JPH09199143A - Manufacture of solid-electrolyte fuel cell - Google Patents

Manufacture of solid-electrolyte fuel cell

Info

Publication number
JPH09199143A
JPH09199143A JP8007511A JP751196A JPH09199143A JP H09199143 A JPH09199143 A JP H09199143A JP 8007511 A JP8007511 A JP 8007511A JP 751196 A JP751196 A JP 751196A JP H09199143 A JPH09199143 A JP H09199143A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
solid
fuel cell
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8007511A
Other languages
Japanese (ja)
Inventor
Hiroaki Taira
浩明 平
Shozo Kobayashi
章三 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP8007511A priority Critical patent/JPH09199143A/en
Publication of JPH09199143A publication Critical patent/JPH09199143A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve generating performance by larger broadening an effective electrode area. SOLUTION: In a method of manufacturing a solid-electrolyte fuel cell, powder is projected to a surface of a solid-electrolyte ceramic molded unit 1, the molded unit surface is hollowed into a rough surface, the surface-roughed molded unit surface is layered by arranging a fuel electrode 2 in one surface and an air electrode 3 in the other, this layered unit is sintered. In this powder, a solid- electrolyte material and a fuel electrode material or air electrode material are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質型燃料電
池の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、燃料極、固体
電解質膜及び空気極の各層を互いに配置、積層して3層
を構成し、これを燃料電池の発電部とし、外部から燃料
極に燃料ガスを供給し、空気極に空気を供給して電気を
発生させるものである。
2. Description of the Related Art In a solid oxide fuel cell, each layer of a fuel electrode, a solid electrolyte membrane, and an air electrode is arranged and laminated on each other to form three layers. Fuel gas is supplied and air is supplied to the air electrode to generate electricity.

【0003】そして、平板型の固体電解質型燃料電池
は、燃料極、固体電解質膜及び空気極の各層が平板状で
あり、それぞれ平坦な面を相互に配置、積層したもので
ある。なお、空気極を酸素極と呼んでこれに酸素ガスを
供給することもある。
In the flat plate type solid oxide fuel cell, each layer of the fuel electrode, the solid electrolyte membrane and the air electrode has a flat plate shape, and flat surfaces are arranged and laminated on each other. The air electrode may be referred to as an oxygen electrode and oxygen gas may be supplied thereto.

【0004】[0004]

【発明が解決しようとする課題】この固体電解質型燃料
電池における電極反応は、固体電解質と電極と気相との
三相界面で起こると考えられており、固体電解質型燃料
電池の発電性能を向上させるためには、三相界面の面積
を広くすることが必要である。
The electrode reaction in this solid oxide fuel cell is considered to occur at the three-phase interface between the solid electrolyte, the electrode, and the gas phase, which improves the power generation performance of the solid oxide fuel cell. To do so, it is necessary to widen the area of the three-phase interface.

【0005】このために、従来より、電極材料に粒径の
小さい粒子を採用し、電極を微細構造化して実効電極面
積を広くする方法が知られているが、発電性能はまだ満
足の行くものではなかった。
For this reason, conventionally, a method has been known in which particles having a small particle diameter are adopted as an electrode material to make the electrode finely structured to widen the effective electrode area, but the power generation performance is still satisfactory. Was not.

【0006】そこで本発明の目的は、実効電極面積をよ
り広くして発電性能を向上させることができる固体電解
質型燃料電池の製造方法を提供することにある。
[0006] Therefore, an object of the present invention is to provide a method for manufacturing a solid oxide fuel cell, which can increase the effective electrode area and improve the power generation performance.

【0007】[0007]

【課題を解決するための手段】本発明は、請求項1にお
いて、固体電解質型燃料電池の製造方法は、固体電解質
型セラミック成形体の表面に粉体を投射して前記成形体
表面を窪ませて粗面化し、前記粗面化した成形体表面の
一方に燃料極、他方に空気極を配置して積層し、この積
層体を焼成することを特徴とする。
According to a first aspect of the present invention, there is provided a method for producing a solid oxide fuel cell, wherein a powder is projected onto the surface of a solid electrolyte ceramic molded body to make the surface of the molded body depressed. It is characterized in that a fuel electrode and an air electrode are arranged on one of the surfaces of the surface of the molded body that has been roughened, and the laminated body is laminated, and the laminated body is fired.

【0008】また、請求項2において、前記粉体は固体
電解質材料であることを特徴とする。
Further, in claim 2, the powder is a solid electrolyte material.

【0009】また、請求項3において、前記粉体は燃料
極材料または空気極材料であることを特徴とする。
Further, in claim 3, the powder is a fuel electrode material or an air electrode material.

【0010】これにより、電極と固体電解質膜の積層界
面を容易に粗面化することができるので、電極と固体電
解質膜をそれぞれ平坦な面で積層する場合よりも電極の
実効電極面積を広くできる。
With this, the interface between the electrode and the solid electrolyte membrane can be easily roughened, so that the effective electrode area of the electrode can be made larger than in the case where the electrode and the solid electrolyte membrane are respectively laminated on flat surfaces. .

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例)以下、本発明にかかる固体電解質型燃料電池
の製造方法の実施例につき説明する。
(Example) An example of a method for manufacturing a solid oxide fuel cell according to the present invention will be described below.

【0012】まず、固体電解質グリーンシートの製造方
法について説明する。
First, a method for manufacturing the solid electrolyte green sheet will be described.

【0013】粉末状のイットリア安定化ジルコニアに対
して、結合剤(例えば、ポリビニルブチラール系バイン
ダ)及び溶剤(エタノール及びトルエン)を所定量加え
てスラリー化し、ドクターブレード法によって、固体電
解質グリーンシートを作製した。
A predetermined amount of a binder (eg, polyvinyl butyral binder) and a solvent (ethanol and toluene) are added to powdery yttria-stabilized zirconia to make a slurry, and a solid electrolyte green sheet is prepared by a doctor blade method. did.

【0014】次に、電極となる燃料極グリーンシートと
空気極グリーンシートの製造方法について説明する。
Next, a method of manufacturing the fuel electrode green sheet and the air electrode green sheet which will be electrodes will be described.

【0015】燃料極グリーンシートは、粉末状の酸化ニ
ッケルとイットリア安定化ジルコニアの混合物に、結合
剤(例えば、ポリビニルブチラール系バインダ)及び溶
剤(エタノール及びトルエン)を所定量加えてスラリー
化し、ドクターブレード法によって作製した。
The fuel electrode green sheet is made into a slurry by adding a binder (for example, polyvinyl butyral binder) and a solvent (ethanol and toluene) in a predetermined amount to a mixture of powdered nickel oxide and yttria-stabilized zirconia, and doctor blade. It was produced by the method.

【0016】一方、空気極グリーンシートは、粉末状の
ランタンマンガナイトに結合剤(例えば、ポリビニルブ
チラール系バインダ)及び溶剤(エタノール及びトルエ
ン)を所定量加えてスラリー化し、ドクターブレード法
によって作製した。
On the other hand, the air electrode green sheet was prepared by the doctor blade method by adding a predetermined amount of a binder (for example, polyvinyl butyral binder) and a solvent (ethanol and toluene) to powdered lanthanum manganite to make a slurry.

【0017】次に、作製された固体電解質グリーンシー
トを所定枚数重ねたものをプラスチック製の袋に入れた
後、袋の中を真空状態にし、温間静水圧プレス機を用い
て圧着し、固体電解質型セラミック成形体を作製した。
Next, after stacking a predetermined number of the prepared solid electrolyte green sheets in a plastic bag, the inside of the bag is evacuated and pressure-bonded using a warm isostatic press to obtain a solid. An electrolyte type ceramic molded body was produced.

【0018】続いて、得られた固体電解質型セラミック
成形体の両面に、固体電解質材料の粉体であるイットリ
ア安定化ジルコニアからなる投射材(粒径:100メッ
シュパス)を投射し、固体電解質型セラミック成形体の
表面を窪ませて粗面化した。
Subsequently, a shot material (particle size: 100 mesh pass) made of yttria-stabilized zirconia, which is a powder of a solid electrolyte material, is projected onto both surfaces of the obtained solid electrolyte type ceramic molded body to form a solid electrolyte type material. The surface of the ceramic molded body was dented and roughened.

【0019】次に、投射により粗面化された固体電解質
型セラミック成形体の両面に、それぞれ燃料極と空気極
の各グリーンシートを重ね合わせ、プラスチック製の袋
に入れ、袋の中を真空状態にして温間静水圧プレス機で
圧着した。
Next, the green sheets of the fuel electrode and the air electrode are superposed on both sides of the solid electrolyte type ceramic molded body which has been roughened by projection and put in a plastic bag, and the inside of the bag is in a vacuum state. Then, it was pressure-bonded with a warm isostatic press.

【0020】この結果、図1の断面図に示すように、投
射により粗面化された固体電解質型セラミック成形体1
の表面の凹凸に沿って、燃料極2と空気極3の各電極シ
ートが接合され、固体電解質型セラミック成形体1と燃
料極2、また、固体電解質型セラミック成形体1と空気
極3の各接合面4a、4bが凹凸状態になって得られ
た。
As a result, as shown in the cross-sectional view of FIG. 1, the solid electrolyte type ceramic molded body 1 is roughened by projection.
The electrode sheets of the fuel electrode 2 and the air electrode 3 are joined along the irregularities of the surface of the solid electrolyte type ceramic molded body 1 and the fuel electrode 2, and the solid electrolyte type ceramic molded body 1 and the air electrode 3 respectively. The joint surfaces 4a and 4b were obtained in a concavo-convex state.

【0021】この圧着後、プラスチック製の袋から取り
出した固体電解質膜、燃料極及び空気極の3層の積層体
を1300℃の温度で2時間焼成した。
After this pressure bonding, the three-layer laminate of the solid electrolyte membrane, the fuel electrode and the air electrode taken out from the plastic bag was fired at a temperature of 1300 ° C. for 2 hours.

【0022】こうして得られた電極付き固体電解質膜を
備えた固体電解質型燃料電池を、図2に示すように結線
し発電特性を測定した。
The solid oxide fuel cell having the solid electrolyte membrane with electrodes thus obtained was connected as shown in FIG. 2 and the power generation characteristics were measured.

【0023】図2において、2は燃料極、3は空気極、
5は固体電解質膜、6は固体電解質型燃料電池である。
また、7は燃料ガス供給管、8は空気供給管、9は白金
線、10は可変抵抗器、11はオシロスコープ、12は
電流計、13は水銀スイッチである。
In FIG. 2, 2 is a fuel electrode, 3 is an air electrode,
Reference numeral 5 is a solid electrolyte membrane, and 6 is a solid oxide fuel cell.
Further, 7 is a fuel gas supply pipe, 8 is an air supply pipe, 9 is a platinum wire, 10 is a variable resistor, 11 is an oscilloscope, 12 is an ammeter, and 13 is a mercury switch.

【0024】そして、固体電解質型燃料電池6を100
0℃の温度に保持しながら、燃料ガス供給管7と空気供
給管8を通して、燃料ガスと空気をそれぞれ燃料極2、
空気極3に供給し、固体電解質膜5を介して電極反応を
起こさせた。そして、電流計12で観察しながら、30
0mA/cm2 の電流が流れる状態における燃料極2と
空気極3の分極による電圧降下を、カレントインターラ
プト法によりオシロスコープ11で測定した。この測定
結果を表1に示す。
Then, the solid oxide fuel cell 6 is set to 100
While maintaining the temperature of 0 ° C., the fuel gas and the air are respectively fed through the fuel gas supply pipe 7 and the air supply pipe 8 to the fuel electrode 2,
It was supplied to the air electrode 3 to cause an electrode reaction through the solid electrolyte membrane 5. Then, while observing with the ammeter 12,
The voltage drop due to the polarization of the fuel electrode 2 and the air electrode 3 in the state where a current of 0 mA / cm 2 flows was measured with the oscilloscope 11 by the current interrupt method. Table 1 shows the measurement results.

【0025】また、比較例として、固体電解質型セラミ
ック成形体の表面に、固体電解質材料の粉体を投射せ
ず、その他の方法は実施例と同じ方法で作製した固体電
解質型燃料電池、すなわち、固体電解質膜の表面が平坦
なものの測定結果も併せて示す。
In addition, as a comparative example, a solid electrolyte fuel cell manufactured by the same method as that of the example except that the powder of the solid electrolyte material was not projected onto the surface of the solid electrolyte type ceramic molded body, that is, The measurement results of the solid electrolyte membrane having a flat surface are also shown.

【0026】[0026]

【表1】 [Table 1]

【0027】この分極による電圧降下の値が小さいほ
ど、電極の実効面積が広く、燃料電池としての性能も優
れていることになる。表1によれば、実施例品が比較例
品よりも分極による電圧降下の値が小さいことが示さ
れ、したがって、実施例品が比較例品よりも実効電極面
積が広いことがわかる。
The smaller the value of the voltage drop due to this polarization, the larger the effective area of the electrode and the better the performance as a fuel cell. Table 1 shows that the example product has a smaller value of voltage drop due to polarization than the comparative example product. Therefore, it is understood that the example product has a larger effective electrode area than the comparative example product.

【0028】また、図1に示した断面図に基づいて、接
合面4a、4bの実効電極面積を計算すると、接合面が
平坦である場合の約1.2倍となる。ところが、表1に
示した実施例品の分極による電圧降下は、比較例品の1
/2程度まで下がっている。これは、接合面の凹凸によ
り、固体電解質膜と燃料極、空気極の接触面積が広くな
って密着力が強くなり、それにより固体電解質型燃料電
池の内部インピーダンスが低くなったためであると考え
られる。
Further, when the effective electrode areas of the joint surfaces 4a and 4b are calculated based on the sectional view shown in FIG. 1, it is about 1.2 times as large as the case where the joint surfaces are flat. However, the voltage drop due to polarization of the example product shown in Table 1 is 1
It has fallen to about 1/2. It is considered that this is because the contact surface between the solid electrolyte membrane, the fuel electrode, and the air electrode was widened due to the unevenness of the joint surface, and the adhesion was strengthened, thereby lowering the internal impedance of the solid oxide fuel cell. .

【0029】また、本発明の投射において、固体電解質
型セラミック成形体の燃料極を配置する側の表面には燃
料極材料の粉体を、また、空気極を配置する側の表面に
は空気極材料の粉体を投射することができ、その場合に
も固体電解質材料の粉体を投射するのと同様の効果が得
られた。
In the projection of the present invention, the powder of the fuel electrode material is formed on the surface of the solid electrolyte type ceramic molded body on the side where the fuel electrode is arranged, and the air electrode is formed on the surface of the side where the air electrode is arranged. The powder of the material can be projected, and in that case, the same effect as that of the powder of the solid electrolyte material can be obtained.

【0030】このように本発明は、電極と固体電解質膜
の積層界面を容易に粗面化することができるので、従来
のように電極と固体電解質膜をそれぞれ平坦な面で積層
した場合よりも、実効電極面積を広くすることできる。
As described above, according to the present invention, the laminated interface between the electrode and the solid electrolyte membrane can be easily roughened, so that the electrode and the solid electrolyte membrane are laminated on flat surfaces as in the conventional case. The effective electrode area can be increased.

【0031】なお、本発明の投射において、投射材とし
ての粉体は固体電解質型セラミック成形体の表面を窪ま
せた後、成形体表面に付着して残ることなく、成形体表
面から落下してしまう。そのため、投射材は固体電解質
材料、燃料極材料または空気極材料の各粉体に限られる
ものではなく、固体電解質型セラミック成形体の表面を
窪ませることができるものであればよく、例えば、クル
ミ材の粉体やカーボンの粉体等を用いてもよい。しか
し、万が一、粉体が投射後に固体電解質型セラミック成
形体表面に残った場合、固体電解質材料、燃料極材料ま
たは空気極材料以外の粉体では、それが不純物となって
特性を劣化させる恐れがあるところから、粉体には当該
固体電解質材料、燃料極材料または空気極材料を用いる
ことが最も好ましい。
In the blast of the present invention, the powder as the blasting material is not allowed to adhere to the surface of the solid body after being dented on the surface of the solid electrolyte type ceramic compact, but to fall from the surface of the compact. I will end up. Therefore, the blast material is not limited to each powder of the solid electrolyte material, the fuel electrode material or the air electrode material, and may be any material as long as it can make the surface of the solid electrolyte type ceramic molded body hollow, for example, walnut. You may use the powder of material, the powder of carbon, etc. However, in the unlikely event that the powder remains on the surface of the solid electrolyte type ceramic molded body after the projection, it may become impurities in the powder other than the solid electrolyte material, the fuel electrode material or the air electrode material to deteriorate the characteristics. From some points, it is most preferable to use the solid electrolyte material, the fuel electrode material, or the air electrode material as the powder.

【0032】また、電極の形成は、本実施例のように、
固体電解質型セラミック成形体に燃料極や空気極のグリ
ーンシートを重ね、圧着して形成してもよいし、固体電
解質型セラミック成形体の表面に、燃料極材料や空気極
材料からなるスラリーやペーストを用いて電極を形成し
てもよい。
The electrodes are formed as in this embodiment.
It may be formed by stacking the green sheet of the fuel electrode or the air electrode on the solid electrolyte type ceramic molded body and press-bonding it, or the slurry or paste made of the fuel electrode material or the air electrode material on the surface of the solid electrolyte type ceramic molded body. You may form an electrode using.

【0033】[0033]

【発明の効果】以上のように、本発明によれば、固体電
解質型セラミック成形体表面を容易に粗面化して実効電
極面積を広くすることができるため、固体電解質型燃料
電池の発電性能を向上させることが可能になる。
As described above, according to the present invention, the surface of the solid electrolyte type ceramic molded body can be easily roughened to widen the effective electrode area. Therefore, the power generation performance of the solid electrolyte type fuel cell can be improved. It will be possible to improve.

【0034】また、固体電解質膜と電極の接触面積が広
くなって密着力が強くなるため、固体電解質型燃料電池
の内部インピーダンスを低くすることができ、これが固
体電解質型燃料電池の発電性能の向上に寄与する効果も
得ることができる。
Further, since the contact area between the solid electrolyte membrane and the electrode is widened and the adhesion is strengthened, the internal impedance of the solid electrolyte fuel cell can be lowered, which improves the power generation performance of the solid electrolyte fuel cell. It is also possible to obtain the effect of contributing to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電極を両面に設けた
固体電解質膜の断面図である。
FIG. 1 is a cross-sectional view of a solid electrolyte membrane having electrodes on both sides according to an embodiment of the present invention.

【図2】固体電解質型燃料電池の発電特性を測定するた
めの結線図である。
FIG. 2 is a connection diagram for measuring power generation characteristics of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1 固体電解質型セラミック成形体 2 燃料極 3 空気極 6 固体電解質型燃料電池 1 Solid Electrolyte Ceramic Molded Body 2 Fuel Electrode 3 Air Electrode 6 Solid Electrolyte Fuel Cell

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質型セラミック成形体の表面に
粉体を投射して前記成形体表面を窪ませて粗面化し、前
記粗面化した成形体表面の一方に燃料極、他方に空気極
を配置して積層し、この積層体を焼成することを特徴と
する固体電解質型燃料電池の製造方法。
1. A powder is projected onto the surface of a solid electrolyte type ceramic molded body to make the surface of the molded body indented and roughened, and one surface of the roughened molded body has a fuel electrode and the other has an air electrode. Is disposed and laminated, and the laminated body is fired, and a method for manufacturing a solid oxide fuel cell.
【請求項2】 前記粉体は固体電解質材料であることを
特徴とする請求項1記載の固体電解質型燃料電池の製造
方法。
2. The method for producing a solid oxide fuel cell according to claim 1, wherein the powder is a solid electrolyte material.
【請求項3】 前記粉体は燃料極材料または空気極材料
であることを特徴とする請求項1記載の固体電解質型燃
料電池の製造方法。
3. The method for producing a solid oxide fuel cell according to claim 1, wherein the powder is a fuel electrode material or an air electrode material.
JP8007511A 1996-01-19 1996-01-19 Manufacture of solid-electrolyte fuel cell Pending JPH09199143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8007511A JPH09199143A (en) 1996-01-19 1996-01-19 Manufacture of solid-electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8007511A JPH09199143A (en) 1996-01-19 1996-01-19 Manufacture of solid-electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH09199143A true JPH09199143A (en) 1997-07-31

Family

ID=11667817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8007511A Pending JPH09199143A (en) 1996-01-19 1996-01-19 Manufacture of solid-electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH09199143A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071618A2 (en) * 2002-02-20 2003-08-28 Ion America Corporation Solid oxide fuel cell and system
US8663869B2 (en) 2009-03-20 2014-03-04 Bloom Energy Corporation Crack free SOFC electrolyte
US8852825B2 (en) 2011-11-17 2014-10-07 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US8962219B2 (en) 2011-11-18 2015-02-24 Bloom Energy Corporation Fuel cell interconnects and methods of fabrication
US9368810B2 (en) 2012-11-06 2016-06-14 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9452475B2 (en) 2012-03-01 2016-09-27 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US9468736B2 (en) 2013-11-27 2016-10-18 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US9478812B1 (en) 2012-10-17 2016-10-25 Bloom Energy Corporation Interconnect for fuel cell stack
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9583771B2 (en) 2013-05-16 2017-02-28 Bloom Energy Coporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
US9847520B1 (en) 2012-07-19 2017-12-19 Bloom Energy Corporation Thermal processing of interconnects
US9923211B2 (en) 2014-04-24 2018-03-20 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
US10079393B1 (en) 2014-01-09 2018-09-18 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US10763533B1 (en) 2017-03-30 2020-09-01 Bloom Energy Corporation Solid oxide fuel cell interconnect having a magnesium containing corrosion barrier layer and method of making thereof
US11217797B2 (en) 2012-08-29 2022-01-04 Bloom Energy Corporation Interconnect for fuel cell stack
EP4379871A1 (en) 2022-11-29 2024-06-05 H2B2 Electrolysis Technologies, S.L. A solid oxide cell stack made of single repeating units, each comprising a ceramic cell with a corrugated membrane and a flat metallic interconnect

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071618A2 (en) * 2002-02-20 2003-08-28 Ion America Corporation Solid oxide fuel cell and system
WO2003071618A3 (en) * 2002-02-20 2003-12-18 Ion America Corp Solid oxide fuel cell and system
EP1497871A2 (en) * 2002-02-20 2005-01-19 Ion America Corporation Solid oxide fuel cell and system
US7045237B2 (en) 2002-02-20 2006-05-16 Ion America Corporation Textured electrolyte for a solid oxide fuel cell
US7067208B2 (en) 2002-02-20 2006-06-27 Ion America Corporation Load matched power generation system including a solid oxide fuel cell and a heat pump and an optional turbine
EP1497871A4 (en) * 2002-02-20 2008-03-05 Ion America Corp Solid oxide fuel cell and system
US8663869B2 (en) 2009-03-20 2014-03-04 Bloom Energy Corporation Crack free SOFC electrolyte
US8852825B2 (en) 2011-11-17 2014-10-07 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US10784521B2 (en) 2011-11-17 2020-09-22 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US9570769B2 (en) 2011-11-18 2017-02-14 Bloom Energy Corporation Fuel cell interconnect
US8962219B2 (en) 2011-11-18 2015-02-24 Bloom Energy Corporation Fuel cell interconnects and methods of fabrication
US9196909B2 (en) 2011-11-18 2015-11-24 Bloom Energy Corporation Fuel cell interconnect heat treatment method
US10505206B2 (en) 2012-03-01 2019-12-10 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US9452475B2 (en) 2012-03-01 2016-09-27 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US9847520B1 (en) 2012-07-19 2017-12-19 Bloom Energy Corporation Thermal processing of interconnects
US11705557B2 (en) 2012-08-29 2023-07-18 Bloom Energy Corporation Interconnect for fuel cell stack
US11217797B2 (en) 2012-08-29 2022-01-04 Bloom Energy Corporation Interconnect for fuel cell stack
US9478812B1 (en) 2012-10-17 2016-10-25 Bloom Energy Corporation Interconnect for fuel cell stack
US9368809B2 (en) 2012-11-06 2016-06-14 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9673457B2 (en) 2012-11-06 2017-06-06 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9368810B2 (en) 2012-11-06 2016-06-14 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9853298B2 (en) 2013-05-16 2017-12-26 Bloom Energy Corporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
US9583771B2 (en) 2013-05-16 2017-02-28 Bloom Energy Coporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US10593962B2 (en) 2013-10-01 2020-03-17 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9468736B2 (en) 2013-11-27 2016-10-18 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US11786970B2 (en) 2014-01-09 2023-10-17 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US10079393B1 (en) 2014-01-09 2018-09-18 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US11417894B2 (en) 2014-01-09 2022-08-16 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
US10553879B2 (en) 2014-04-24 2020-02-04 Bloom Energy Corporation Fuel cell interconnect with metal or metal oxide contact layer
US9923211B2 (en) 2014-04-24 2018-03-20 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US10763533B1 (en) 2017-03-30 2020-09-01 Bloom Energy Corporation Solid oxide fuel cell interconnect having a magnesium containing corrosion barrier layer and method of making thereof
EP4379871A1 (en) 2022-11-29 2024-06-05 H2B2 Electrolysis Technologies, S.L. A solid oxide cell stack made of single repeating units, each comprising a ceramic cell with a corrugated membrane and a flat metallic interconnect

Similar Documents

Publication Publication Date Title
JP3267034B2 (en) Method for manufacturing solid oxide fuel cell
JPH09199143A (en) Manufacture of solid-electrolyte fuel cell
JPH09245811A (en) Manufacture of solid electrolyte fuel cell
JPH09245810A (en) Manufacture of solid electrolyte fuel cell
JPH09223506A (en) Manufacture of solid electrolyte fuel cell
JP2008538449A5 (en)
JPH09277226A (en) Manufacture of solid electrolyte type fuel cell
WO2003027041A1 (en) Laminated ceramic sintered compact, method for producing laminated ceramic sintered compact, electrochemical cell, electroconductive joining member for electrochemical cell, and electrochemical device
JP2004119161A (en) Unit cell for solid electrolyte fuel battery, fuel battery therewith and manufacturing method thereof
JP3434883B2 (en) Method for manufacturing fuel cell
JP3550231B2 (en) Plate stack type solid oxide fuel cell and method of manufacturing the same
JPH10106608A (en) Solid electrolyte fuel cell and manufacture thereof
JP2001035505A (en) Fuel cell stack and method and member for joining same
JP2774227B2 (en) Method for joining solid oxide fuel cell stack
JPH1012247A (en) Solid electrolyte fuel cell and manufacture therefor
JPH02273465A (en) Manufacture of solid electrolyte fuel cell
JPH08287921A (en) Fuel electrode for solid electrolyte fuel cell
JP3217695B2 (en) Cylindrical fuel cell
JP2002110193A (en) Solid electrolyte fuel cell and its manufacturing method
JPH06318463A (en) Solid electrolytic fuel cell
JP3503853B2 (en) Laminated composite, method for producing the same, separator containing the same, and solid oxide fuel cell using the separator
JP3455054B2 (en) Manufacturing method of cylindrical solid oxide fuel cell
JPH0676842A (en) Flat plate solid electrolyte fuel cell
JP3342611B2 (en) Manufacturing method of cylindrical fuel cell
JPH06206781A (en) Production of porous ceramic film