JPH09202930A - Metal-ceramics composite material and its production - Google Patents

Metal-ceramics composite material and its production

Info

Publication number
JPH09202930A
JPH09202930A JP3124196A JP3124196A JPH09202930A JP H09202930 A JPH09202930 A JP H09202930A JP 3124196 A JP3124196 A JP 3124196A JP 3124196 A JP3124196 A JP 3124196A JP H09202930 A JPH09202930 A JP H09202930A
Authority
JP
Japan
Prior art keywords
composite material
metal
aluminum
particles
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3124196A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsuto
宏之 津戸
Yoko Matsumaru
陽子 松丸
Hideto Yoshida
秀人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP3124196A priority Critical patent/JPH09202930A/en
Publication of JPH09202930A publication Critical patent/JPH09202930A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce the composite material having sufficient strength at ordinary temp. and minimal in the reduction of strength even at high temp. by previously forming aluminum nitride layer on the surface of alumina fiber at the time of making aluminum penetrate into a preform constituted of alumina fibers. SOLUTION: The metal-ceramics composite material is produced by making aluminum or aluminum alloy, as base material, penetrate into a preform constituted of alumina fibers or grains as reinforcement. At this time, the alumina fibers or grains are mixed with carbon powder, and the resultant mixture is heated in a nitrogen atmosphere at >=1,700 deg.C, by which aluminum nitride layer is formed on the surface of the alumina fibers or grains previously. By this method, wettability between the alumina fibers or grains and the aluminum or aluminum alloy can be improved, and the metal-ceramics composite material, having strength at ordinary temp. and high temp. strength higher than those of the conventional one, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属−セラミック
ス複合材料に関し、特に金属をアルミニウムまたはその
合金とし、セラミックスをアルミナとする金属−セラミ
ックス複合材料に関する。
TECHNICAL FIELD The present invention relates to a metal-ceramic composite material, and more particularly to a metal-ceramic composite material in which the metal is aluminum or its alloy and the ceramic is alumina.

【0002】[0002]

【従来の技術】運輸、航空分野で使用される金属材料
は、軽量性が好ましい特性であることから、アルミニウ
ムなどの軽金属及びその合金の適用が拡大している。し
かし、これら金属の適用が高度化するにつれ、金属の比
強度、比弾性などの性能において、要求を満たすことが
困難となってきている。
2. Description of the Related Art Light metals such as aluminum and their alloys are widely applied to metallic materials used in the fields of transportation and aviation because of their favorable characteristics of light weight. However, as the applications of these metals have become more sophisticated, it has become difficult to meet the requirements in terms of performance such as specific strength and specific elasticity of the metals.

【0003】このような状況の中で近年になって、これ
ら金属を無機質繊維または粒子で強化したMMC(Me
tal Matrix Composite)と略称さ
れる金属−セラミックス複合材料が上記要求を満たす材
料として注目を集めている。これは強化材である無機質
繊維あるいは粒子をあらかじめ成形することでプリフォ
ームを形成し、そのプリフォームの繊維間あるいは粒子
間に基材(マトリックス)である金属を溶浸させた複合
材料である。用いられる強化材としては、アルミナ、炭
化珪素、シリカ、炭素などのセラミックスが用いられて
おり、その中でもアルミナは、コストの面から最も有望
と考えられている。
Under these circumstances, in recent years, MMC (Me) in which these metals are reinforced with inorganic fibers or particles is used.
A metal-ceramic composite material, which is abbreviated as "tal Matrix Composite", has been attracting attention as a material satisfying the above requirements. This is a composite material in which a preform is formed by previously molding inorganic fibers or particles that are a reinforcing material, and a metal that is a base material (matrix) is infiltrated between fibers or particles of the preform. As the reinforcing material used, ceramics such as alumina, silicon carbide, silica, and carbon are used, and among them, alumina is considered to be the most promising in terms of cost.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、強化材
としてこのアルミナを用いて強化された複合材料は、次
の理由により十分な強度を得るのが難しく、また高温で
の強度の低下が大きいという問題があった。 (1)溶融したマトリックスのアルミニウムあるいはそ
の合金が、強化材であるアルミナと濡れ性が悪いため、
高圧で浸透させてもマトリックスがプリフォーム全体に
完全に行き渡ることが難しく、繊維間あるいは粒子間に
間隙が生じて強度の強化が不完全となる。 (2)マトリックスとプリフォームとが接触する時にア
ルミナとマトリックス中の添加元素とが界面で反応し、
例えば、添加元素がマグネシウムであれば界面にスピネ
ルが生成して脆化層が形成され、強度の強化が不完全と
なる。 (3)出来上がった複合材料は、その使用中には、高温
に晒されるので、マトリックスとプリフォームとの反
応、拡散により同様の脆化層がさらに形成され、高温下
では大きな強度低下につながる。
However, a composite material reinforced by using this alumina as a reinforcing material has a problem that it is difficult to obtain sufficient strength for the following reasons, and the strength is largely decreased at high temperature. was there. (1) Since the molten matrix aluminum or its alloy has poor wettability with alumina which is a reinforcing material,
Even when it is permeated at a high pressure, it is difficult for the matrix to completely spread over the entire preform, and voids are formed between fibers or particles, resulting in incomplete strength enhancement. (2) When the matrix comes into contact with the preform, the alumina reacts with the additive element in the matrix at the interface,
For example, if the additive element is magnesium, spinel is generated at the interface to form an embrittlement layer, resulting in incomplete strength enhancement. (3) Since the finished composite material is exposed to a high temperature during its use, a similar embrittlement layer is further formed by the reaction and diffusion of the matrix and the preform, which leads to a large decrease in strength at a high temperature.

【0005】本発明は、上述した金属にアルミニウムま
たはその合金を用い、セラミックスにアルミナを用いた
従来の金属−セラミックス複合材料及びその製造方法が
有する課題に鑑みなされたものであって、その目的は、
常温では十分な強度を持ち、高温下でも強度の低下が少
ない金属−セラミックス複合材料を提供し、さらにその
製造方法をも提供することにある。
The present invention has been made in view of the problems of the conventional metal-ceramic composite material using aluminum or its alloy as the metal and alumina as the ceramic and the method for producing the same. ,
An object of the present invention is to provide a metal-ceramic composite material which has a sufficient strength at room temperature and has a small decrease in strength even at a high temperature, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、強化材として表面に
窒化アルミニウム(AlN)層を形成したアルミナ繊維
または粒子を用いれば、常温では十分な強度を発揮し、
それを高温下で使用しても強度の低下が少ない金属−セ
ラミックス複合材料が得られるとの知見を得て本発明を
完成した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and as a result, if alumina fibers or particles having an aluminum nitride (AlN) layer formed on the surface were used as a reinforcing material, at room temperature, Demonstrate sufficient strength,
The present invention has been completed based on the finding that a metal-ceramic composite material can be obtained which has a small decrease in strength even when used at high temperatures.

【0007】即ち本発明は、(1)強化材であるアルミ
ナ繊維または粒子で構成されたプリフォームに、基材で
あるアルミニウムまたはその合金を浸透させた金属−セ
ラミックス複合材料において、該アルミナ繊維または粒
子が、その表面に窒化アルミニウム層を有するアルミナ
繊維または粒子であることを特徴とする金属−セラミッ
クス複合材料(請求項1)とし、(2)表面に窒化アル
ミニウム層を有するアルミナ繊維または粒子を強化材と
してプリフォームを形成し、そのプリフォームにアルミ
ニウムまたはその合金を浸透させる金属−セラミックス
複合材料の製造方法において、アルミナ繊維または粒子
の表面に窒化アルミニウム層を形成する方法が、アルミ
ナ繊維または粒子をカーボン粉末と混合し、その混合物
を窒素雰囲気中にて1700℃以上の温度で加熱する方
法であり、アルミニウムまたはその合金を浸透させる方
法が、高圧鋳造法であることを特徴とする金属−セラミ
ックス複合材料の製造方法(請求項2)を要旨とする。
以下さらに詳細に説明する。
That is, the present invention relates to (1) a metal-ceramic composite material obtained by impregnating aluminum or its alloy as a base material into a preform composed of alumina fibers or particles as a reinforcing material. A metal-ceramic composite material (claim 1) characterized in that the particles are alumina fibers or particles having an aluminum nitride layer on the surface thereof, and (2) reinforced alumina fibers or particles having an aluminum nitride layer on the surface. Forming a preform as a material, in the method for producing a metal-ceramic composite material in which aluminum or an alloy thereof is infiltrated into the preform, the method of forming an aluminum nitride layer on the surface of alumina fibers or particles, alumina fibers or particles Mix with carbon powder and place the mixture in a nitrogen atmosphere. A method of heating at 1700 ° C. or higher, a method of infiltrating aluminum or its alloys, metal characterized in that it is a high-pressure casting - and gist a method for manufacturing a ceramic composite material (claim 2).
This will be described in more detail below.

【0008】アルミナは金属との濡れ性が悪いが、Al
Nは金属との濡れ性が良好であることに着目し、アルミ
ナの表面だけをAlN化することにより、アルミナでも
金属との濡れ性を良好にしたもので、本発明は表面をA
lN化したアルミナを用いて作製した複合材料であるの
で、表面にAlN層が形成されていないアルミナを用い
た前述の(1)の問題が改善される。
Alumina has poor wettability with metals, but Al
Focusing on the fact that N has good wettability with metal, by making only the surface of alumina AlN, alumina has good wettability with metal.
Since it is a composite material produced by using 1N-ized alumina, the above-mentioned problem (1) using alumina in which an AlN layer is not formed on the surface is improved.

【0009】また、アルミナの表面がAlN層で覆われ
ているので、アルミナとアルミニウム中の添加元素との
反応が抑えられ、前述の(2)の問題も改善される。さ
らに、高温下での反応も同様に抑えられ(3)の問題も
改善される。このように、強化材として表面にAlN層
が形成されたアルミナ繊維または粒子を用いれば、常温
での強度を高くすることができ、また高温での強度低下
を少なくした金属−セラミックスの複合材料を得ること
ができる。
Further, since the surface of the alumina is covered with the AlN layer, the reaction between the alumina and the additive element in the aluminum is suppressed, and the above-mentioned problem (2) is improved. Furthermore, the reaction under high temperature is also suppressed, and the problem (3) is improved. Thus, by using the alumina fibers or particles having the AlN layer formed on the surface as the reinforcing material, it is possible to obtain a metal-ceramics composite material which can have high strength at normal temperature and less decrease in strength at high temperature. Obtainable.

【0010】アルミナ繊維または粒子の表面にAlN層
を形成する方法としては、アルミナ繊維または粒子をカ
ーボン粉末と混合し、窒素雰囲気下で1700℃以上の
温度で加熱する方法とした。これは表面にAlN層を完
全に形成するものではないが、安価で容易に形成する方
法であり、コスト的にもそれほど上がらない。
As a method for forming the AlN layer on the surface of the alumina fibers or particles, a method of mixing the alumina fibers or particles with carbon powder and heating them at a temperature of 1700 ° C. or higher in a nitrogen atmosphere was used. Although this does not completely form the AlN layer on the surface, it is a cheap and easy method, and the cost does not increase so much.

【0011】このアルミナ繊維または粒子を用いて形成
したプリフォームにアルミニウムまたはその合金を浸透
させる方法としては、高圧鋳造法とした。表面にAlN
層を形成していないアルミナでは高圧鋳造でもマトリッ
クスが十分に浸透するのが難しいが、本発明のアルミナ
繊維または粒子であれば高圧鋳造すればマトリックスが
十分に行き渡る。
As a method for infiltrating aluminum or its alloy into a preform formed by using the alumina fibers or particles, a high pressure casting method was used. AlN on the surface
It is difficult for the alumina without forming the layer to sufficiently penetrate the matrix even in the high pressure casting, but in the case of the alumina fibers or particles of the present invention, the matrix is sufficiently spread in the high pressure casting.

【0012】[0012]

【発明の実施の形態】本発明の金属−セラミックス複合
材料を製造する方法を述べると、先ず強化材としてアル
ミナ繊維または粒子(粉末)に所定量のカーボン粉末を
混合し、窒素雰囲気下で1700℃以上の温度で加熱す
ることにより、表面にAlN層を形成したアルミナ繊維
または粒子を得る。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing a metal-ceramic composite material of the present invention will be described. First, a predetermined amount of carbon powder is mixed with alumina fibers or particles (powder) as a reinforcing material, and the mixture is heated to 1700 ° C. in a nitrogen atmosphere. By heating at the above temperature, alumina fibers or particles having an AlN layer formed on the surface are obtained.

【0013】得られた粒子はそのまま、あるいはその粒
子に所定量の繊維を混合した粒子を用いてそれにバイン
ダを添加して混合した後、乾燥し、金型等で所定形状に
加圧成形してプリフォームを形成する。形成したプリフ
ォームをアルミニウム鋳造用の金型内に設置し、別に所
定温度で加熱溶解したアルミニウムまたはその合金をプ
リフォームを設置した金型内に注入し、所定の圧力で高
圧鋳造してアルミナ繊維または粒子間に金属を浸透さ
せ、金属−セラミックス複合材料を作製する。
The obtained particles are used as they are, or particles obtained by mixing a predetermined amount of fibers with the particles are mixed with a binder, dried, and pressed into a predetermined shape with a mold or the like. Form a preform. The formed preform is placed in a mold for aluminum casting, and aluminum or its alloy which is heated and melted at a predetermined temperature is separately poured into the mold in which the preform is placed, and high-pressure casting is performed at a predetermined pressure to form an alumina fiber. Alternatively, a metal is permeated between the particles to produce a metal-ceramic composite material.

【0014】以上、強化材であるアルミナに、表面にA
lN層を形成したアルミナ繊維または粒子を用いれば、
常温での強度が高く、高温での強度の低下が少ない金属
−セラミックス複合材料が得られる。
As mentioned above, the surface of the alumina, which is the reinforcing material, is A
If alumina fibers or particles having an IN layer are used,
A metal-ceramic composite material having high strength at room temperature and little decrease in strength at high temperature can be obtained.

【0015】[0015]

【実施例】以下、本発明の実施例を比較例と共に具体的
に挙げ、本発明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention together with comparative examples.

【0016】(実施例) (1)強化材の作製 強化材としてアルミナ粒子(住友化学社製A−21、平
均粒径40μm)100重量部に、カーボン粉末(三菱
化成社製MA−200RB)10重量部添加して混合
し、窒素雰囲気中で1700℃の温度で加熱することに
より、アルミナ粉末の表面にAlN層を形成した強化材
を作製した。
(Example) (1) Preparation of Reinforcing Material As a reinforcing material, 100 parts by weight of alumina particles (A-21 manufactured by Sumitomo Chemical Co., Ltd., average particle size 40 μm) and 10 parts of carbon powder (MA-200RB manufactured by Mitsubishi Kasei Co., Ltd.) were used. By adding parts by weight and mixing, and heating at a temperature of 1700 ° C. in a nitrogen atmosphere, a reinforcing material having an AlN layer formed on the surface of alumina powder was produced.

【0017】(2)プリフォームの形成 得られた粒子にIPA、ポリビニルブチラール(積水化
学社製BL−1)を添加して混合し、それを乾燥した
後、金型(100mm×50mm)に充填し、圧力20
0kgf/cm2で3min加圧することにより、プリ
フォーム(100mm×50mm×15mm)を形成し
た。この時のプリフォームの充填率は42%であた。
(2) Formation of preform IPA and polyvinyl butyral (BL-1 manufactured by Sekisui Chemical Co., Ltd.) were added to the obtained particles, mixed and dried, and then filled in a mold (100 mm × 50 mm). And pressure 20
A preform (100 mm × 50 mm × 15 mm) was formed by applying a pressure of 0 kgf / cm 2 for 3 minutes. The filling rate of the preform at this time was 42%.

【0018】(3)金属−アルミナ複合材料の作製 形成したプリフォームから直径50mm×厚さ15mm
の円板を切出し、この円板を円柱形のアルミニウム鋳造
用金型(直径50mm×高さ50mm)内にセットし
た。別にアルミニウム合金(JIS呼称 AC7A)を
鋳造用黒鉛坩堝(日本坩堝社製#2)に入れ、750℃
で加熱、溶解した。この溶融アルミニウム合金をプリフ
ォームをセットした金型内に注入し、パンチ棒で50M
Paの圧力で3min加圧し、アルミナ粒子間に溶融ア
ルミニウム合金を浸透させて金属−アルミナ複合材料を
作製した。
(3) Preparation of metal-alumina composite material Diameter 50 mm x thickness 15 mm from the formed preform
Was cut out and set in a cylindrical aluminum casting mold (diameter 50 mm × height 50 mm). Separately, an aluminum alloy (JIS name AC7A) was placed in a graphite crucible for casting (# 2 manufactured by Nippon Crucible Co., Ltd.) and 750 ° C.
It was heated and melted. This molten aluminum alloy is poured into a mold with a preform set, and a punch bar is used for 50M.
A pressure of Pa was applied for 3 minutes, and a molten aluminum alloy was permeated between alumina particles to prepare a metal-alumina composite material.

【0019】(4)評価 得られた複合材料より試験片を切出し、JIS R16
01により、常温及び表1に示す温度で曲げ強度を測定
した。その結果を表1に示す。
(4) Evaluation A test piece was cut out from the obtained composite material and JIS R16
According to No. 01, the flexural strength was measured at normal temperature and at the temperatures shown in Table 1. Table 1 shows the results.

【0020】(比較例)比較のために、強化材として表
面にAlN層を有しないアルミナ粒子を用いる他は実施
例と同様に複合材料を作製し、同様に評価した。その結
果を表1に示す。
Comparative Example For comparison, a composite material was prepared and evaluated in the same manner as in Example except that alumina particles having no AlN layer on the surface were used as the reinforcing material. Table 1 shows the results.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、実施例において
は、比較例より常温強度、高温強度ともいずれも高かっ
た。これに対して比較例では、高温では実施例より強度
低下が大きく、特に最も温度の高い400℃の強度低下
が著しかった。
As is clear from Table 1, in Examples, both room temperature strength and high temperature strength were higher than those of Comparative Examples. On the other hand, in the comparative example, the strength was significantly reduced at a high temperature as compared with the examples, and particularly at 400 ° C., which has the highest temperature, the strength was significantly reduced.

【0023】[0023]

【発明の効果】以上の通り、本発明によれば、強化材と
して表面にAlN層を有したアルミナ繊維または粒子を
用いたので、アルミニウムまたはその合金との濡れ性が
改善され、常温強度、高温強度とも従来より高く、しか
も高温での強度低下が少ない金属−セラミックス複合材
料とすることができるようになった。このことにより、
強度、特に高温での強度性能が良好な金属−セラミック
ス複合材料が得られるようになった。
As described above, according to the present invention, since the alumina fibers or particles having the AlN layer on the surface are used as the reinforcing material, the wettability with aluminum or its alloy is improved, the room temperature strength and the high temperature are improved. It has become possible to provide a metal-ceramics composite material which has higher strength than conventional ones and has less strength reduction at high temperatures. This allows
A metal-ceramic composite material having excellent strength, particularly strength performance at high temperature, has been obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 強化材であるアルミナ繊維または粒子で
構成されたプリフォームに、基材であるアルミニウムま
たはその合金を浸透させた金属−セラミックス複合材料
において、該アルミナ繊維または粒子が、その表面に窒
化アルミニウム層を有するアルミナ繊維または粒子であ
ることを特徴とする金属−セラミックス複合材料。
1. A metal-ceramic composite material in which a base material, aluminum or its alloy, is impregnated into a preform composed of reinforcing alumina fibers or particles, and the alumina fibers or particles are formed on the surface of the composite material. A metal-ceramic composite material comprising alumina fibers or particles having an aluminum nitride layer.
【請求項2】 表面に窒化アルミニウム層を有するアル
ミナ繊維または粒子を強化材としてプリフォームを形成
し、そのプリフォームにアルミニウムまたはその合金を
浸透させる金属−セラミックス複合材料の製造方法にお
いて、アルミナ繊維または粒子の表面に窒化アルミニウ
ム層を形成する方法が、アルミナ繊維または粒子をカー
ボン粉末と混合し、その混合物を窒素雰囲気中にて17
00℃以上の温度で加熱する方法であり、アルミニウム
またはその合金を浸透させる方法が、高圧鋳造法である
ことを特徴とする金属−セラミックス複合材料の製造方
法。
2. A method for producing a metal-ceramic composite material, comprising forming a preform by using alumina fibers or particles having an aluminum nitride layer on the surface as a reinforcing material, and infiltrating aluminum or an alloy thereof into the preform. A method of forming an aluminum nitride layer on the surface of particles is to mix alumina fibers or particles with carbon powder, and mix the mixture in a nitrogen atmosphere for 17 minutes.
A method for producing a metal-ceramic composite material, which is a method of heating at a temperature of 00 ° C. or higher, and a method of infiltrating aluminum or its alloy is a high-pressure casting method.
JP3124196A 1996-01-26 1996-01-26 Metal-ceramics composite material and its production Withdrawn JPH09202930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3124196A JPH09202930A (en) 1996-01-26 1996-01-26 Metal-ceramics composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3124196A JPH09202930A (en) 1996-01-26 1996-01-26 Metal-ceramics composite material and its production

Publications (1)

Publication Number Publication Date
JPH09202930A true JPH09202930A (en) 1997-08-05

Family

ID=12325896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3124196A Withdrawn JPH09202930A (en) 1996-01-26 1996-01-26 Metal-ceramics composite material and its production

Country Status (1)

Country Link
JP (1) JPH09202930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229616A (en) * 2014-06-05 2015-12-21 川研ファインケミカル株式会社 Graphene or aluminum nitride compound-covered fibrous alumina

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229616A (en) * 2014-06-05 2015-12-21 川研ファインケミカル株式会社 Graphene or aluminum nitride compound-covered fibrous alumina

Similar Documents

Publication Publication Date Title
US5990025A (en) Ceramic matrix composite and method of manufacturing the same
US6309994B1 (en) Fiber reinforced composite having an aluminum phosphate bonded matrix
JP3339652B2 (en) Composite material and method for producing the same
JPS5833196B2 (en) Tainetsei Ceramics
JPH05105521A (en) Carbon-fiber reinforced silicon nitride-based nano-composite material and its production
US6322608B1 (en) Method for producing a component from a composite Al2O3/titanium aluminide material
JPH0733530A (en) Ceramic-based composite material and its production
JPH09202930A (en) Metal-ceramics composite material and its production
JP3461054B2 (en) Composite material
CN1044803A (en) The preparation method of ceramic composite
JP2002285258A (en) Metal-ceramic composite material and production method therefor
JP4907777B2 (en) Metal-ceramic composite material
JPH11172348A (en) Metal-ceramics composite and its production
JPH09208349A (en) Metal-ceramic composite material and its production
JPH0881275A (en) Production of fiber composite material having silicon carbide group
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JPH0564692B2 (en)
JP2000288714A (en) Production of metal-ceramics composite material
JP4183361B2 (en) Method for producing metal-ceramic composite material
JP2004323291A (en) Aluminum-ceramic composite and its producing method
JP2001089254A (en) Composite ceramic material and its production process
JPS63277566A (en) Fiber-reinforced silicon carbide ceramics and production thereof
JP2614061B2 (en) Nitride composite ceramics
JP3941455B2 (en) Bonding method for high heat resistant inorganic fiber bonded ceramics
JPS61266530A (en) Composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A761 Written withdrawal of application

Effective date: 20041202

Free format text: JAPANESE INTERMEDIATE CODE: A761