JPS61266530A - Composite material - Google Patents

Composite material

Info

Publication number
JPS61266530A
JPS61266530A JP10686485A JP10686485A JPS61266530A JP S61266530 A JPS61266530 A JP S61266530A JP 10686485 A JP10686485 A JP 10686485A JP 10686485 A JP10686485 A JP 10686485A JP S61266530 A JPS61266530 A JP S61266530A
Authority
JP
Japan
Prior art keywords
composite material
ceramic
fibers
material according
ni3al
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10686485A
Other languages
Japanese (ja)
Inventor
Takayuki Kobayashi
孝之 小林
Yasuo Shinozaki
泰夫 篠崎
Yukinori Kutsukake
沓掛 行徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10686485A priority Critical patent/JPS61266530A/en
Publication of JPS61266530A publication Critical patent/JPS61266530A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composite material having high toughness as well as high strength as heat resisting structural material by providing a composition consisting of a ceramic fiber and an Ni3Al intermetallic compound. CONSTITUTION:The Ni3Al intermetallic compound-ceramic fiber composite material is made by combining at least one or more kinds among ceramic short fibers or whiskers selected from minerals with the Ni3Al intermetallic compound. As to the above ceramic fibers or whiskers, minerals such as oxides, nitrides, borides, etc., or their composite compounds are used and particularly, by use of oxide types, a high-density composite material can be obtained because of its low chemical reactivity with Ni3Al and relatively superior wettability. As the above oxide types, Al2O3 is most preferably used. Further, it is preferable that the mixing ratio of the ceramic fiber is 104n60vol% and particularly in the range from 20-40%, the greatest reinforcing effect can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱構造材として高強度かつ高靭性を有する
NimA1セラミック繊維複合材料に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a NimA1 ceramic fiber composite material having high strength and high toughness as a heat-resistant structural material.

〔従来の技術〕[Conventional technology]

近年、金属間化合物を耐熱構造材として利用しようとす
る動きがあり、中でも高温側に強度ピークを有するNi
5Alが特に注目を集めている。
In recent years, there has been a movement to use intermetallic compounds as heat-resistant structural materials, and among these, Ni has a strength peak on the high temperature side.
5Al is attracting particular attention.

しかしながらNi3Al単体では高温強度が必ずしも十
分でないため、セラミックと複合化することにより補強
し高温強度を向上させようとする試入がある。例えば、
NimAl1とカーボン繊維との複合材料が米特許第3
953647により提案されている。
However, since high-temperature strength of Ni3Al alone is not necessarily sufficient, there are attempts to strengthen and improve high-temperature strength by combining Ni3Al with ceramics. for example,
Composite material of NimAl1 and carbon fiber receives No. 3 US patent
953647.

又、同系の金属間化合物であるNiA1をThOz粒子
で分散強化した複合材が米特許第3520675号に1
さらに、NiA1金属間化合物KA1z01粒子あるい
はN10粒子を分散させた複合材が提案されている。
In addition, a composite material in which NiA1, a similar intermetallic compound, is dispersed and strengthened with ThOz particles is disclosed in U.S. Patent No. 3,520,675.
Furthermore, a composite material in which NiA1 intermetallic compound KA1z01 particles or N10 particles are dispersed has been proposed.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

しかしながら、従来の複合材は、粒子分散型では、もと
もと大きな強化効果が望めず、又、炭素繊維強化型にお
いても十分な強度が得られにくかった。この点について
種々検討したところ、それは製造過程において炭素繊維
とNisム1が反応することにより、繊維が損傷を受は
強化効果が著しく阻害されるためであろうことが分った
。従って繊維量を多量にしても十分な強度とならない問
題点を有していた。
However, in conventional composite materials, a particle-dispersed type cannot originally expect a large reinforcing effect, and even a carbon fiber-reinforced type has difficulty in obtaining sufficient strength. After conducting various studies on this point, it was found that this is probably because the carbon fibers react with Nism 1 during the manufacturing process, which damages the fibers and significantly inhibits the reinforcing effect. Therefore, there was a problem in that even if the amount of fiber was increased, sufficient strength could not be obtained.

本発明は、従来知られていなかったNi3Alの強化材
として特定のセラミック短繊維若しくはウィスカーを用
いることにより、前述の欠点を解消し、反応による強度
劣化が少ない、高強度Ni3Al複合材を新規に提供す
ることを目的とするものである。
The present invention eliminates the above-mentioned drawbacks by using specific ceramic short fibers or whiskers as a reinforcing material for Ni3Al, which was not known in the past, and provides a new high-strength Ni3Al composite material with less strength deterioration due to reactions. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前述の問題点を解決すべくなさ・れたもので
あり、Ni3Al金属間化合物に無機質から選ばれた少
な(とも一種類以上のセラミック短繊維或いはウィスカ
ーを組合わせたNimA1金属間化合物セラミック繊維
複合材を提供するものである。
The present invention was made in order to solve the above-mentioned problems, and consists of a Ni3Al intermetallic compound combined with one or more types of short ceramic fibers or whiskers selected from inorganic materials. The present invention provides a ceramic fiber composite material.

本発明において用いられるセラミック繊維或いはウィス
カーとしては、酸化物、窒化物、硼化物等の無機質およ
びそれらの複合化合物が挙げられる。中でも酸化物系が
Ni3Al.との化学反応性が低く、かつ濡れ性が比較
的良好なため、高密度の複合材が得られることが判明し
た。酸化物系が適している理由は明確ではないが、Ni
5Alと繊維の界面に熱力学的に安定なNiOを形成す
るためと思われる。酸化物系の中でも特にA1101,
ZrOxが良い結果を示した。さらにはムIgOiはそ
れらのなかでも最良の結果を示した。
Examples of the ceramic fibers or whiskers used in the present invention include inorganic materials such as oxides, nitrides, and borides, and composite compounds thereof. Among them, the oxide type is Ni3Al. It has been found that a high-density composite material can be obtained due to the low chemical reactivity with and relatively good wettability. Although it is not clear why oxide systems are suitable, Ni
This seems to be due to the formation of thermodynamically stable NiO at the interface between 5Al and the fiber. Among the oxides, especially A1101,
ZrOx showed good results. Furthermore, mu-IgOi showed the best results among them.

通常AltOnやZr勃繊維には数チル50%程度のS
iO鵞を含有しているが、B10xはNi3Alと比較
的反応し易く、その意味では含有量が少ない方が望まし
いが、逆に1310mを全く含有しないとNi3Alと
の結合性に関与する濡れ性が低下し強化効果が低下する
という問題がある。検討の結果EliOmを5チ程度、
具体的には重量%で3〜8%含有するA1zOa繊維及
びZr0z繊維が好ましいことが判った。
Normally, AltOn and Zr erectile fibers contain a few chills of 50% S.
Although B10x contains iO, it is relatively easy to react with Ni3Al, and in that sense, it is desirable to have a small content, but on the other hand, if B10x does not contain any 1310m, the wettability involved in bonding with Ni3Al will decrease. There is a problem that the reinforcement effect decreases. As a result of consideration, EliOm is about 5 cm,
Specifically, it has been found that A1zOa fibers and Zr0z fibers containing 3 to 8% by weight are preferable.

セラミック繊維の形態としては、直径が1〜100μm
で、かつ長さが十μm1〜ll1lIの範囲のものが好
適に用いられるが、特に直径3〜20μm長さ50〜S
OOμmの形状のものが最も高い強化効果を発現できる
ので好ましい。
Ceramic fibers have a diameter of 1 to 100 μm.
, and the length is in the range of 10 μm to 111 lI, but in particular, the diameter is 3 to 20 μm and the length is in the range of 50 to S.
A shape of OO μm is preferable because it can exhibit the highest reinforcing effect.

本発明におけるセラミック繊維の混入割合としては、1
0〜60体積慢が好ましい、特に20〜40チ範囲にお
いて最も強化効果が大きく引き出せる。混入割合が10
%以下では十分な強化が現われず、又、60%を越える
と、赦密体が得られ難くなり、反って強度が低下する。
The mixing ratio of ceramic fibers in the present invention is 1
A range of 0 to 60 volume is preferable, and the greatest strengthening effect can be especially achieved in the range of 20 to 40 volume. Contamination ratio is 10
If it exceeds 60%, it becomes difficult to obtain a compact body, and the strength decreases due to warpage.

複合材の製造手段としては、溶融攪拌法、溶湯鍛造法或
いは粉末冶金法が適用できるが、中でも特に金属間化合
物の融点以下で製造できる唯一の方法である粉末冶金法
が繊維とマトリックスの反応を抑制でき、又、繊維を均
一に分散できるという理由で好ましい。
The melt stirring method, molten metal forging method, or powder metallurgy method can be applied as a means of manufacturing composite materials, but powder metallurgy method, which is the only method that can be manufactured at temperatures below the melting point of intermetallic compounds, is particularly effective because it allows the reaction between fibers and matrix to occur. It is preferable because it can be suppressed and the fibers can be uniformly dispersed.

粉末冶金法で製造する場合のNilAl合成原料として
は、Ni3Al粉、Ni−Al合金粉とN1粉の混合粉
或いはN1粉とA1粉の混合粉が使用できるが、特にN
1粉とA1粉の混合粉の場合、加圧製造時に軟かいA1
が圧力の緩和作用をするため繊維の損傷をもっとも少な
くでき好ましい。
As a raw material for NilAl synthesis when produced by powder metallurgy, Ni3Al powder, a mixed powder of Ni-Al alloy powder and N1 powder, or a mixed powder of N1 powder and A1 powder can be used.
In the case of a mixed powder of 1 flour and A1 flour, soft A1 powder is produced during pressurized manufacturing.
is preferable since it acts as a pressure reliever and can minimize damage to the fibers.

製造手法としては、通常のホットプレス法、常圧焼結法
或いは両者を組合せた方法のいずれも・ が適用可能で
ある。製造雰囲気は紅粉末の酸イ1を防ぐために還元性
或いは真空が望ましい。
As a manufacturing method, any of the usual hot press method, pressureless sintering method, or a combination of both can be applied. The manufacturing atmosphere is preferably reducing or vacuum in order to prevent acidification of the red powder.

本発明のN1jA1mmセラミックlIt維複合材を製
造するには、N1jA:L合成原料粉に10〜60体積
チのセラミック繊維を混合し、この混合粉末を黒鉛型に
充填し、アルゴン中、水素中または真空中のような無酸
化或いは還元性雰囲気中において、加圧下あるいは無加
圧下1000を以上、好ましくは1200〜1300”
eの温度領域で加熱することによって複合材を製造する
ことができる。
To produce the N1jA1mm ceramic lIt fiber composite material of the present invention, 10 to 60 volumes of ceramic fibers are mixed with the N1jA:L synthetic raw material powder, the mixed powder is filled in a graphite mold, and the mixture is heated in argon, hydrogen, or 1000 or more, preferably 1200 to 1300" under pressure or non-pressure in a non-oxidizing or reducing atmosphere such as vacuum
The composite material can be manufactured by heating in the temperature range of e.

このようにして製造したNi1Al−セランツク稙維複
合材は、高温強度が高く、高靭性、高耐酸化性、高硬度
であるためタービン部材、耐熱バネ材、耐摩耗材等とし
て適しているなど幅広い用途に使用しうるものである。
The Ni1Al-Selantsu fiber composite material produced in this way has high high-temperature strength, high toughness, high oxidation resistance, and high hardness, so it is suitable for a wide range of applications such as turbine parts, heat-resistant spring materials, wear-resistant materials, etc. It can be used for

〔作用〕[Effect]

本発明において、セラミック繊維は、マトリックスであ
るNi1lの強化材として作用して〜する。その強化機
構は、マ) IJソックス作用する二  カをマトリッ
クスと強固に結合したより強度の高いセラミック繊維が
担うためである。
In the present invention, the ceramic fiber acts as a reinforcing material for the Ni11 matrix. The reinforcing mechanism is that the stronger ceramic fibers, which are firmly bonded to the matrix, play the role of the IJ sock.

特にAltosやZrO2等の酸化物系繊維はN i 
@ A’1との反応性が低く、繊維が侵食され難いとい
う利点とともに、NinA1との濡れ性が良好であり、
マトリックスと強固に結合しているため強化効果が有効
に発現しているものと思われる。酸化物系が反応性が低
い理由は必ずしも明確でないが、N i m A1と酸
化物繊維との界面に熱力学的に安定なNiOを形成する
ためと思われる。
In particular, oxide fibers such as Altos and ZrO2 are
@ It has the advantage that it has low reactivity with A'1 and the fibers are not easily eroded, and has good wettability with NinA1.
It is thought that the reinforcing effect is effectively expressed because it is strongly bonded to the matrix. The reason why the oxide system has low reactivity is not necessarily clear, but it is thought to be because thermodynamically stable NiO is formed at the interface between N i m A1 and the oxide fiber.

〔実施例〕〔Example〕

実施例I N1粉86.7重tSおよびA1重要部をエタノール中
湿式ボールミル法にて混合した溶液中へN1粉とL粉の
総体積の20−に相当する量の径3〜5am、長さ40
0〜500 JJmのム1.宜Os短繊維(5iOz成
分約5チ含有、商品名サフィル)を投入し、機械攪拌し
たのち乾燥した。
Example I 86.7 weight tS of N1 powder and the important part of A1 were mixed in ethanol using a wet ball mill method, and an amount corresponding to 20 - of the total volume of N1 powder and L powder with a diameter of 3 to 5 am and a length was added. 40
0~500 JJm 1. YiOs short fibers (containing about 5 iOz components, trade name: Safil) were added, mechanically stirred, and then dried.

このN1粉、A1粉およびサフィルの混合粉体を黒鉛型
に入れ、圧力3 s o K4/al、温度1300℃
、Ar−2o%H2雰囲気中で2時間ホットプレスした
。このようにして得られた複合材は、室温におけ石引張
強度80 Kf/rd、80 otKおける引張強度6
2に4/d、ビッカース硬度450HV、破壊靭性にI
C15MN/ ”/、 mであった。
This mixed powder of N1 powder, A1 powder, and Safil was put into a graphite mold, and the pressure was 3 s o K4/al, and the temperature was 1300°C.
, hot pressed in an Ar-2o%H2 atmosphere for 2 hours. The composite thus obtained has a stone tensile strength of 80 Kf/rd at room temperature and a tensile strength of 6 at 80 otK.
2 to 4/d, Vickers hardness 450HV, fracture toughness I
C15MN/”/, m.

実施例2乃至7 繊維の種類及び含有量を変えたほかは実施例1とほぼ同
様にして得た複合材料についての結果は次の通りであっ
た。、(尚、ウィスカーについては径約1.5μm1畏
さ100〜500μmのもの使用) 尚、比較のためNi#A:L単味のもの及び炭素繊維使
用複合材のデータを参考までに米国特許第395364
7のものを引用して示した。
Examples 2 to 7 The results of composite materials obtained in substantially the same manner as in Example 1 except for changing the type and content of fibers were as follows. (For whiskers, we used whiskers with a diameter of approximately 1.5 μm and a width of 100 to 500 μm.) For comparison, we used the data of Ni#A:L single material and carbon fiber composite material as reference. 395364
7 has been cited and shown.

〔発明の効果〕〔Effect of the invention〕

本発明の複合材は、このよさにN1jA1単味材に比べ
て、著しく強度硬度が増大する効果が認められるばかり
か、炭素繊維との複合材と比較しても優れた効果をもち
、特に酸化物短繊維の複合材はそれと対比しても著しい
効果をもたらすものである。
The composite material of the present invention not only has the effect of significantly increasing strength and hardness compared to N1jA1 single material, but also has superior effects compared to composite materials with carbon fiber, and is particularly effective against oxidation. Composite materials made of short fibers have a remarkable effect in comparison.

Claims (11)

【特許請求の範囲】[Claims] (1)セラミック繊維とNisAl金属間化合物からな
る複合材料
(1) Composite material consisting of ceramic fiber and NisAl intermetallic compound
(2)セラミック繊維が短繊維又はウィスカーである特
許請求の範囲第1項記載の複合材料
(2) The composite material according to claim 1, wherein the ceramic fibers are short fibers or whiskers.
(3)セラミック繊維は直径1〜100μm、長さ1μ
m〜1mmである特許請求の範囲第2項記載の複合材料
(3) Ceramic fibers have a diameter of 1 to 100 μm and a length of 1 μm.
The composite material according to claim 2, which has a thickness of m to 1 mm.
(4)セラミック繊維が酸化物、窒化物、炭化物および
硼化物から選ばれる1種以上からなる特許請求の範囲第
1項乃至第3項いずれか記載の複合材料
(4) The composite material according to any one of claims 1 to 3, wherein the ceramic fibers are made of one or more selected from oxides, nitrides, carbides, and borides.
(5)セラミック繊維が酸化物短繊維又はウィスカーで
ある特許請求の範囲第4項記載の複合材料
(5) The composite material according to claim 4, wherein the ceramic fibers are short oxide fibers or whiskers.
(6)セラミック繊維がAl_2O_3又はZrO_2
繊維である特許請求の範囲第5項記載の複合材料
(6) Ceramic fiber is Al_2O_3 or ZrO_2
The composite material according to claim 5, which is a fiber.
(7)セラミック繊維が重量%でSiO_2を3〜8%
含むAl_2O_3又はZrO_2繊維である特許請求
の範囲第6項記載の複合材料
(7) Ceramic fiber contains 3-8% SiO_2 by weight%
Composite material according to claim 6, which is Al_2O_3 or ZrO_2 fiber containing
(8)セラミック繊維がAl_2O_3である特許請求
の範囲第6項又は第7項記載の複合材料
(8) The composite material according to claim 6 or 7, wherein the ceramic fiber is Al_2O_3.
(9)セラミック繊維がSiC、Si_3N_4又はB
_4Cから選ばれたウィスカーである特許請求の範囲第
4項記載の複合材料
(9) Ceramic fiber is SiC, Si_3N_4 or B
The composite material according to claim 4, which is a whisker selected from _4C.
(10)セラミック繊維を体積%で10〜60%含有す
る特許請求の範囲第1項乃至第9項いずれか記載の複合
材料
(10) The composite material according to any one of claims 1 to 9, containing 10 to 60% by volume of ceramic fibers.
(11)粉末冶金法により製造したセラミック繊維をN
i_3Al金属間化合物間に均一に分散含有せしめてな
る特許請求の範囲第10項記載の複合材料
(11) Ceramic fibers produced by powder metallurgy are N
Composite material according to claim 10, which is formed by uniformly dispersing and containing i_3Al intermetallic compounds.
JP10686485A 1985-05-21 1985-05-21 Composite material Pending JPS61266530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10686485A JPS61266530A (en) 1985-05-21 1985-05-21 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10686485A JPS61266530A (en) 1985-05-21 1985-05-21 Composite material

Publications (1)

Publication Number Publication Date
JPS61266530A true JPS61266530A (en) 1986-11-26

Family

ID=14444420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10686485A Pending JPS61266530A (en) 1985-05-21 1985-05-21 Composite material

Country Status (1)

Country Link
JP (1) JPS61266530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564472A1 (en) * 1990-10-10 1993-10-13 Valenite Inc. Alumina ceramic-metal articles
JPH07278824A (en) * 1994-04-08 1995-10-24 Natl Sci Council Production of ni-al intermetallic compound matrix composite material
US6183877B1 (en) * 1997-03-21 2001-02-06 Inco Limited Cast-alumina metal matrix composites
JP2014055325A (en) * 2012-09-12 2014-03-27 National Institute For Materials Science Alloy powder for antioxidation coating and alloy excellent in antioxidation property using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564472A1 (en) * 1990-10-10 1993-10-13 Valenite Inc. Alumina ceramic-metal articles
EP0564472A4 (en) * 1990-10-10 1994-01-12 Gte Valenite Corporation
JPH07278824A (en) * 1994-04-08 1995-10-24 Natl Sci Council Production of ni-al intermetallic compound matrix composite material
US6183877B1 (en) * 1997-03-21 2001-02-06 Inco Limited Cast-alumina metal matrix composites
JP2014055325A (en) * 2012-09-12 2014-03-27 National Institute For Materials Science Alloy powder for antioxidation coating and alloy excellent in antioxidation property using the same

Similar Documents

Publication Publication Date Title
Aghajanian et al. The fabrication of metal matrix composites by a pressureless infiltration technique
JPS5924751B2 (en) Sintered shaped body
US4777155A (en) Sintered member of aluminum nitride base reinforced composite material
JPH0317884B2 (en)
US20190225546A1 (en) Machinable metal matrix composite and method for making the same
US5538533A (en) Alumina-based ceramic composite
JPS61266530A (en) Composite material
JPS63225579A (en) Ceramic tool material
JPH0565470B1 (en)
JPH0624726A (en) Zirconia/molybdenum disilicide composition and its production
JP2519076B2 (en) Method for manufacturing silicon carbide whisker-reinforced ceramics
JPS6141745A (en) Fiber reinforced composite material having low thermal expansibility
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JPS5857393B2 (en) High-strength titanium nitride/metal boride composite ceramics
JP2794121B2 (en) Fiber reinforced ceramics
JPH07172919A (en) Titanium-compound sintered material
JP2997320B2 (en) Fiber reinforced ceramics
JPS597668B2 (en) High-strength heat-resistant metal boride/zirconium oxide composite ceramics
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPS61270265A (en) High strength high tougness tib2 base composite sintered body
JP2686795B2 (en) Titanium carbide-based composite sintered body
JPH02243559A (en) Al2o3-b4c-based high-density calcined compact and production thereof
JPS63255329A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JPS63185861A (en) Composite sintered body
JPS63186837A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy