th document “Thick plate multi-electrode 1
An example in which a plate thickness of 40 mm is applied to "run submerged arc welding" (edited by Welding Society, May 23, 1978) is reported. Further, recently, application to a plate thickness of 70 to 80 mm by submerged arc single layer welding has been studied.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、板厚が
50mmを超える様な厚板のボックス柱の角継手3電極サ
ブマージアーク1層溶接では、高電流を用いるため多量
に発生するガスの吹き上げや、それに伴うスラグの不整
および溶融金属の不整が生じ易い。このため良好な溶接
部を得るためには、電流や電圧の通常の溶接条件の設定
だけでは対応できず、溶接ビード外観の不良や溶接欠陥
を発生する場合があった。
However, in the corner joint three-electrode submerged arc one-layer welding of a box column of a thick plate whose plate thickness exceeds 50 mm, a large amount of gas is blown up because a high current is used, and As a result, irregularities in the slag and molten metal are likely to occur. Therefore, in order to obtain a good welded portion, it is not possible to deal with it only by setting normal welding conditions such as current and voltage, and there are cases in which a defective weld bead appearance or a weld defect occurs.

【0005】[0005]

【課題を解決するための手段】本発明者等は、この点を
解決するため種々検討した結果、板厚が50mmを超える
極厚鋼板の3電極サブマージアーク1層溶接では、それ
ぞれの電極の直後のガス吹き上げ現象をコントロールす
ることによって良好な溶接部が得られることを見いだし
たのである。即ち本発明は、極厚ボックス柱の角継手
を、3電極サブマージアーク溶接法によって1層溶接す
るに際し、第1電極および第2電極の溶接方向後方から
はガスの吹き上げ現象を発生させず、第3電極の後方か
らのみガスの吹き上げ現象を発生させつつ溶接すること
を特徴とする3電極サブマージアーク溶接方法にある。
Means for Solving the Problems As a result of various studies to solve this point, the present inventors have found that in three-electrode submerged arc one-layer welding of extremely thick steel plates having a plate thickness exceeding 50 mm, immediately after each electrode. It was found that a good weld can be obtained by controlling the gas blow-up phenomenon of. That is, the present invention does not generate a gas blow-up phenomenon from the rear side in the welding direction of the first electrode and the second electrode when welding one layer of the corner joint of the extremely thick box column by the three-electrode submerged arc welding method. A three-electrode submerged arc welding method is characterized in that welding is performed while generating a gas blowing phenomenon only from the rear of the three electrodes.

【0006】[0006]

【発明の実施の形態】以下作用と共に本発明を図面を用
いて詳細に説明する。図1は3電極サブマージアーク溶
接時の状況を示す概念図、図2(a),(b)は3電極
サブマージアーク溶接時の電極配置および開先形状、図
3(a),(b)はビード外観を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings along with the operation. FIG. 1 is a conceptual diagram showing a situation at the time of three-electrode submerged arc welding, FIGS. 2 (a) and 2 (b) are electrode arrangements and groove shapes at the time of three-electrode submerged arc welding, and FIGS. 3 (a) and 3 (b) are The bead appearance is shown.

【0007】3電極サブマージアーク溶接では、3本の
電極それぞれに役割を持つように条件設定をする。即
ち、第1電極Lは必要な溶け込み深さを得るように電
流、電圧等の条件を設定する。図1および図2に示す如
く第2電極Mのワイヤは、第1電極Lのワイヤおよび母
材から成る溶融金属上にアークを発生し、溶着金属量を
増加するとともに、第1電極Lによって形成するワイヤ
5、鋼板11,13およびフラックス6中の金属分から
成る溶接金属よりも板厚方向の上方に第2電極Mによる
溶融金属を形成し、溶接金属の凝固組織を上向きにする
ことで、第1電極Lによって形成されるビードの中央で
発生し易い梨割れを防止するよう電流、電圧や極間距離
L1-2 ,L2-3 等の条件を設定する。
In three-electrode submerged arc welding, conditions are set so that each of the three electrodes has a role. That is, the first electrode L sets conditions such as current and voltage so as to obtain a necessary penetration depth. As shown in FIGS. 1 and 2, the wire of the second electrode M generates an arc on the molten metal composed of the wire of the first electrode L and the base material, increases the amount of deposited metal, and is formed by the first electrode L. By forming the molten metal by the second electrode M above the weld metal composed of the metal in the wire 5, the steel plates 11 and 13 and the flux 6 in the plate thickness direction, and making the solidification structure of the weld metal upward, To prevent pear cracking that tends to occur at the center of the bead formed by one electrode L, the current, voltage and distance between the electrodes
Set conditions such as L 1-2 and L 2-3 .

【0008】さらに、第3電極Tはビード波形14が安
定して細かく、アンダーカットが発生したり、ビード中
央部が高く盛り上がる馬の背形状とならず、ビード幅1
5が均一となる良好な図3(b)に示すビード外観を形
成すように電流、電圧や極間距離 L1-2 , L2-3 等の条
件を設定する。
Further, the bead waveform 14 of the third electrode T is stable and fine, does not cause an undercut, does not have a horse-back shape in which the center of the bead rises high, and has a bead width of 1
The conditions such as current, voltage, and distance between the electrodes L 1-2 and L 2-3 are set so that the bead appearance shown in FIG.

【0009】例えば、鋼板板厚が70〜80mmの3電極
サブマージアーク1層溶接を行う際の開先形状は、図2
(b)に示すように鋼板11,13を開先加工し、開先
角度θ=30゜、ルートフェイスR=2mmが適正な形状
の例である。開先角度θが大き過ぎると開先断面積が大
きくなり、現在の溶接電源の能力である1電極当たり2
000〜2500Aでは、必要な溶着金属量を得ること
ができない。一方、開先角度θが小さ過ぎる場合、溶着
金属量は確保できるが十分な溶込み深さを得ることが困
難である。ルートフェイスRが大きい場合も、開先角度
θが過小の場合と同様に十分な溶込み深さの確保が困難
となる。
For example, the shape of the groove when performing three-layer submerged arc one-layer welding with a steel plate thickness of 70 to 80 mm is shown in FIG.
As shown in (b), the steel plates 11 and 13 are groove-processed, and the groove angle θ = 30 ° and the root face R = 2 mm are examples of proper shapes. If the groove angle θ is too large, the groove cross-sectional area becomes large, and the current welding power source capacity is 2 per electrode.
At 000 to 2500 A, the required amount of deposited metal cannot be obtained. On the other hand, if the groove angle θ is too small, the amount of deposited metal can be secured, but it is difficult to obtain a sufficient penetration depth. Even when the root face R is large, it is difficult to secure a sufficient penetration depth as in the case where the groove angle θ is too small.

【0010】電極の配置とその極間距離は、図2におい
て溶接進行方向を矢印Dで示し、第1電極L,第2電極
M,第3電極Tの傾斜角度θ1 ,θ2 ,θ3 は、ビード
形状、溶け込みを考慮して決定する。第1電極Lと第2
電極Mとの極間距離 L1-2 は100〜140mm、第2電
極Mと第3電極Tとの極間距離 L2-3 は120〜160
mmに通常設定する。極間距離 L1-2 が過小あるいは過大
の場合、上記のごとく溶接金属の凝固組織が上向きとな
らず、溶接金属に梨割れが生じる。極間距離 L2-3 が過
小の場合、ビード幅15が過大になり易く、逆に極間距
離L2-3 が過大では第3電極Tによるアーク発生点です
でにスラグが凝固し、図3(a)に示す如くアークが不
安定となってビード波形14、ビード幅15の安定した
形状が困難となる。
The arrangement of the electrodes and the distance between the electrodes are indicated by the arrow D in the welding progress direction in FIG. 2, and the inclination angles θ 1 , θ 2 , θ 3 of the first electrode L, the second electrode M and the third electrode T are shown. Is determined in consideration of bead shape and melting. First electrode L and second
The distance L 1-2 between the electrode M and the electrode M is 100 to 140 mm, and the distance L 2-3 between the second electrode M and the third electrode T is 120 to 160.
Normally set to mm. If the inter-electrode distance L 1-2 is too small or too large, the solidification structure of the weld metal does not face upward as described above, and pear cracking occurs in the weld metal. If the inter-electrode distance L 2-3 is too small, the bead width 15 is likely to be too large. On the contrary, if the inter-electrode distance L 2-3 is too large, the slag has already solidified at the arc generation point by the third electrode T. As shown in FIG. 3A, the arc becomes unstable and it becomes difficult to form the bead waveform 14 and the bead width 15 in a stable shape.

【0011】電流、電圧、速度については、現状の溶接
電源の容量から最大使用電流が制限され、上記開先形状
に対して必要な溶着金属量を得るために溶接入熱は決定
されることから、電圧および速度も自ずと決定される。
Regarding the current, voltage and speed, the maximum usable current is limited by the capacity of the current welding power source, and the welding heat input is determined in order to obtain the required amount of deposited metal for the above groove shape. , Voltage and speed are also determined automatically.

【0012】上記条件による溶接時の状況を想定した概
念図を図1に示す。これは本発明の正常な状態である。
溶接時には各電極L,M,Tのアーク空洞A,B,Cは
フラックス6直下を通りつながって存在すると思われ
る。これは、フラックス6の溶融あるいはワイヤ5や母
材11,13の溶融時に発生するCO2 ,CO等のガス
Gが強いアーク力により後方に流されるが、溶融池8上
の空洞A,B,C上部は薄いスラグの殻3が生成してい
るためと考えられる。このため、ガスGの吹き上げは電
極の溶接進行方向Dの後方に生じる。この正常な本発明
法による溶接結果のビード外観を図3(b)に示し、ビ
ード波形14、ビード幅15共に揃って安定した結果が
得られている。
FIG. 1 is a conceptual diagram assuming a situation during welding under the above conditions. This is the normal state of the invention.
At the time of welding, the arc cavities A, B and C of the electrodes L, M and T are considered to exist by connecting directly under the flux 6. This is because gas G such as CO 2 and CO generated when the flux 6 is melted or the wires 5 and the base materials 11 and 13 are melted is caused to flow backward by a strong arc force, but the cavities A and B on the molten pool 8 are It is considered that a thin slag shell 3 is generated in the upper part of C. Therefore, the blowing of the gas G occurs behind the welding proceeding direction D of the electrode. The bead appearance as a result of this normal welding according to the present invention is shown in FIG.

【0013】この場合、第1電極Lの後方でガスGの吹
き上げが生じると、第1電極Lによるアーク空洞Aが潰
れ、それに伴ってアーク空洞A内に未溶融のフラックス
6が落下するためスラグの生成が安定せず不均一を生じ
る。即ち、狭い開先12内に生成する第1電極Lによる
スラグ生成量の変化が、溶融池8の安定性にも影響を及
ぼし、開先内における溶融金属の深さ方向に大きな変動
を生じる。このため、第2電極Mのアーク発生点が上下
に大きく変化し、電圧の変動を起こすことによって溶着
金属量やスラグ生成量に不整が生じる。さらに、この上
に第3電極Tによるアークは発生するが、益々不安定と
なり、最終的には、図3(a)に示すように溶接ビード
が蛇行したり、開先12の溶け残しが発生する。
In this case, when the gas G is blown up behind the first electrode L, the arc cavity A is crushed by the first electrode L, and the unmelted flux 6 falls into the arc cavity A accordingly, so that the slag is slagged. Is not stable and causes non-uniformity. That is, the change in the amount of slag generated by the first electrode L generated in the narrow groove 12 also affects the stability of the molten pool 8 and causes a large fluctuation in the depth direction of the molten metal in the groove. For this reason, the arc generation point of the second electrode M largely changes up and down, and the voltage fluctuates, causing irregularities in the amount of deposited metal and the amount of slag generated. Further, although an arc due to the third electrode T is generated on this, it becomes more and more unstable, and finally, as shown in FIG. 3A, the welding bead meanders or the unmelted residue of the groove 12 occurs. To do.

【0014】また、第1電極Lの後方のガス吹き上げが
発生しなくとも第2電極Mの後方にガス吹き上げが発生
すれば、やはり第1電極Lの後方でガス吹き上げが発生
した場合と同様にスラグの生成量変化に伴う溶融池8内
の溶融金属の変動が大きくなり、第3電極Tに発生する
アークが同様に不安定になる。即ち、第2電極Mの後方
の溶融池の溶融金属の位置が安定せず、その溶融金属上
に発生する第3電極Tのアーク発生点が変化し溶着金属
量、スラグ生成量に不整が生じ、最終的には溶接ビード
が図3(a)の如く不良となる。
Even if the gas blowing up behind the first electrode L does not occur, if the gas blowing up occurs behind the second electrode M, the gas blowing up occurs behind the first electrode L as well. The variation of the molten metal in the molten pool 8 due to the change in the amount of slag generated becomes large, and the arc generated at the third electrode T becomes unstable similarly. That is, the position of the molten metal in the molten pool behind the second electrode M is not stable, the arc generation point of the third electrode T generated on the molten metal changes, and the amount of deposited metal and the amount of slag produced become irregular. Finally, the weld bead becomes defective as shown in FIG.

【0015】第1電極Lおよび第2電極Mの後方でガス
を吹き上げさせないことにより、第1電極Lおよび第2
電極Mのアークの空洞A,Bが安定した大きさ、形状で
保つことができ、従って第3電極Tのアーク発生点が一
定の位置となって電圧変動のない安定した溶接が進行す
る。
By preventing gas from being blown up behind the first electrode L and the second electrode M, the first electrode L and the second electrode
The cavities A and B of the arc of the electrode M can be maintained in a stable size and shape, so that the arc generation point of the third electrode T becomes a fixed position and stable welding without voltage fluctuation proceeds.

【0016】この際、第3電極Tの後方で第1電極Lお
よび第2電極Mと同様にガスの吹き上げを発生させない
場合、図3(a)に示す如くビード波形14が粗く、ビ
ード幅15の狭い外観となり、鋼板表面の開先12が未
溶融となる場合さえある。この現象はフラックス散布厚
さを大きくした場合に見られる。この理由は、第3電極
Tによるアーク空洞Cが非常に高い圧力で均衡を保つた
め、アークの広がりが制限されて細く絞られることが原
因と思われる。
At this time, when the gas is not blown up behind the third electrode T as in the case of the first electrode L and the second electrode M, the bead waveform 14 is rough and the bead width 15 as shown in FIG. 3A. The appearance becomes narrower and the groove 12 on the surface of the steel sheet may become unmelted. This phenomenon is seen when the flux dispersion thickness is increased. The reason for this is considered to be that the arc cavity C formed by the third electrode T is balanced at a very high pressure, so that the spread of the arc is limited and narrowed.

【0017】これに対し、第1電極Lおよび第2電極M
の後方でガスの吹き上げ現象Gを発生させず、第3電極
Tの後方でガスの吹き上げ現象Gを発生させつつ溶接を
行った場合には、ビード波形14が安定して細かく、鋼
板11,13の表面の開先幅を溶融する十分なビード幅
15を得ることができる。
On the other hand, the first electrode L and the second electrode M
When the welding is performed while generating the gas blow-up phenomenon G behind the third electrode T and not generating the gas blow-up phenomenon G behind the third electrode T, the bead waveform 14 is stable and fine, and the steel plates 11, 13 It is possible to obtain a sufficient bead width 15 that melts the groove width of the surface of the.

【0018】このように、第3電極Tの後方ではガス吹
き上げGが生じても、アーク発生点が第1電極Lや第2
電極Mのように開先の中ではなく鋼板の表面より上であ
るため、アーク空洞Cの圧力が上方のみならず、横方向
にも解放されることから、溶着金属量やスラグ生成量に
不整が生じないものと考えられる。従って、良好な溶接
ビードが得られる。ガスの吹き上げ現象Gは、間欠的で
あってもあるいは連続的であってもガスの吹き上げを生
じさせることで、アーク空洞の圧力を低下させればよ
い。ガスの吹き上げはフラックス散布厚さが小さいほど
電極に近い後方で連続的に発生する。一方、フラックス
散布厚さを大きくするほどガスを吹き上げる位置が電極
の後方へ移動しかつ間欠的に発生するようになる。さら
に、フラックス散布厚さを過大にすれば、吹き上げ現象
としては観察されなくなり、ガスはスラグと溶融金属の
凝固界面に留まり、凝固したスラグ内に気泡として残っ
たり、溶接ビードの表面に円形あるいは長方形の窪みを
生じ、いわゆる溶接欠陥の一つであるポックマークとな
る。
As described above, even if the gas blow-up G occurs behind the third electrode T, the arc generation point is the first electrode L or the second electrode.
Since it is not in the groove like the electrode M but above the surface of the steel plate, the pressure in the arc cavity C is released not only in the upward direction but also in the lateral direction, so that the amount of deposited metal and the amount of slag produced are irregular. It is considered that the problem does not occur. Therefore, a good weld bead can be obtained. The gas blow-up phenomenon G may be intermittent or continuous, and may cause gas blow-up to reduce the pressure in the arc cavity. The smaller the flux distribution thickness, the more the gas is blown up continuously behind the electrode. On the other hand, as the thickness of the flux is increased, the position where the gas is blown up moves to the rear of the electrode and is intermittently generated. Furthermore, if the flux dispersion thickness is too large, it will not be observed as a blow-up phenomenon, the gas will remain at the solidification interface between the slag and the molten metal, and will remain as bubbles in the solidified slag, or a circular or rectangular shape will appear on the surface of the weld bead. To form a pock mark, which is one of so-called welding defects.

【0019】[0019]

【実施例】表1に示すSM490B鋼の板厚70mmおよ
び80mmの2種類を図1に示す形状で、開先角度θ=3
0゜、ルートフェイスRが板厚70mmの場合2mm、板厚
80mmの場合4mmとしたボックス柱の角継手を作成し、
図2に示す電極配置で、各電極を電極傾斜角度θ1 =8
゜、θ2 =0゜、θ3 =5゜で傾斜させ、ワイヤ突き出
し長さEx1 =50mm、Ex2 =60mm、Ex3 =60
mmとし、第1−第2電極の極間 L1-2 =130mm、第2
−第3電極の極間 L2-3 =130mmとして、表4に示す
溶接条件により3電極サブマージアーク1層溶接を実施
した。
[Examples] Two types of SM490B steel having a plate thickness of 70 mm and 80 mm shown in Table 1 were formed into a shape shown in FIG.
Create a box column corner joint with 0 °, 2 mm when the root face R has a plate thickness of 70 mm and 4 mm when the plate thickness is 80 mm,
In the electrode arrangement shown in FIG. 2, each electrode has an electrode inclination angle θ 1 = 8.
Inclination at θ, θ 2 = 0 °, θ 3 = 5 °, wire protrusion length Ex 1 = 50 mm, Ex 2 = 60 mm, Ex 3 = 60
mm, the gap between the 1st and 2nd electrodes L 1-2 = 130mm, 2nd
-Three-electrode submerged arc single-layer welding was carried out under the welding conditions shown in Table 4 with the gap between the electrodes of the third electrode L 2-3 = 130 mm.

【0020】溶接材料は、ワイヤが表2に示すJIS
Z 3351のYS−S1として規定のワイヤ径6.4
mmを全ての電極に使用し、表3に示すJIS Z 33
52のFS−BT1として規定の鉄粉系ボンドフラック
ス(粒度12×100メッシュ)とを組み合わせた。
As the welding material, the wire is the JIS shown in Table 2.
Wire diameter 6.4 specified as YS-S1 of Z3351
mm is used for all electrodes, and JIS Z 33 shown in Table 3 is used.
No. 52 FS-BT1 was combined with a specified iron powder bond flux (particle size 12 × 100 mesh).

【0021】フラックスの散布は、各電極の溶接方向前
方50mmの位置にフラックス散布ノズルを設置し、それ
ぞれのノズル高さの調整および散布の有無によって表5
に示したように電極毎にフラックス散布厚さを変化させ
た。なお、板厚70mmおよび80mmとも同一の散布厚さ
で溶接を実施した。
For the flux distribution, a flux distribution nozzle is installed at a position 50 mm forward of each electrode in the welding direction, and the height of each nozzle is adjusted and whether or not the flux is distributed is shown in Table 5.
The flux dispersion thickness was changed for each electrode as shown in FIG. Welding was performed with the same dispersion thickness for both 70 mm and 80 mm plate thickness.

【0022】溶接後、ビード外観の観察を行った後、溶
接部の横断面マクロ試験片を採取し、スラグ巻き込み等
の内部欠陥の有無を観察した。溶接結果を表6に示す。
表中の記号は、例えばA1-70 はフラックス散布厚さが
表5に示す記号A1で、板厚70mmの溶接を表し、同様
にA1-80 は板厚80mmの溶接を表す。
After welding, the bead appearance was observed, and then a macroscopic test piece of the cross section of the welded portion was sampled to observe the presence or absence of internal defects such as slag inclusion. Table 6 shows the welding results.
For the symbols in the table, for example, A1-70 is the symbol A1 shown in Table 5 for the flux distribution thickness, which represents welding with a plate thickness of 70 mm, and A1-80 represents welding with a plate thickness of 80 mm.

【0023】本発明例のA1-70 〜A6-80 はいずれも
欠陥の無い良好な溶接ビードが得られた。これに対し比
較例は、板厚70mmおよび80mmとも同様の問題を生じ
る溶接結果であり、満足できるものはなかった。即ち、
比較例B1-70 およびB1-80 は、第2電極後方でガス
の吹き上げを生じさせたため、ビードの蛇行が発生し
た。比較例B2-70 およびB2-80 は、第3電極後方で
ガスの吹き上げを生じさせないため、ビード表面にポッ
クマークが発生し、さらに開先の溶け残しも発生した。
比較例B3-70 およびB3-80 は、第1電極後方でガス
の吹き上げを生じさせたため、スラグ巻き込みが発生し
た。比較例B4-70 およびB4-80 は、第1電極後方お
よび第2電極後方でガスの吹き上げを生じさせたため、
ビードの蛇行が発生し、スラグ巻き込みも発生した。比
較例B5-70 およびB5-80 は、第1電極後方および第
2電極後方でガスの吹き上げを生じさせ、第3電極の後
方でガスの吹き上げを発生させなかったため、溶接ビー
ドの全長に渡り開先の溶け残しが発生した。
In each of A1-70 to A6-80 of the present invention, good weld beads without defects were obtained. On the other hand, in the comparative example, the welding results that caused the same problems with the plate thicknesses of 70 mm and 80 mm were not satisfactory. That is,
In Comparative Examples B1-70 and B1-80, since gas was blown up behind the second electrode, meandering of the bead occurred. In Comparative Examples B2-70 and B2-80, since gas was not blown up behind the third electrode, a pock mark was generated on the bead surface, and unmelted residue was also generated at the groove.
In Comparative Examples B3-70 and B3-80, since gas was blown up behind the first electrode, slag entrainment occurred. In Comparative Examples B4-70 and B4-80, since gas was blown up behind the first electrode and behind the second electrode,
The bead meandered and slag was involved. In Comparative Examples B5-70 and B5-80, the gas was blown up behind the first electrode and the second electrode, and the gas was not blown up behind the third electrode. The remaining unmelted portion occurred.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】[0030]

【発明の効果】本発明の溶接方法を用いれば、極厚のボ
ックス柱角継手のサブマージアーク1層溶接において溶
接欠陥のない良好な溶接部を得ることができ、溶接能率
の向上に大きく寄与し、この分野の産業の発展に貢献で
きる。
According to the welding method of the present invention, it is possible to obtain a good weld portion without welding defects in the submerged arc single layer welding of an extremely thick box column corner joint, which greatly contributes to the improvement of welding efficiency. , Can contribute to the development of industry in this field.

【図面の簡単な説明】[Brief description of drawings]

【図1】3電極サブマージアーク溶接時の状況を示す概
念図。
FIG. 1 is a conceptual diagram showing a situation at the time of three-electrode submerged arc welding.

【図2】(a)は3電極サブマージアーク溶接時の電極
配置を示し、(b)は開先形状を示す説明図。
FIG. 2A is an explanatory view showing an electrode arrangement during three-electrode submerged arc welding, and FIG. 2B is an explanatory view showing a groove shape.

【図3】(a)は不良なビード外観を示し、(b)は良
好なビード外観を示す図。
FIG. 3A is a view showing a bad bead appearance, and FIG. 3B is a view showing a good bead appearance.

【符号の説明】[Explanation of symbols]

1----開先底部 2----鋼板表面 3----スラグの殻 4----コンタクトチップ 5----ワイヤ 6----フラックス 7----スラグ 8----溶融池 9----溶接金属 10----裏当て金 A,B,C----アーク空洞 D----溶接進行方向 G----ガスの吹き上げ現象 L----第1電極 M----第2電極 T----第3電極 R----ルートフェイス t----板厚、 11,13----鋼板 12----開先面 θ----開先角度 θ1 ,θ2 ,θ3 ----電極の傾斜角 Ex1 ,Ex2 ,Ex3 ----ワイヤ突き出し長さ L1-2 ----第1電極と第2電極の極間 L2-3 ----第2電極と第3電極の極間 14----ビード波形 15----ビード幅1 ---- Groove bottom 2 ---- Steel plate surface 3 ---- Slug shell 4 ---- Contact tip 5 ---- Wire 6 ---- Flux 7 ---- Slug 8-- --- Molten pool 9 ---- Weld metal 10 ---- Backing metal A, B, C ---- Arc cavity D ---- Welding direction G ---- Gas blow-up phenomenon L- --- First electrode M ---- Second electrode T ---- Third electrode R ---- Root face t ---- Plate thickness, 11, 13 ---- Steel plate 12 ---- Groove surface θ ---- Groove angle θ 1 , θ 2 , θ 3 ---- Electrode inclination angle Ex 1 , Ex 2 , Ex 3 ---- Wire protrusion length L 1-2 --- -Between first electrode and second electrode L 2-3 ---- Between second electrode and third electrode 14 ---- Bead waveform 15 ---- Bead width

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 極厚ボックス柱の角継手を、3電極サブ
マージアーク溶接方法によって1層溶接するに際し、第
1電極および第2電極の溶接方向後方からはガスの吹き
上げ現象を発生させず、第3電極の後方からのみガスの
吹き上げ現象を発生させつつ溶接することを特徴とする
3電極サブマージアーク溶接方法。
1. When a corner joint of an extremely thick box column is welded in one layer by a three-electrode submerged arc welding method, a gas blow-up phenomenon does not occur from the rear side in the welding direction of the first electrode and the second electrode. A three-electrode submerged arc welding method, wherein welding is performed while generating a gas blowing phenomenon only from the rear of the three electrodes.
JP1864796A 1996-02-05 1996-02-05 Three electrode submerged arc welding method Pending JPH09206946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1864796A JPH09206946A (en) 1996-02-05 1996-02-05 Three electrode submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1864796A JPH09206946A (en) 1996-02-05 1996-02-05 Three electrode submerged arc welding method

Publications (1)

Publication Number Publication Date
JPH09206946A true JPH09206946A (en) 1997-08-12

Family

ID=11977417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1864796A Pending JPH09206946A (en) 1996-02-05 1996-02-05 Three electrode submerged arc welding method

Country Status (1)

Country Link
JP (1) JPH09206946A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241128A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Method for manufacturing welded steel pipe
WO2013073565A1 (en) 2011-11-15 2013-05-23 新日鐵住金株式会社 Method for high-efficiency welding of thick steel plate
CN103370163A (en) * 2011-02-28 2013-10-23 株式会社神户制钢所 Gas shielded arc welding method and welding apparatus
CN106001867A (en) * 2015-03-31 2016-10-12 株式会社神户制钢所 Multi-electrode single-surface single-layer submerged-arc welding method
CN107442906A (en) * 2016-05-30 2017-12-08 株式会社神户制钢所 Buried arc welding method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241128A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Method for manufacturing welded steel pipe
CN103370163A (en) * 2011-02-28 2013-10-23 株式会社神户制钢所 Gas shielded arc welding method and welding apparatus
CN103370163B (en) * 2011-02-28 2015-09-02 株式会社神户制钢所 Gas protection arc welding method and welder
WO2013073565A1 (en) 2011-11-15 2013-05-23 新日鐵住金株式会社 Method for high-efficiency welding of thick steel plate
CN106001867A (en) * 2015-03-31 2016-10-12 株式会社神户制钢所 Multi-electrode single-surface single-layer submerged-arc welding method
JP2016193444A (en) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 Multi-electrode one surface single layer submerged arc welding method
CN107442906A (en) * 2016-05-30 2017-12-08 株式会社神户制钢所 Buried arc welding method

Similar Documents

Publication Publication Date Title
JP3862915B2 (en) Welding method for joints
JPH09206946A (en) Three electrode submerged arc welding method
JP2006231359A (en) Welding method and structure welded by the method
JP2860060B2 (en) Single-sided submerged arc welding method
JPH07100644A (en) Inspect member for welding
JP2001030091A (en) Structure of t-shaped joint with narrow groove, its welding method, and welded structure
JP3723163B2 (en) Aluminum alloy welding method and aluminum alloy welding apparatus
JPH10211578A (en) Two-electrode submerged arc welding method for square joint
US7371994B2 (en) Buried arc welding of integrally backed square butt joints
JPH03281066A (en) Square groove one-side welding method
JP3808213B2 (en) Submerged arc welding method for thick steel plate
JPH10244369A (en) Method and device of combined welding by arc and laser using belt-like electrode
JP4707949B2 (en) Multi-electrode single-sided submerged arc welding method
JP2646388B2 (en) Gas shielded arc welding method
JP3526622B2 (en) Overlay welding materials
JP2003053544A (en) Tig welding method for fillet joint using galvanized steel sheet
JPH09271992A (en) Backing material for t-joint
JP3741402B2 (en) Two-electrode electrogas welding method
JPS6335352B2 (en)
JPS5890382A (en) Submerged arc welding method with low heat input
JPS583778A (en) Arc welding method
Kawali et al. Laser welding of alumina reinforced 6061 aluminum alloy composite
JPH054185B2 (en)
JPH0724935B2 (en) Horizontal pulse arc welding method
JPH0373387B2 (en)