JPH0919789A - Heating/joining of two kind members having different coefficient of thermal expansion - Google Patents

Heating/joining of two kind members having different coefficient of thermal expansion

Info

Publication number
JPH0919789A
JPH0919789A JP7168811A JP16881195A JPH0919789A JP H0919789 A JPH0919789 A JP H0919789A JP 7168811 A JP7168811 A JP 7168811A JP 16881195 A JP16881195 A JP 16881195A JP H0919789 A JPH0919789 A JP H0919789A
Authority
JP
Japan
Prior art keywords
thermal expansion
insert
plate
joining
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7168811A
Other languages
Japanese (ja)
Other versions
JP3802586B2 (en
Inventor
Mitsuya Hosoe
光矢 細江
Naomasa Kimura
直正 木村
Katsutoshi Nozaki
勝敏 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP16881195A priority Critical patent/JP3802586B2/en
Publication of JPH0919789A publication Critical patent/JPH0919789A/en
Application granted granted Critical
Publication of JP3802586B2 publication Critical patent/JP3802586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To strongly heat/join a permanent magnet to a steel block having a coefficient of thermal expansion larger than the magnet while avoiding crack of permanent magnet. SOLUTION: A platy insert 5, in which a coefficient of thermal expansion is changed from small to large from one flat face (a) side toward the other flat side (b) side and a coefficient of thermal expansion at one flat face (a) side is larger than that of a permanent magnet and a coefficient of thermal expansion at the other flat face (b) side is smaller than that of a block body 3, is prepared. A laminated body is produced by interposing a brazing filler metal 7 as one flat face (a) of the insert 5 facing to the permanent magnet 2 between both 2, 5 and interposing a brazing filler metal 9 as the other flat face (b) side of insert 5 facing to the block body 3 between both 5, 3. Successively, by heating the laminated body, the permanent magnet 2, insert 5 and block body 3 are joined with a joining layer made of both brazing filler metals 8, 9. Crack of the permanent magnet 5 is avoided due to existence of the insert 5 and joining strength is improved with both joining layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱膨脹率を異にす
る二種の部材の加熱接合方法、即ち、第1部材とその第
1部材よりも熱膨脹率が大きい第2部材とを加熱下で接
合する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of heating and joining two kinds of members having different thermal expansion coefficients, that is, a first member and a second member having a thermal expansion coefficient larger than that of the first member under heating. Regarding the method of joining.

【0002】[0002]

【従来の技術】従来、例えば、第1部材としての希土類
元素を含む永久磁石と、第2部材としての鋼製取付台と
を接合する場合、合成樹脂接着剤が用いられている(例
えば、特公昭61−33339号公報参照)。
2. Description of the Related Art Conventionally, for example, when a permanent magnet containing a rare earth element as a first member and a steel mounting base as a second member are joined, a synthetic resin adhesive has been used (for example, (See Japanese Patent Publication No. 61-33339).

【0003】このように合成樹脂接着剤を用いる理由
は、希土類元素を含む永久磁石は、非常に脆いため機械
加工性が悪く、また高温下に曝されると、金属組織が変
化するのでそれに伴い磁気特性が影響を受ける、といっ
た性質を有し、そのため鋼製取付台に永久磁石を取付け
る場合、あり差し構造、ねじ止め、溶接等の取付手段を
採用することができないからである。
The reason why the synthetic resin adhesive is used in this way is that the permanent magnet containing a rare earth element is very brittle and thus has poor machinability, and the metal structure changes when exposed to high temperatures. This is because the magnetic characteristics are affected, and therefore, when a permanent magnet is mounted on a steel mounting base, it is not possible to adopt a mounting structure such as a manual insertion structure, screwing, or welding.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、合成樹
脂接着剤による接合では、その永久磁石の昇温に伴い接
合強度が著しく低下し、また接合強度のばらつきが大き
いため品質管理が難しい、といった問題がある。
However, in the case of joining with a synthetic resin adhesive, there is a problem in that the joining strength remarkably decreases as the temperature of the permanent magnet rises and the joining strength varies greatly, which makes quality control difficult. is there.

【0005】本発明は前記に鑑み、前記二種の部材を加
熱下で強固に接合すると共に両部材の接合部に発生する
熱応力を緩和して、熱膨脹率が小さい方の部材が脆くて
も、冷却工程でその部材に割れが発生するのを回避する
ことができる前記加熱接合方法を提供することを目的と
する。
In view of the above, the present invention strongly joins the two types of members under heating and alleviates the thermal stress generated at the joint between the two members, so that the member having the smaller coefficient of thermal expansion is fragile. It is an object of the present invention to provide the above-mentioned heating joining method capable of avoiding the occurrence of cracks in the member in the cooling step.

【0006】[0006]

【課題を解決するための手段】本発明は、第1部材と、
その第1部材よりも熱膨脹率が大きい第2部材とを加熱
下で接合するに当り、板状インサートであって、一方の
平坦面側から他方の平坦面側に向って熱膨脹率が小から
大に変化し、且つ一方の平坦面側の熱膨脹率は前記第1
部材の熱膨脹率よりも大きく、また他方の平坦面側の熱
膨脹率は前記第2部材の熱膨脹率よりも小さいものを用
意し、前記板状インサートにおいて、前記一方の平坦面
を前記第1部材の接合面に向けると共にそれら平坦面お
よび接合面間に第1のろう材を介在させ、また前記他方
の平坦面を前記第2部材の接合面に向けると共にそれら
平坦面および接合面間に第2のろう材を介在させて、第
1部材、第1のろう材、板状インサート、第2のろう材
および第2部材よりなる積層体を作製し、次いで前記積
層体を加熱して前記第1部材と前記板状インサートとを
前記第1のろう材よりなる第1の接合層を介して接合
し、また前記第2部材と前記板状インサートとを前記第
2のろう材よりなる第2の接合層を介して接合すること
を特徴とする。
The present invention comprises a first member,
When joining the second member, which has a higher coefficient of thermal expansion than the first member, under heating, the plate-shaped insert has a coefficient of thermal expansion from a small flat surface side to a large flat surface side toward the other flat surface side. And the coefficient of thermal expansion on one flat surface side is
A member having a coefficient of thermal expansion larger than that of the member and a coefficient of thermal expansion of the other flat surface side smaller than that of the second member is prepared. A first brazing filler metal is provided between the flat surface and the joining surface, and the other flat surface is directed toward the joining surface of the second member, and a second brazing material is provided between the flat surface and the joining surface. With a brazing material interposed, a laminated body composed of a first member, a first brazing material, a plate-like insert, a second brazing material and a second member is produced, and then the laminated body is heated to produce the first member. And the plate-like insert are joined via a first joining layer made of the first brazing filler metal, and the second member and the plate-like insert are made of a second joint made of the second brazing filler metal. It is characterized in that they are joined via a layer.

【0007】前記手段を採用することにより、第1部材
と板状インサートとを第1の接合層を介して、また第2
部材と板状インサートとを第2の接合層を介してそれぞ
れ強固に接合し得るので、第1,第2部材間の接合強度
の高い接合体を得ることができる。
By adopting the above-mentioned means, the first member and the plate-like insert are connected to each other via the first bonding layer and the second member.
Since the member and the plate-shaped insert can be firmly bonded to each other via the second bonding layer, it is possible to obtain a bonded body having high bonding strength between the first and second members.

【0008】第1,第2部材間に板状インサートを介在
させると、それらの熱膨脹率が第1部材から第2部材に
至るに従って漸次大きくなるように変化する。これによ
り、冷却工程で、第1,第2部材の熱膨脹率差に起因し
て両部材の接合部に生じる熱応力を緩和し得るので、熱
膨脹率が小さい方の第1部材が脆い場合にもそれに割れ
が発生するのを回避することができる。
When the plate-like insert is interposed between the first and second members, the coefficient of thermal expansion of them changes so as to gradually increase from the first member to the second member. Thereby, in the cooling step, the thermal stress generated in the joint portion between the two members due to the difference in thermal expansion coefficient between the first and second members can be relieved, so that even when the first member having the smaller thermal expansion coefficient is fragile. It is possible to avoid cracking in it.

【0009】なお、第1,第2のろう材の熱膨脹率は、
それらの縦弾性係数Eを小さくし得ると共にそれらの厚
さを考慮すると、無視しても差支えない。
The thermal expansion coefficients of the first and second brazing filler metals are
If their longitudinal elastic modulus E can be made small and their thickness is taken into consideration, it can be ignored.

【0010】[0010]

【発明の実施の形態】図1は接合体1の一例を示す。こ
の接合体1においては第1部材が、NdFeB系永久磁
石、SmCo系永久磁石等の希土類元素を含む永久磁石
2であり、また第2部材が、永久磁石2よりも熱膨脹率
が大きい炭素鋼(Fe系合金)よりなる鋼製ブロック体
3である。
FIG. 1 shows an example of a bonded body 1. In this joined body 1, the first member is a permanent magnet 2 containing a rare earth element such as an NdFeB-based permanent magnet or an SmCo-based permanent magnet, and the second member is a carbon steel having a thermal expansion coefficient larger than that of the permanent magnet 2 ( It is a steel block body 3 made of a Fe-based alloy.

【0011】永久磁石2と鋼製ブロック体3との間に接
合部4が存在する。その接合部4は、中間に存する板状
インサート5と、永久磁石2および板状インサート5間
に存する第1の接合層6と、鋼製ブロック体3および板
状インサート5間に存する第2の接合層7とよりなる。
A joint portion 4 exists between the permanent magnet 2 and the steel block body 3. The joint portion 4 includes a plate-shaped insert 5 existing in the middle, a first bonding layer 6 existing between the permanent magnet 2 and the plate-shaped insert 5, and a second bonding layer existing between the steel block body 3 and the plate-shaped insert 5. And the bonding layer 7.

【0012】板状インサート5は、永久磁石2側の一方
の平坦面a側から他方の平坦面b側に向って熱膨脹率が
小から大に変化し、且つ一方の平坦面a側の熱膨脹率は
永久磁石2の熱膨脹率よりも大きく、また他方の平坦面
b側の熱膨脹率は鋼製ブロック体3の熱膨脹率よりも小
さい。
In the plate-like insert 5, the coefficient of thermal expansion changes from one flat surface a side on the permanent magnet 2 side to the other flat surface b side and changes from small to large, and the thermal expansion coefficient on one flat surface a side. Is larger than the coefficient of thermal expansion of the permanent magnet 2, and the coefficient of thermal expansion on the other flat surface b side is smaller than that of the steel block body 3.

【0013】第1,第2の接合層6,7は、箔状(また
は薄板状)をなす第1,第2のろう材が加熱下で液相を
生じる、つまり両ろう材が完全な液相状態になるか、ま
たは固相と液相とが共存する固液共存状態になることに
よって形成されたものである。
The first and second joining layers 6 and 7 are such that the first and second brazing materials in the form of foil (or thin plates) generate a liquid phase under heating, that is, both brazing materials are completely liquid. It is formed by entering a phase state or a solid-liquid coexisting state in which a solid phase and a liquid phase coexist.

【0014】接合処理に当っては、図2に示すように、
板状インサート5において、一方の平坦面aを永久磁石
2の接合面cに向けると共にそれら平坦面aおよび接合
面c間に第1の箔状ろう材8を介在させ、また他方の平
坦面bを鋼製ブロック体3の接合面dに向けると共にそ
れら平坦面bおよび接合面d間に第2の箔状ろう材9を
介在させて、図3に示すように永久磁石2、第1のろう
材8、板状インサート5、第2のろう材9および鋼製ブ
ロック体3よりなる積層体10を作製する。次いで積層
体10を、真空加熱炉内に設置して加熱することによ
り、第1,第2のろう材8,9を液相状態または固液共
存状態にし、これにより、永久磁石2と板状インサート
5とを第1のろう材8よりなる第1の接合層6を介して
接合し、また鋼製ブロック体3と板状インサート5とを
第2のろう材9よりなる第2の接合層7を介して接合す
る。その後、炉冷を行って接合体1を得る。
In the joining process, as shown in FIG.
In the plate-shaped insert 5, one flat surface a is directed to the joint surface c of the permanent magnet 2, the first foil-shaped brazing material 8 is interposed between the flat surface a and the joint surface c, and the other flat surface b Toward the joint surface d of the steel block body 3 and with the second foil-shaped brazing material 9 interposed between the flat surface b and the joint surface d, as shown in FIG. A laminate 10 including the material 8, the plate-like insert 5, the second brazing material 9 and the steel block body 3 is produced. Next, the laminated body 10 is placed in a vacuum heating furnace and heated to bring the first and second brazing materials 8 and 9 into a liquid phase state or a solid-liquid coexisting state, whereby the permanent magnet 2 and the plate-like shape are formed. The insert 5 is joined via the first joining layer 6 made of the first brazing material 8, and the steel block body 3 and the plate-like insert 5 are made up of the second joining layer made of the second brazing material 9. Join via 7. Thereafter, furnace cooling is performed to obtain the joined body 1.

【0015】前記接合処理における加熱時間hは、それ
が長過ぎる場合には永久磁石2および鋼製ブロック体3
の特性に影響を与えるので、h≦10時間であることが
望ましく、生産性向上の観点からはh≦1時間である。
When the heating time h in the joining process is too long, the permanent magnet 2 and the steel block body 3 are heated.
Therefore, h ≦ 10 hours is desirable, and from the viewpoint of improving productivity, h ≦ 1 hour.

【0016】前記手段を採用することにより、永久磁石
2と板状インサート5とを第1の接合層6を介して、ま
た鋼製ブロック体3と板状インサート5とを第2の接合
層7を介してそれぞれ強固に接合し得るので、永久磁石
2および鋼製ブロック体3間の接合強度の高い接合体1
を得ることができる。
By adopting the above-mentioned means, the permanent magnet 2 and the plate-like insert 5 via the first joining layer 6, and the steel block body 3 and the plate-like insert 5 through the second joining layer 7 are provided. Since they can be firmly bonded to each other through the joint, the bonded body 1 having a high bonding strength between the permanent magnet 2 and the steel block body 3
Can be obtained.

【0017】永久磁石2および鋼製ブロック体3間に板
状インサート5を存在させると、それら2,3,5の熱
膨脹率が永久磁石2から鋼製ブロック体3に至るに従っ
て漸次大きくなるように変化する。これにより、冷却工
程で、永久磁石2および鋼製ブロック体3の熱膨脹率差
に起因して接合部4に生じる熱応力を緩和し得るので、
熱膨脹率が小さい方の永久磁石2が脆い場合にもそれに
割れが発生するのを回避することができる。
When the plate-like insert 5 is present between the permanent magnet 2 and the steel block body 3, the coefficient of thermal expansion of these 2, 3 and 5 is gradually increased from the permanent magnet 2 to the steel block body 3. Change. Thereby, in the cooling step, the thermal stress generated in the joint portion 4 due to the difference in the coefficient of thermal expansion between the permanent magnet 2 and the steel block body 3 can be relaxed,
Even if the permanent magnet 2 having a smaller coefficient of thermal expansion is brittle, it is possible to prevent the permanent magnet 2 from cracking.

【0018】なお、第1,第2のろう材8,9の熱膨脹
率は、それら8,9の縦弾性係数Eを小さくし得ると共
にそれらの厚さを考慮すると、無視しても差支えない。
The thermal expansion coefficients of the first and second brazing filler metals 8 and 9 can be neglected if the longitudinal elastic modulus E of them can be made small and their thicknesses are taken into consideration.

【0019】板状インサート5としては、例えば、図4
に示すように、複数、図示例では第1〜第4Fe−Ni
合金板111 〜114 よりなるクラッド板が用いられ
る。各Fe−Ni合金板111 〜114 におけるNi含
有量は永久磁石2より離れるに従って漸減している。こ
の場合、Ni含有量の最大値Ni(max)は第1Fe
−Ni合金板111 のNi(max)=36原子%であ
り、また最小値Ni(min)は第4Fe−Ni合金板
114 のNi(min)=10原子%である。
As the plate-like insert 5, for example, FIG.
As shown in FIG.
A clad plate made of alloy plates 11 1 to 11 4 is used. The Ni content in each of the Fe-Ni alloy plates 11 1 to 11 4 gradually decreases with increasing distance from the permanent magnet 2. In this case, the maximum Ni content Ni (max) is the first Fe
The Ni (max) of the —Ni alloy plate 11 1 is 36 atom%, and the minimum value Ni (min) is Ni (min) of the fourth Fe—Ni alloy plate 11 4 = 10 atom%.

【0020】表1は板状インサート5の各部の組成およ
び熱膨脹係数を示す。
Table 1 shows the composition and the coefficient of thermal expansion of each part of the plate-like insert 5.

【0021】[0021]

【表1】 [Table 1]

【0022】図4、表1から明らかなように、板状イン
サート5において、第1Fe−Ni合金板111 が一方
の平坦面aを備え、また第4Fe−Ni合金板114
他方の平坦面bを備える。そして一方の平坦面a側から
他方の平坦面b側に向って熱膨脹率が小から大に変化す
る。
As is apparent from FIG. 4 and Table 1, in the plate insert 5, the first Fe-Ni alloy plate 11 1 has one flat surface a and the fourth Fe-Ni alloy plate 11 4 has the other flat surface a. With surface b. Then, the coefficient of thermal expansion changes from small to large from one flat surface a side to the other flat surface b side.

【0023】第1,第2のろう材8,9としては、希土
類元素系合金より構成された高活性なものが用いられ
る。これらのろう材8,9においては、非晶質相の体積
分率Vfが50%≦Vf≦100%であることが望まし
い。その理由は次の通りである。即ち、非晶質相は、酸
化の起点となるような粒界層が存在しないので耐酸化性
が著しく高く、また酸化物の混在も僅少であり、その上
偏析がなく組成が均一である、といった特性を有するの
で、第1,第2の接合層6,7の強度向上を図る上で有
効であるからである。
As the first and second brazing filler metals 8 and 9, highly active ones composed of rare earth element alloys are used. In these brazing filler metals 8 and 9, it is desirable that the volume fraction Vf of the amorphous phase is 50% ≦ Vf ≦ 100%. The reason is as follows. That is, the amorphous phase has a significantly high oxidation resistance because there is no grain boundary layer that serves as the starting point of oxidation, and the amount of oxides is very small, and the composition is uniform without segregation. This is because such characteristics are effective for improving the strength of the first and second bonding layers 6 and 7.

【0024】両ろう材8,9において、希土類元素には
Y、La、Ce、Pr、Nd、Sm、Eu、Gd、T
b、Dy、Ho、Er、Tm、YbおよびLuから選択
される少なくとも一種が該当し、それらは単体、または
混合物であるMm(ミッシュメタル)、Di(ジジミウ
ム)の形態で用いられる。また合金元素AEは希土類元
素と共晶反応を行うもので、その合金元素AEには、C
u、Al、Ga、Co、Fe、Ag、Ni、Au、M
n、Zn、Pd、Sn、Sb、Pb、Bi、Geおよび
Inから選択される少なくとも一種が該当する。合金元
素AEの含有量は5原子%≦AE≦50原子%に設定さ
れる。二種以上の合金元素AEを含有する場合には、そ
れらの合計含有量が5原子%≦AE≦50原子%とな
る。ただし、合金元素AEの含有量がAE>50原子%
ではろう材8,9の活性が損われ、一方、AE<5原子
%では固液共存状態において液相を確保することが難し
くなる。
In both brazing materials 8 and 9, the rare earth elements are Y, La, Ce, Pr, Nd, Sm, Eu, Gd and T.
At least one selected from b, Dy, Ho, Er, Tm, Yb and Lu is applicable, and they are used in the form of Mm (Misch metal) or Di (didymium) which is a single substance or a mixture. Further, the alloying element AE causes a eutectic reaction with a rare earth element, and the alloying element AE contains C
u, Al, Ga, Co, Fe, Ag, Ni, Au, M
At least one selected from n, Zn, Pd, Sn, Sb, Pb, Bi, Ge and In is applicable. The content of the alloy element AE is set to 5 atomic% ≦ AE ≦ 50 atomic%. When two or more kinds of alloying elements AE are contained, the total content thereof is 5 atom% ≦ AE ≦ 50 atom%. However, the content of the alloy element AE is AE> 50 atomic%.
In this case, the activity of the brazing filler metals 8 and 9 is impaired, while it becomes difficult to secure the liquid phase in the solid-liquid coexisting state when AE <5 atomic%.

【0025】表2,3は、ろう材8,9を構成する各種
希土類元素系共晶合金およびそれらの縦弾性係数Eを示
す。
Tables 2 and 3 show various rare earth element type eutectic alloys constituting the brazing filler metals 8 and 9 and their longitudinal elastic modulus E.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】また希土類元素系亜、過共晶合金としては
以下のものを挙げることができる。各化学式において、
数値の単位は原子%である(これは以下同じ)。Eは縦
弾性係数を意味する。 (a) Nd60Cu40合金(E=4500kgf/m
m2 )、Nd75Cu25合金(E=4000kgf/m
m2 )、Nd80Cu20合金(E=3950kgf/m
m2 )、Nd 50Cu50合金(E=9000kgf/mm2
……液相発生温度520℃(図5参照) (b) Sm75Cu25合金(E=4000kgf/m
m2 )、Sm65Cu35合金(E=4300kgf/mm2
……液相発生温度597℃ (c) Nd90Al10合金(E=3850kgf/mm2
液相発生温度634℃)、Nd80Co20合金(E=40
00kgf/mm2 、液相発生温度599℃)、La 85Ga
15合金(E=4000kgf/mm2 、液相発生温度550
℃) さらに三元系合金としては、Nd65Fe5 Cu30合金
(E=4200kgf/mm 2 、液相発生温度501℃)お
よびNd70Cu25Al5 合金(E=4000kgf/m
m2 、液相発生温度474℃)を挙げることができる。 〔実施例1〕純度99.9%のNdと、純度99.9%
のCuと、純度99.9%のAlとを、Nd70Cu25
5 合金が得られるように秤量し、次いでその秤量物を
真空溶解炉を用いて溶解し、その後鋳造を行ってインゴ
ットを得た。
As the rare earth element-based hypo- and hypereutectic alloy,
The following can be mentioned. In each chemical formula,
The unit of the numerical value is atomic% (the same applies below). E is vertical
It means elastic modulus. (A) Nd60Cu40Alloy (E = 4500kgf / m
mTwo), Nd75Cutwenty fiveAlloy (E = 4000kgf / m
mTwo), Nd80Cu20Alloy (E = 3950kgf / m
mTwo), Nd 50Cu50Alloy (E = 9000kgf / mmTwo)
...... Liquid phase generation temperature 520 ° C (See Fig. 5) (b) Sm75Cutwenty fiveAlloy (E = 4000kgf / m
mTwo), Sm65Cu35Alloy (E = 4300kgf / mmTwo)
...... Liquid phase generation temperature 597 ° C (c) Nd90AlTenAlloy (E = 3850kgf / mmTwo,
Liquid phase generation temperature 634 ° C), Nd80Co20Alloy (E = 40
00kgf / mmTwo, Liquid phase generation temperature 599 ° C), La 85Ga
FifteenAlloy (E = 4000kgf / mmTwo, Liquid phase generation temperature 550
℃) Furthermore, as a ternary alloy, Nd65FeFiveCu30alloy
(E = 4200kgf / mm Two, Liquid phase generation temperature 501 ℃)
And Nd70Cutwenty fiveAlFiveAlloy (E = 4000kgf / m
mTwo, Liquid phase generation temperature 474 ° C.). [Example 1] Nd having a purity of 99.9% and a purity of 99.9%
Of Cu and Al having a purity of 99.9% are Nd70Cutwenty fiveA
lFiveWeigh it to obtain the alloy, and then weigh it.
It is melted using a vacuum melting furnace, then cast and
I got it.

【0029】このインゴットから約50gの原料を採取
し、これを石英ノズルで高周波溶解して溶湯を調製し、
次いで溶湯を石英ノズルのスリットから、その下方で高
速回転するCu製冷却ロール外周面にアルゴンガス圧に
より噴出させて超急冷し、幅30mm、厚さ20μmのN
70Cu25Al5 合金よりなる薄帯を得た。この薄帯は
均質であると共に連続性も良く、したがって前記組成の
合金は薄帯形成性が良好である。
Approximately 50 g of raw material was sampled from this ingot, and this was melted at high frequency with a quartz nozzle to prepare a molten metal.
Then, the molten metal was jetted from the slit of the quartz nozzle to the outer peripheral surface of the Cu cooling roll rotating at a high speed thereunder by the argon gas pressure to be ultra-quenched, and the width of 30 mm and the thickness of N of 20 μm.
A thin strip of d 70 Cu 25 Al 5 alloy was obtained. This ribbon is homogeneous and has good continuity, so that the alloy having the above composition has a good ribbon forming property.

【0030】この場合の製造条件は次の通りである。即
ち、石英ノズルの内径 40mm、スリットの寸法 幅
0.25mm、長さ 30mm、アルゴンガス圧 1.0kg
f/cm2 、溶湯温度 800℃、スリットと冷却ロール
との距離 1.0mm、冷却ロールの周速 33m/sec
、溶湯の冷却速度 約105 K/sec である。
The manufacturing conditions in this case are as follows. That is, the inner diameter of the quartz nozzle is 40 mm, the size of the slit is the width
0.25mm, length 30mm, argon gas pressure 1.0kg
f / cm 2 , melt temperature 800 ° C., distance between slit and cooling roll 1.0 mm, peripheral speed of cooling roll 33 m / sec
The cooling rate of the molten metal is about 10 5 K / sec.

【0031】図6は薄帯のX線回折結果を示し、この薄
帯においては2θ≒32°に幅広のハローパターンが観
察され、このことから薄帯の金属組織は非晶質単相組織
であることが判明し、その結晶化温度TxはTx=12
9.8℃であった。また薄帯の液相発生温度TmはTm
=474℃であって易融化が図られており、さらに薄帯
は、高い靱性を有するので、180°密着曲げが可能で
あり、また変色もなく優れた耐酸化性を備えていた。さ
らにまた前記製造条件において、冷却ロールの周速のみ
を変えて薄帯の厚さを20μmから400μmまで変化
させ、非晶質単相組織が得られる薄帯の臨界厚さを求め
たところ、その臨界厚さは270μmであることが判明
した。
FIG. 6 shows the result of X-ray diffraction of the ribbon. In this ribbon, a wide halo pattern was observed at 2θ≈32 °, which indicates that the metal structure of the ribbon is an amorphous single-phase structure. It was found that the crystallization temperature Tx was Tx = 12.
It was 9.8 ° C. The liquid phase generation temperature Tm of the ribbon is Tm
= 474 ° C. to facilitate melting, and since the thin ribbon has high toughness, it can be bent by 180 ° in close contact and has excellent oxidation resistance without discoloration. Furthermore, under the above-mentioned manufacturing conditions, only the peripheral speed of the cooling roll was changed to change the thickness of the ribbon from 20 μm to 400 μm, and the critical thickness of the ribbon from which an amorphous single-phase structure was obtained was determined. The critical thickness was found to be 270 μm.

【0032】次に、厚さ100μmの薄帯に打抜き加工
を施して、図2に示すように縦100mm、横20mmで箔
状をなし、且つ非晶質の第1,第2のろう材8,9を作
製した。
Next, a thin strip having a thickness of 100 μm is punched to form a foil shape having a length of 100 mm and a width of 20 mm as shown in FIG. , 9 were produced.

【0033】第1部材として、縦100mm、横20mm、
厚さ5mmのNdFeB系永久磁石(住友特殊金属社製、
商品名NEOMAX−28UH、キュリー点310℃)
2を選定し、また第2部材として、炭素鋼(JIS S
35C)よりなり、且つ縦20mm、横20mm、長さ10
0mmの直方体状の鋼製ブロック体3を選定した。
The first member is 100 mm long, 20 mm wide,
5mm thick NdFeB-based permanent magnet (Sumitomo Special Metals Co., Ltd.,
(Product name NEOMAX-28UH, Curie point 310 ° C)
No. 2 is selected, and carbon steel (JIS S
35C) and has a length of 20 mm, a width of 20 mm, and a length of 10
A 0 mm rectangular parallelepiped steel block body 3 was selected.

【0034】NdFeB系永久磁石2の熱膨脹係数は約
1.0×10-6/℃(平均値)であり、また鋼製ブロッ
ク体3の熱膨脹係数は約12.2×10-6/℃であっ
た。
The thermal expansion coefficient of the NdFeB system permanent magnet 2 is about 1.0 × 10 -6 / ° C. (average value), and the thermal expansion coefficient of the steel block body 3 is about 12.2 × 10 -6 / ° C. there were.

【0035】図7は、NdFeB系永久磁石2および鋼
製ブロック体3の温度と熱膨脹率との関係を示す。図7
から明らかなように、NdFeB系永久磁石2は、約3
10℃にて熱膨脹率が逆転し、また約310℃以下の温
度域における熱膨脹率変化が小さいといった特異性を持
つこと、および加熱工程後の冷却工程において、その温
度降下に伴いNdFeB系永久磁石2の熱膨脹率と鋼製
ブロック体3の熱膨脹率との差が急激に増大することが
判る。
FIG. 7 shows the relationship between the temperature and the coefficient of thermal expansion of the NdFeB system permanent magnet 2 and the steel block body 3. Figure 7
As is clear from the above, the NdFeB-based permanent magnet 2 has about 3
The NdFeB-based permanent magnet 2 has peculiarities that the coefficient of thermal expansion reverses at 10 ° C., and the change in coefficient of thermal expansion in the temperature range of about 310 ° C. or less is small, and the temperature drops in the cooling step after the heating step. It can be seen that the difference between the coefficient of thermal expansion of No. 1 and the coefficient of thermal expansion of the steel block body 3 rapidly increases.

【0036】さらに板状インサート5として、表1およ
び図4に示した構造を有し、縦100mm、横20mm、厚
さ1.5mmのものを用意した。
Further, a plate-like insert 5 having a structure shown in Table 1 and FIG. 4 and having a length of 100 mm, a width of 20 mm and a thickness of 1.5 mm was prepared.

【0037】図2,4に示すように、鋼製ブロック体3
の長方形をなす上向きの接合面d上に第2のろう材9
を、また第2のろう材9上に、第4Fe−Ni合金板1
4 (他方の平坦面b)を下向きにした板状インサート
5を、さらに板状インサート5の第1Fe−Ni合金板
111 (一方の平坦面a)上に第1のろう材8を、さら
にまた第1のろう材8上に長方形の接合面cを下向きに
したNdFeB系永久磁石2をそれぞれ重ね合せて、図
3に示す積層体10を作製した。
As shown in FIGS. 2 and 4, the steel block body 3
Of the second brazing material 9 on the upwardly facing joint surface d forming the rectangle of
On the second brazing filler metal 9 and the fourth Fe-Ni alloy plate 1
1 4 (the other flat surface b) of the plate-like insert 5 facing downward, and further the first brazing filler metal 8 on the first Fe-Ni alloy plate 11 1 (the one flat surface a) of the plate-like insert 5, Furthermore, the NdFeB-based permanent magnets 2 having the rectangular joint surface c facing downward were superposed on the first brazing filler metal 8 to fabricate the laminated body 10 shown in FIG.

【0038】次いで、その積層体10を真空加熱炉内に
設置し、加熱温度T=540℃、加熱時間h=20分間
の加熱工程、それに次ぐ炉冷よりなる冷却工程を行っ
て、図1に示すようにNdFeB系永久磁石2と、第1
のろう材8より形成された結晶質の第1の接合層6と、
板状インサート5と、第2のろう材9より形成された結
晶質の第2の接合層7と、鋼製ブロック体3とよりなる
接合体1を得た。この接合処理においては、加熱温度T
がT=540℃であって、両ろう材8,9の液相発生温
度Tm=474℃を超えているので、両ろう材8,9は
完全な液相状態となる。
Then, the laminated body 10 is placed in a vacuum heating furnace, and a heating step at a heating temperature T = 540 ° C. for a heating time h = 20 minutes and a subsequent cooling step consisting of furnace cooling are carried out, as shown in FIG. As shown, the NdFeB system permanent magnet 2 and the first
A crystalline first bonding layer 6 formed from the brazing material 8 of
A joined body 1 including the plate-like insert 5, the crystalline second joining layer 7 formed of the second brazing filler metal 9, and the steel block body 3 was obtained. In this joining process, the heating temperature T
Is T = 540 ° C. and the liquid phase generation temperature Tm of both brazing filler metals 8 and 9 exceeds 474 ° C., so that both brazing filler metals 8 and 9 are in a complete liquid phase state.

【0039】このようにして得られた接合体1を目視に
て観察したところ、NdFeB系永久磁石2と板状イン
サート5とが第1の接合層6を介して十分に接合してお
り、また鋼製ブロック体3と板状インサート5とが第2
の接合層7を介して十分に接合していることが判明し
た。
The joint body 1 thus obtained was visually observed to find that the NdFeB system permanent magnet 2 and the plate-like insert 5 were sufficiently joined together via the first joint layer 6, and The steel block body 3 and the plate-shaped insert 5 are second
It was found that they were sufficiently bonded through the bonding layer 7 of No.

【0040】またNdFeB系永久磁石2において割れ
の発生は全然認められなかった。これは、図7に示した
ように、NdFeB系永久磁石2と鋼製ブロック体3の
熱膨脹率が冷却工程において大きく異なるにも拘らず、
板状インサート5を使用したことにより、冷却工程にお
いて接合部4に発生する熱応力が緩和されたことに起因
する。特に、板状インサート5において、NdFeB系
永久磁石2に最も近い第1Fe−Ni合金板111 の組
成をインバー(invar)組成にして、約310℃以下の温
度域における第1Fe−Ni合金板111 の熱的挙動を
NdFeB系永久磁石2のそれに近似させたことが、N
dFeB系永久磁石2の割れ発生を回避する上に大きな
要因となっている。
No cracks were found in the NdFeB permanent magnet 2. As shown in FIG. 7, this is despite the fact that the thermal expansion coefficients of the NdFeB system permanent magnet 2 and the steel block body 3 differ greatly in the cooling process.
This is because the use of the plate-shaped insert 5 relaxes the thermal stress generated in the joint portion 4 in the cooling step. In particular, in the plate-like insert 5, the composition of the first Fe—Ni alloy plate 11 1 closest to the NdFeB-based permanent magnet 2 is set to an invar composition, and the first Fe—Ni alloy plate 11 in a temperature range of about 310 ° C. or less is used. When the thermal behavior of 1 was approximated to that of the NdFeB system permanent magnet 2,
This is a major factor in avoiding the occurrence of cracks in the dFeB-based permanent magnet 2.

【0041】NdFeB系永久磁石2、SmCo系永久
磁石等の希土類元素を含む永久磁石は、接合処理時の加
熱温度TがT>650℃になると、その磁気特性、特に
保磁力 IC (磁化の強さI=0)が低下傾向となる。
ただし、残留磁束密度Brおよび保磁力 BC (磁束密
度B=0)は殆ど変わらず、したがって最大磁気エネル
ギ積(BH)maxは略一定である。両ろう材8,9を
用いた接合処理において、その加熱温度TはT=540
℃であってT≦650℃であるから、NdFeB系永久
磁石2の磁気特性を変化させるようなことはない。 〔実施例2〕箔状をなす非晶質の第1,第2のろう材
8,9として、実施例1で述べたものと同一組成で、且
つ縦20mm、横20mm、厚さ100μmのものを各ろう
材8,9について2つ宛用意した。
The permanent magnets containing rare earth elements such as the NdFeB permanent magnet 2 and the SmCo permanent magnet have their magnetic characteristics, especially the coercive force I H C (magnetization) when the heating temperature T during the joining process becomes T> 650 ° C. Strength I = 0) tends to decrease.
However, the residual magnetic flux density Br and coercive force B H C (magnetic flux density B = 0) Most unchanged, thus the maximum magnetic energy product (BH) max is substantially constant. In the joining process using both brazing filler metals 8 and 9, the heating temperature T is T = 540.
Since it is C and T ≦ 650 ° C., the magnetic characteristics of the NdFeB system permanent magnet 2 are not changed. [Embodiment 2] Amorphous foil-shaped first and second brazing filler metals 8 and 9 having the same composition as that described in Embodiment 1 and having a length of 20 mm, a width of 20 mm and a thickness of 100 μm. Two brazing filler metals 8 and 9 were prepared.

【0042】またNdFeB系永久磁石2として、実施
例1で述べたものと同一構造で、且つ縦20mm、横20
mm、厚さ5mmのものを用意した。
The NdFeB system permanent magnet 2 has the same structure as that described in Embodiment 1 and has a length of 20 mm and a width of 20.
mm, thickness 5 mm were prepared.

【0043】さらに鋼製ブロック体3として、実施例1
で述べたものと同一材質で、且つ縦20mm、横20mm、
長さ40mmのものを2つ用意した。
Further, as the steel block body 3, as in Example 1
The same material as the one described in, and 20 mm in height, 20 mm in width,
Two pieces with a length of 40 mm were prepared.

【0044】さらにまた、板状インサート5として、実
施例1で述べたものと同一構造で、且つ縦20mm、横2
0mm、厚さ1.5mmのものを2つ用意した。
Furthermore, the plate-like insert 5 has the same structure as that described in the first embodiment and has a length of 20 mm and a width of 2 mm.
Two 0mm and 1.5mm thick ones were prepared.

【0045】図8(図4も参照)に示すように、1つの
鋼製ブロック体3の正方形をなす上向きの接合面d上に
第2のろう材9を、第2のろう材9上に、第4Fe−N
i合金板114 (他方の接合面b)を下向きにした板状
インサート5を、板状インサート5の第1Fe−Ni合
金板111 (一方の平坦面a)上に第1のろう材8を、
第1のろう材8上に正方形をなす一方の接合面cを下向
きにしたNdFeB系永久磁石2を、NdFeB系永久
磁石2の正方形をなす他方の上向きの接合面c上に第1
のろう材8を、第1のろう材8上に、第1Fe−Ni合
金板111 (一方の平坦面a)を下向きにした板状イン
サート5を、板状インサート5の第4Fe−Ni合金板
114 (他方の平坦面b)上に第2のろう材9を、第2
のろう材9上に接合面dを下向きにしたもう1つの鋼製
ブロック体3をそれぞれ重ね合せて積層体を作製し、同
様の手順で合計20個の積層体を作製した。両鋼製ブロ
ック体3に存する貫通孔13は引張り試験においてチャ
ックとの連結に用いられる。
As shown in FIG. 8 (also refer to FIG. 4), the second brazing material 9 is placed on the upward joining surface d forming the square of one steel block body 3, and the second brazing material 9 is placed on the second brazing material 9. , 4th Fe-N
The plate-shaped insert 5 with the i alloy plate 11 4 (the other bonding surface b) facing downward was placed on the first Fe-Ni alloy plate 11 1 (one flat surface a) of the plate-shaped insert 5 and the first brazing material 8 To
On the first brazing filler metal 8, the NdFeB-based permanent magnet 2 having one of the square-shaped joining surfaces c facing downward is provided on the other upward-facing joining surface c of the NdFeB-based permanent magnet 2 forming the square.
The brazing filler metal 8 of the first Fe-Ni alloy plate 11 1 (one flat surface a) facing downward on the first brazing filler metal 8 and the fourth Fe-Ni alloy of the plate-shaped insert 5 The second brazing filler metal 9 is applied on the plate 11 4 (the other flat surface b) to the second
Another steel block body 3 with the joint surface d facing downward was superposed on the brazing filler metal 9 to prepare a laminate, and a total of 20 laminates were prepared by the same procedure. The through holes 13 present in both steel block bodies 3 are used for connection with the chuck in the tensile test.

【0046】次いで、各積層体を真空加熱炉内に設置
し、加熱温度T=540℃、加熱時間h=20分間の加
熱工程、それに次ぐ炉冷よりなる冷却工程を行って、図
9に示す20個のサンドイッチ状物14を得た。各サン
ドイッチ状物14は、1つのNdFeB系永久磁石2を
共用する2つの接合体1よりなる。
Next, each laminated body was placed in a vacuum heating furnace, and a heating step of heating temperature T = 540 ° C. and heating time h = 20 minutes, followed by a cooling step of furnace cooling, was carried out, as shown in FIG. 20 sandwiches 14 were obtained. Each sandwich 14 is composed of two bonded bodies 1 that share one NdFeB-based permanent magnet 2.

【0047】この接合処理においては、実施例1同様
に、加熱温度TがT=540℃に設定されているので、
液相発生温度TmがTm=474℃の各ろう材8,9は
完全な液相状態となる。
In this joining process, since the heating temperature T is set to T = 540 ° C. as in the first embodiment,
The brazing filler metals 8 and 9 having the liquid phase generation temperature Tm of Tm = 474 ° C. are in a completely liquid phase state.

【0048】このようにして得られた各サンドイッチ状
物14を目視にて観察したところ、NdFeB系永久磁
石2と各板状インサート5とが第1の接合層6を介して
十分に接合しており、また鋼製ブロック体3と各板状イ
ンサート5とが第2の接合層7を介して十分に接合して
いることが判った。またNdFeB系永久磁石2におい
て割れの発生は全然認められなかった。
Visual observation of each sandwich 14 thus obtained revealed that the NdFeB system permanent magnets 2 and the plate-like inserts 5 were sufficiently bonded via the first bonding layer 6. It was also found that the steel block body 3 and each plate-shaped insert 5 were sufficiently bonded via the second bonding layer 7. No cracks were found in the NdFeB permanent magnet 2.

【0049】比較のため、前記同様のNdFeB系永久
磁石2と前記同様の2つの鋼製ブロック体3とを、それ
ら鋼製ブロック体3により、エポキシ樹脂系接着剤(日
本チバガイギ社製、商品名アラルダイト)を介しNdF
eB系永久磁石2を挟むように重ね合せて積層体を作製
し、同様の手順で合計20個の積層体を作製した。次い
で、これら積層体を乾燥炉内に設置して、加熱温度20
0℃、加熱時間60分間の加熱工程、それに次ぐ炉冷よ
りなる冷却工程を行って、2つの鋼製ブロック体3と永
久磁石2とをそれぞれエポキシ樹脂系接着剤を介して接
合した20個のサンドイッチ状物を得た。
For comparison, an NdFeB-based permanent magnet 2 similar to the above and two steel block bodies 3 similar to the above are used to form an epoxy resin adhesive (manufactured by Nippon Ciba-Gaigi Co., Ltd., trade name). NdF via Araldite)
The eB-based permanent magnets 2 were laminated so as to sandwich the permanent magnets 2 to produce a laminate, and a total of 20 laminates were produced by the same procedure. Next, these laminated bodies are placed in a drying oven and heated at a heating temperature of 20.
A heating process of 0 ° C. and a heating time of 60 minutes, followed by a cooling process consisting of furnace cooling, was performed, and two steel block bodies 3 and permanent magnets 2 were bonded to each other with an epoxy resin adhesive to form 20 pieces. A sandwich was obtained.

【0050】ろう材8,9および板状インサート5を用
いたサンドイッチ状物14およびエポキシ樹脂系接着剤
を用いたサンドイッチ状物の各10個について室温下で
引張り試験を行い、また残りの各10個について150
℃の加熱下で引張り試験を行ったところ、表4の結果を
得た。
Tensile tests were carried out at room temperature for each of the sandwich-like materials 14 using the brazing filler metals 8 and 9 and the plate-like insert 5 and the sandwich-like materials 14 using the epoxy resin adhesive, and the remaining 10 About 150
When the tensile test was performed under heating at ℃, the results shown in Table 4 were obtained.

【0051】[0051]

【表4】 [Table 4]

【0052】表4から明らかなように、ろう材8,9お
よび板状インサート5を用いたサンドイッチ状物14
は、室温下および150℃の加熱下において、エポキシ
樹脂系接着剤を用いたサンドイッチ状物に比べて接合強
度が高く、またその接合強度は両環境下において殆ど変
わらず、さらにそのばらつきも小さい。エポキシ系接着
剤を用いたサンドイッチ状物は室温下における接合強度
が低い上にそのばらつきが大きく、また150℃の加熱
下ではその接合強度が室温下のそれの3分の1に低下す
る。
As is clear from Table 4, the sandwich-like article 14 using the brazing filler metals 8 and 9 and the plate-like insert 5
Has a higher bonding strength at room temperature and under heating at 150 ° C. than a sandwich using an epoxy resin-based adhesive, and the bonding strength is almost the same in both environments and its variation is small. The sandwich using the epoxy adhesive has a low bonding strength at room temperature and has a large variation, and the bonding strength is reduced to 1/3 of that at room temperature when heated at 150 ° C.

【0053】NdFeB系永久磁石2、SmCo系永久
磁石等の希土類元素を含む永久磁石の濡れ性の悪さは、
その結晶粒界に希土類元素濃度、この実施例ではNd濃
度の高い相が存在していることに起因する。前記ろう材
8,9を用いた接合処理において、それらろう材8,9
は液相状態となっており、Ndを主成分とするNd70
25Al5 合金より生じた液相は、高活性であると共に
前記結晶粒界に存するNd濃度の高い相と主成分を共通
にすることからNdFeB系永久磁石2に対して優れた
濡れ性を発揮し、また前記高活性化に伴い鋼製ブロック
体3および板状インサート5に対する濡れ性も極めて良
好である。
The poor wettability of permanent magnets containing rare earth elements such as the NdFeB permanent magnet 2 and the SmCo permanent magnet is
This is due to the presence of a phase having a high rare earth element concentration, that is, a high Nd concentration in this example, at the grain boundaries. In the joining process using the brazing filler metals 8 and 9, the brazing filler metals 8 and 9 are used.
Is in a liquid state and contains Nd 70 C containing Nd as a main component.
Since the liquid phase generated from the u 25 Al 5 alloy is highly active and shares the main component with the phase having a high Nd concentration existing in the crystal grain boundaries, it has excellent wettability with respect to the NdFeB-based permanent magnet 2. Further, the wettability with respect to the steel block body 3 and the plate-like insert 5 is extremely good with the high activation.

【0054】前記接合技術は、回転機としてのモータ用
ロータにおいて、そのロータ本体に対するNdFeB系
永久磁石2の接合に適用され、回転数が10000rpm
以上である高速回転モータの実現を可能にするものであ
る。
The joining technique is applied to the joining of the NdFeB system permanent magnet 2 to the rotor body of the motor rotor as a rotating machine, and the rotation speed is 10000 rpm.
The above-described high-speed rotation motor can be realized.

【0055】[0055]

【発明の効果】本発明によれば、前記のように特定され
た手段を採用することによって、熱膨脹率を異にする二
種の部材を強固に接合することができ、また熱膨脹率が
小さい方の部材が脆くても、冷却工程でその部材に割れ
が発生するのを回避することができる。
According to the present invention, by adopting the means specified as described above, two kinds of members having different thermal expansion coefficients can be firmly joined, and one having a small thermal expansion coefficient can be used. Even if the member is brittle, it is possible to prevent the member from cracking in the cooling step.

【図面の簡単な説明】[Brief description of the drawings]

【図1】接合体の一部拡大正面図である。FIG. 1 is a partially enlarged front view of a joined body.

【図2】永久磁石、ろう材、板状インサートおよび鋼製
ブロック体の重ね合せ関係の一例を示す斜視図である。
FIG. 2 is a perspective view showing an example of a superposing relationship of a permanent magnet, a brazing material, a plate-like insert, and a steel block body.

【図3】積層体の側面図である。FIG. 3 is a side view of a laminated body.

【図4】板状インサートの構造説明図である。FIG. 4 is a structural explanatory view of a plate-like insert.

【図5】Cu−Nd系状態図である。FIG. 5 is a Cu—Nd system phase diagram.

【図6】Nd70Cu25Al5 合金のX線回折図である。FIG. 6 is an X-ray diffraction pattern of Nd 70 Cu 25 Al 5 alloy.

【図7】温度と熱膨脹率との関係を示すグラフである。FIG. 7 is a graph showing the relationship between temperature and coefficient of thermal expansion.

【図8】永久磁石、ろう材、板状インサートおよび鋼製
ブロック体の重ね合せ関係の他例を示す斜視図である。
FIG. 8 is a perspective view showing another example of a superposition relationship of a permanent magnet, a brazing material, a plate-like insert, and a steel block body.

【図9】サンドイッチ状物の斜視図である。FIG. 9 is a perspective view of a sandwich.

【符号の説明】[Explanation of symbols]

1 接合体 2 永久磁石(第1部材) 3 鋼製ブロック体(第2部材) 5 板状インサート 6,7 第1,第2の接合層 8,9 第1,第2のろう材 10 積層体 111 〜114 第1〜第4Fe−Ni合金板 a 一方の接合面 b 他方の接合面 c,d 接合面DESCRIPTION OF SYMBOLS 1 Joined body 2 Permanent magnet (1st member) 3 Steel block body (2nd member) 5 Plate insert 6,7 1st, 2nd joining layer 8,9 1st, 2nd brazing material 10 Laminated body 11 1 to 11 4 1st to 4th Fe-Ni alloy plates a one joint surface b the other joint surface c, d joint surface

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02K 1/27 501 H02K 1/27 501G 501B 15/03 15/03 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H02K 1/27 501 H02K 1/27 501G 501B 15/03 15/03 Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1部材(2)と、その第1部材(2)
よりも熱膨脹率が大きい第2部材(3)とを加熱下で接
合するに当り、板状インサート(5)であって、一方の
平坦面(a)側から他方の平坦面(b)側に向って熱膨
脹率が小から大に変化し、且つ一方の平坦面(a)側の
熱膨脹率は前記第1部材(2)の熱膨脹率よりも大き
く、また他方の平坦面(b)側の熱膨脹率は前記第2部
材(3)の熱膨脹率よりも小さいものを用意し、前記板
状インサート(5)において、前記一方の平坦面(a)
を前記第1部材(2)の接合面(c)に向けると共にそ
れら平坦面(a)および接合面(c)間に第1のろう材
(8)を介在させ、また前記他方の平坦面(b)を前記
第2部材(3)の接合面(d)に向けると共にそれら平
坦面(b)および接合面(d)間に第2のろう材(9)
を介在させて、第1部材(2)、第1のろう材(8)、
板状インサート(5)、第2のろう材(9)および第2
部材(3)よりなる積層体(10)を作製し、次いで前
記積層体(10)を加熱して前記第1部材(2)と前記
板状インサート(5)とを前記第1のろう材(8)より
なる第1の接合層(6)を介して接合し、また前記第2
部材(3)と前記板状インサート(5)とを前記第2の
ろう材(9)よりなる第2の接合層(7)を介して接合
することを特徴とする、熱膨脹率を異にする二種の部材
の加熱接合方法。
1. A first member (2) and a first member (2) thereof.
When joining the second member (3) having a larger coefficient of thermal expansion than that of the plate-like insert (5) under heating, the flat insert (5) is moved from one flat surface (a) side to the other flat surface (b) side. The coefficient of thermal expansion changes from small to large, the coefficient of thermal expansion on one flat surface (a) side is larger than that of the first member (2), and the coefficient of thermal expansion on the other flat surface (b) side. A material having a coefficient of thermal expansion smaller than that of the second member (3) is prepared, and in the plate-like insert (5), the one flat surface (a) is used.
Toward the joint surface (c) of the first member (2), the first brazing filler metal (8) is interposed between the flat surface (a) and the joint surface (c), and the other flat surface ( b) is directed to the joint surface (d) of the second member (3) and a second brazing filler metal (9) is provided between the flat surface (b) and the joint surface (d).
The first member (2), the first brazing filler metal (8),
Plate-like insert (5), second brazing filler metal (9) and second
A laminated body (10) made of a member (3) is produced, and then the laminated body (10) is heated so that the first member (2) and the plate-like insert (5) are combined with the first brazing filler metal ( 8) is bonded through a first bonding layer (6) consisting of
A member (3) and the plate-like insert (5) are joined together via a second joining layer (7) made of the second brazing filler metal (9), and have different thermal expansion coefficients. A method for heating and joining two kinds of members.
【請求項2】 前記第1部材(2)は希土類元素を含む
永久磁石であり、前記第2部材(3)はFe合金よりな
り、前記第1,第2のろう材(8,9)は希土類元素系
合金よりなる、請求項1記載の熱膨脹率を異にする二種
の部材の加熱接合方法。
2. The first member (2) is a permanent magnet containing a rare earth element, the second member (3) is made of an Fe alloy, and the first and second brazing filler metals (8, 9) are The method for heating and joining two kinds of members having different coefficients of thermal expansion according to claim 1, which are made of a rare earth element alloy.
【請求項3】 前記板状インサート(5)は、複数のF
e−Ni合金板(111 〜114 )よりなるクラッド板
であり、各Fe−Ni合金板(111 〜11 4 )におけ
るNi含有量は前記第1部材(2)より離れるに従って
漸減している、請求項2記載の熱膨脹率を異にする二種
の部材の加熱接合方法。
3. The plate-shaped insert (5) has a plurality of Fs.
e-Ni alloy plate (111~ 11Four) Clad plate
And each Fe-Ni alloy plate (111~ 11 Four)
As the Ni content of the first member (2) increases,
Two kinds having different thermal expansion coefficients according to claim 2, which are gradually decreasing.
Method for heating and joining members.
【請求項4】 前記Ni含有量の最小値Ni(min)
がNi(min)=10原子%であり、また最大値Ni
(max)がNi(max)=36原子%である、請求
項3記載の熱膨脹率を異にする二種の部材の加熱接合方
法。
4. The minimum value Ni (min) of the Ni content.
Is Ni (min) = 10 atomic%, and the maximum value Ni
The method for heating and joining two kinds of members having different thermal expansion coefficients according to claim 3, wherein (max) is Ni (max) = 36 atomic%.
【請求項5】 前記第1,第2のろう材(8,9)にお
いて、希土類元素はY、La、Ce、Pr、Nd、S
m、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb
およびLuから選択される少なくとも一種であり、合金
元素AEはCu、Al、Ga、Co、Fe、Ag、N
i、Au、Mn、Zn、Pd、Sn、Sb、Pb、B
i、GeおよびInから選択される少なくとも一種であ
り、その合金元素AEの含有量が5原子%≦AE≦50
原子%である、請求項2,3または4記載の熱膨脹率を
異にする二種の部材の加熱接合方法。
5. The rare earth element in the first and second brazing filler metals (8, 9) is Y, La, Ce, Pr, Nd, S.
m, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb
And at least one selected from Lu, and the alloy element AE is Cu, Al, Ga, Co, Fe, Ag, N
i, Au, Mn, Zn, Pd, Sn, Sb, Pb, B
It is at least one selected from i, Ge and In, and the content of the alloying element AE is 5 atom% ≦ AE ≦ 50.
The method for heat-bonding two types of members having different thermal expansion coefficients according to claim 2, 3 or 4, wherein the method is atomic%.
JP16881195A 1995-07-04 1995-07-04 Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients Expired - Fee Related JP3802586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16881195A JP3802586B2 (en) 1995-07-04 1995-07-04 Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16881195A JP3802586B2 (en) 1995-07-04 1995-07-04 Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients

Publications (2)

Publication Number Publication Date
JPH0919789A true JPH0919789A (en) 1997-01-21
JP3802586B2 JP3802586B2 (en) 2006-07-26

Family

ID=15874937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16881195A Expired - Fee Related JP3802586B2 (en) 1995-07-04 1995-07-04 Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients

Country Status (1)

Country Link
JP (1) JP3802586B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184620A (en) * 2000-12-19 2002-06-28 Honda Motor Co Ltd Rare earth magnet unit
GB2396751A (en) * 2002-09-13 2004-06-30 Honda Motor Co Ltd Shaftless permanent magnet rotor
US8721395B2 (en) 2009-07-16 2014-05-13 Saint-Gobain Abrasives, Inc. Abrasive tool with flat and consistent surface topography for conditioning a CMP pad and method for making

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184620A (en) * 2000-12-19 2002-06-28 Honda Motor Co Ltd Rare earth magnet unit
GB2396751A (en) * 2002-09-13 2004-06-30 Honda Motor Co Ltd Shaftless permanent magnet rotor
GB2396751B (en) * 2002-09-13 2006-03-22 Honda Motor Co Ltd Permanent magnet rotor
US8721395B2 (en) 2009-07-16 2014-05-13 Saint-Gobain Abrasives, Inc. Abrasive tool with flat and consistent surface topography for conditioning a CMP pad and method for making

Also Published As

Publication number Publication date
JP3802586B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
US5830585A (en) Article made by joining two members together, and a brazing filler metal
EP0786854B1 (en) Rotor for rotating machine, method of manufacturing same, and magnet unit
CN101657864A (en) R-T-B sintered magnet and method for producing the same
EP0921533B1 (en) Method of producing laminated permanent magnet
US4049475A (en) SECo5 -Permanent magnet joined to at least one iron mass and method of fabricating such a permanent magnet
JPH0919789A (en) Heating/joining of two kind members having different coefficient of thermal expansion
JP3592425B2 (en) Rare earth alloy brazing filler metal
JP3441197B2 (en) Paste joining material for brazing
JP3373950B2 (en) Heat bonding method of two kinds of members having different thermal expansion coefficients
JP3592397B2 (en) Heat bonding method for two kinds of members having different thermal expansion rates
JP3382392B2 (en) Brazing material
JP3645925B2 (en) Joined body and joining method of permanent magnet and different kind of member
JP3759198B2 (en) Joining method of workpieces
JP3382383B2 (en) Bonding material for metal members
JPH08309581A (en) Joined body comprising two members to be joined
JP3432967B2 (en) Self-biased magnetostrictive material
JP3631808B2 (en) Rotor for rotating machine, method for manufacturing the rotor, and magnet unit
JP3472358B2 (en) Permanent magnet for heat bonding and method of manufacturing the same
JP3631809B2 (en) Joining method of workpieces
JPH08118066A (en) Production of joined body consisting of permanent magnet having rust preventability and member of different material kind
JP3759186B2 (en) Brazing method for joined members
JPH09199362A (en) Method for manufacturing connector having permanent magnetic material
JPH0645168A (en) Manufacture of r-fe-b magnet
JPH08264309A (en) Rare earth permanent magnet and magnetic circuit using the magnet
JPH0878231A (en) Rare earth magnet device and bonding method of rare earth magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees