JPH09192784A - Production of complex cast slab - Google Patents

Production of complex cast slab

Info

Publication number
JPH09192784A
JPH09192784A JP593196A JP593196A JPH09192784A JP H09192784 A JPH09192784 A JP H09192784A JP 593196 A JP593196 A JP 593196A JP 593196 A JP593196 A JP 593196A JP H09192784 A JPH09192784 A JP H09192784A
Authority
JP
Japan
Prior art keywords
bath
molten
base material
molten metal
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP593196A
Other languages
Japanese (ja)
Inventor
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP593196A priority Critical patent/JPH09192784A/en
Publication of JPH09192784A publication Critical patent/JPH09192784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a complex cast slab having clean interface between a base material and a clad material by drawing in the unidirection while solidifying and depositing a steel or a metal for the clad material on one side or both sides of the base material steel plate. SOLUTION: The base material steel plate 3 is passed under condition of dipping the one side surface into molten metal 2 having different composition as the clad material held on the free surface of a molten metal bath B3. At this time, the clad material 4 which solidifies and welds the molten metal 2 for the clad material on the dipping surface, is formed. The cast slab is bent in little upward with a supporting point roll 13 at the inlet side of the third bath B3 and drawn out with pinch rolls 14 at a desired drawing-out elevation angle θ. The thickness of the clad material 4 is controlled by adjusting the drawing-out angle θ diagonally upward in the bath B3 in the suitable range to decide the staying time in the bath B3, and then, the solidified quantity of the clad material 4 is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、クラッド比を変更
可能な連続鋳造法で比較的厚みの薄いクラッド鋳片を製
造する複層鋳片の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multi-layer cast product which produces a relatively thin clad cast product by a continuous casting method in which the clad ratio can be changed.

【0002】[0002]

【従来の技術】異種金属を接合したクラッド鋼の一般的
な製造方法としては、圧延や、爆着等による方法が一般
に広く知られている。しかし、これらのクラッド鋼の製
造方法は一般に製造コストが高いので、製造コスト低減
の観点から連続鋳造法によって直接クラッド鋼を製造す
る方法がいくつか提案されている。
2. Description of the Related Art As a general method for producing a clad steel in which dissimilar metals are joined, methods such as rolling and explosion welding are widely known. However, since these clad steel manufacturing methods generally have high manufacturing costs, some methods of directly manufacturing clad steel by a continuous casting method have been proposed from the viewpoint of manufacturing cost reduction.

【0003】例えば特開昭51−111458号公報に
は、連続鋳造用鋳型の内壁にクラッド材を連続供給する
方法が記載されている。この方法によれば従来の連続鋳
造設備を大きく変更することなく、比較的容易にクラッ
ド鋼を製造することができる。しかし、この製造方法で
は鋳型内に連続挿入されるクラッド材の冷却制御が困難
であり、安定した品質の製品を得ることができない。
For example, Japanese Patent Application Laid-Open No. 51-111458 discloses a method of continuously supplying a clad material to the inner wall of a continuous casting mold. According to this method, the clad steel can be manufactured relatively easily without significantly changing the conventional continuous casting equipment. However, with this manufacturing method, it is difficult to control the cooling of the clad material that is continuously inserted into the mold, and a product of stable quality cannot be obtained.

【0004】また、特開昭62−54561号公報に
は、凝固完了した鋳片の表面にクラッド材となる異種金
属を注ぎ込み、これを鋳片に溶着させる方法が記載され
ている。この方法も従来の連続鋳造機を大きく変更する
ことなく、比較的容易にクラッド鋼を製造することがで
きる。しかし、この方法ではすでに凝固完了している鋳
片上に異種金属を給湯して溶着させるので、母材と合わ
せ材との界面に不純物が混入しやすく、界面の清浄性が
品質上大きな問題となる。
Further, Japanese Unexamined Patent Publication No. 62-54561 discloses a method of pouring a dissimilar metal serving as a clad material onto the surface of a cast piece which has been solidified, and welding it to the cast piece. This method also makes it possible to manufacture clad steel relatively easily without significantly changing the conventional continuous casting machine. However, in this method, since dissimilar metals are hot-melted and welded onto the already solidified slab, impurities are easily mixed in the interface between the base material and the laminated material, and the cleanliness of the interface becomes a major quality problem. .

【0005】さらに最近では、特開平5−277639
号公報に見られるように、一般的な連続鋳造機におい
て、2種類の異なった組成の溶鋼を2本の浸漬ノズルを
用いて、鋳型内に注湯し、電磁力で、お互いの混合を避
けながら鋳片の両広面と両側面を一方の組成の鋼で鋳包
む方法が提案されている。
More recently, Japanese Patent Laid-Open No. 5-2777639
As can be seen in the publication, in a general continuous casting machine, two kinds of molten steels having different compositions are poured into a mold by using two dipping nozzles, and electromagnetic waves are used to avoid mutual mixing. However, a method has been proposed in which both wide surfaces and both side surfaces of a slab are cast and wrapped with steel having one composition.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
鋳包む方法は、両面クラッド鋼板の製造には適している
が、用途の多い片面のみのクラッド鋼板を製造すること
は原理上不可能である。また、この鋳包む方法を用いて
大きなクラッド比(母材厚みに対するクラッド材の厚み
比率)を得ようとする場合は、一方のノズルは2mを超
えるような長いものが必要となる。さらにクラッド比を
変更する場合は、上記の2液相の混合を防止するために
設置されている電磁流動制御装置の設置位置を大きく変
更させなければならず、実用上種々の問題点がある。
However, although the above casting method is suitable for producing a double-sided clad steel sheet, it is impossible in principle to produce a single-sided clad steel sheet with many uses. Further, in order to obtain a large clad ratio (thickness ratio of the clad material to the thickness of the base material) using this casting method, one of the nozzles needs to have a length exceeding 2 m. Further, when changing the clad ratio, the installation position of the electromagnetic flow control device installed in order to prevent the mixing of the above two liquid phases must be greatly changed, which causes various problems in practical use.

【0007】一方、薄平板を効率よく鋳造する方法とし
て、対象としている金属もしくは、合金と反応しない金
属浴上に当該金属、合金を溶融状態で浮かべ自由表面を
形成させながら平板を凝固形成させる方法が特開昭58
−74249号公報、特開昭59−42163号公報等
にそれぞれ提案されている。
On the other hand, as a method for efficiently casting a thin flat plate, a method of solidifying a flat plate while forming a floating free surface of the metal or alloy in a molten state on a metal bath that does not react with the target metal or alloy JP 58
-74249, JP-A-59-42163, etc. are proposed.

【0008】本発明は、比較的厚みの薄いクラッド鋳片
に対して、母材と合わせ材(クラッド材)との界面を清
浄に保持しつつ、効率よく複層鋳片(クラッド鋳片)を
製造することができる複層鋳片の製造方法を提供するこ
とを目的とする。
According to the present invention, for a clad slab having a relatively small thickness, a double-layer slab (clad slab) can be efficiently formed while keeping the interface between the base material and the laminated material (clad material) clean. It is an object of the present invention to provide a method for producing a multi-layer cast product that can be produced.

【0009】[0009]

【課題を解決するための手段】本発明に係る複層鋳片の
製造方法は、溶融金属浴の表面に母材溶鋼を注湯し、こ
の母材溶鋼を前記溶融金属浴の自由表面上で凝固成長さ
せて母材鋼板を連続的に引き抜き形成し、引き続き前記
母材鋼板をその引き抜き方向の延長線上にある溶融金属
浴上に浮遊させた前記母材溶鋼とは異なる組成の合わせ
材用の鋼または金属に接触させ、前記母材鋼板の片面又
は両面に前記合わせ材用の鋼または金属を凝固堆積させ
ながら一方向に引き抜くことを特徴とする。
The method for producing a multi-layer cast product according to the present invention comprises pouring molten metal as a base metal onto the surface of a molten metal bath, and then applying the molten steel as a base metal on the free surface of the molten metal bath. For forming a base material steel sheet by solidification and growth by continuous drawing, and subsequently for suspending the base material steel sheet on a molten metal bath on an extension line of the drawing direction, for a composite material having a different composition from the base material molten steel It is characterized in that it is brought into contact with steel or metal, and is drawn out in one direction while solidifying and depositing the steel or metal for the above-mentioned bonding material on one side or both sides of the base material steel sheet.

【0010】この場合に、前記溶融金属浴としては溶融
銀浴又は溶融鉛浴を用いることが望ましい。また、溶融
銀浴又は溶融鉛浴は、少なくとも母材鋼板の凝固成型の
ための第1の槽と合わせ材を凝固堆積させるための第2
の槽とを備えており、これら第1及び第2の槽は、液面
近傍の連通部を除いて、堰によって仕切られていること
が好ましい。
In this case, it is desirable to use a molten silver bath or a molten lead bath as the molten metal bath. Further, the molten silver bath or the molten lead bath is at least a first bath for solidification molding of the base steel sheet and a second bath for solidifying and depositing the laminated material.
It is preferable that the first and second tanks are partitioned by a weir except for the communicating portion near the liquid surface.

【0011】さらに、合わせ材の厚みを、母材鋳片の冷
却速度と鋳片の引き抜き速度、合わせ材を保持している
溶融金属浴の温度、および、鋳片の引き抜き仰角によっ
て制御することが好ましい。
Furthermore, the thickness of the laminated material can be controlled by the cooling rate of the base material slab and the withdrawal rate of the slab, the temperature of the molten metal bath holding the laminated material, and the elevation angle of the slab withdrawal. preferable.

【0012】本発明では、母材の凝固形成手段と合わせ
材の凝固形成手段との両者を用いてクラッド比を容易に
変更できるようにしている。すなわち、母材及び合わせ
材のそれぞれの凝固速度と、その凝固時間とによって母
材厚みとクラッド厚みとを制御することにより鋳片のク
ラッド比を任意のものに変えうることに本発明の特徴が
ある。
In the present invention, the clad ratio can be easily changed by using both the base material solidification forming means and the laminated material solidification forming means. That is, the feature of the present invention is that the clad ratio of the slab can be changed to an arbitrary value by controlling the solidification rate of each of the base material and the laminated material and the solidification time of the base material and the clad thickness. is there.

【0013】[0013]

【発明の実施の形態】以下、添付の図面を参照しながら
本発明の好ましい実施の形態について説明する。まず、
図1を参照しながら母材の凝固形成手段について説明す
る。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. First,
The solidification forming means of the base material will be described with reference to FIG.

【0014】図1において、母材となる溶鋼1は第1の
鍋5に収容され、合わせ材となる溶融金属2は第2の鍋
6に収容されている。内部が3つに仕切られた溶融金属
浴B1,B2,B3が第1の鍋5の直下領域から第2の
鍋6の直下領域までに設けられている。すなわち第1の
溶融金属浴B1は仕切堰10によって第2の溶融金属浴
B2から仕切られ、さらに第2の溶融金属浴B2は仕切
堰11によって第3の溶融金属浴B3から仕切られてい
る。
In FIG. 1, molten steel 1 serving as a base material is contained in a first pot 5, and molten metal 2 serving as a laminating material is contained in a second pot 6. Molten metal baths B1, B2, B3, whose interiors are divided into three, are provided from a region directly below the first pot 5 to a region directly below the second pot 6. That is, the first molten metal bath B1 is partitioned from the second molten metal bath B2 by the partition weir 10, and the second molten metal bath B2 is partitioned from the third molten metal bath B3 by the partition weir 11.

【0015】第2の溶融金属浴B2の長さS2は第1の
溶融金属浴B1の長さS1よりも長く、また、第3の溶
融金属浴B3の長さS3は第2の溶融金属浴B2の長さ
S2よりもさらに長い。第1乃至第3浴の長さS1,S
2,S3は、製造しようとする製品のクラッド比等の仕
様に応じて所望値に設定する。また、これらの浴長さS
1〜S3とともに、浴の深さ、鋳片の引き抜き速度、鋳
片の引き抜き仰角θなどは製品の品質を左右する重要な
要素である。
The length S2 of the second molten metal bath B2 is longer than the length S1 of the first molten metal bath B1, and the length S3 of the third molten metal bath B3 is the second molten metal bath. It is even longer than the length S2 of B2. Lengths S1 and S of the first to third baths
2, S3 are set to desired values according to specifications such as the clad ratio of the product to be manufactured. Also, these bath length S
In addition to 1 to S3, bath depth, slab drawing speed, slab drawing elevation angle θ, etc. are important factors that affect product quality.

【0016】第3の浴B3の入側上方に鋳片傾斜引き抜
き支点ロール13が設けられ、鋳片の上面に押し付けら
れている。この支点ロール13によって凝固成長中の鋳
片は上向きに少し曲げられ、所望の引き抜き仰角θでピ
ンチロール14によって引き抜かれるようになってい
る。
A slab inclined withdrawal fulcrum roll 13 is provided above the entrance side of the third bath B3 and is pressed against the upper surface of the slab. The slab that is solidifying and growing is slightly bent upward by the fulcrum roll 13 and is pulled out by the pinch roll 14 at a desired pulling-out elevation angle θ.

【0017】第1〜第3の溶融金属浴B1,B2,B3
内には溶融銀もしくは溶融鉛が収容されている。第1の
溶融金属浴B1は温度制御装置7を備え、第2の溶融金
属浴B2は温度制御装置8を備え、第3の溶融金属浴B
3は温度制御装置9を備えている。各温度制御装置7,
8,9は加熱ヒータ及び温度センサを備えており、各浴
B1,B2,B3の溶融金属が母材となる溶鋼1の凝固
点以上の温度に保持されるように温度制御される。
First to third molten metal baths B1, B2, B3
Molten silver or molten lead is contained therein. The first molten metal bath B1 is provided with a temperature control device 7, the second molten metal bath B2 is provided with a temperature control device 8, and the third molten metal bath B is provided.
3 includes a temperature control device 9. Each temperature control device 7,
8 and 9 are provided with a heater and a temperature sensor, and the temperature is controlled so that the molten metal in each of the baths B1, B2 and B3 is maintained at a temperature equal to or higher than the freezing point of the molten steel 1 as the base material.

【0018】第1の溶融金属浴B1の外側には注湯部が
形成され、この注湯部に第1の鍋5の下部ノズルが装入
されている。この下部ノズルは流量調節機構を備えるス
ライディングノズルであり、これにより溶鋼1は流量を
調節されながら鍋5から受入槽に注ぎ込まれるようにな
っている。
A pouring portion is formed outside the first molten metal bath B1, and the lower nozzle of the first pot 5 is inserted into the pouring portion. This lower nozzle is a sliding nozzle having a flow rate adjusting mechanism, whereby the molten steel 1 is poured into the receiving tank from the pan 5 while the flow rate is adjusted.

【0019】さらに、注入溶鋼1は注湯部からオーバー
フローして第1の浴B1に流れ込み、溶融金属の自由表
面を覆うようになっている。なお、第1浴B1内の湯面
はノロ混入防止堰12によって仕切られており、アルミ
ナ等の不純物が防止堰12によってせきとめ、下流側の
第2及び第3のB2,B3への侵入を防止するようにし
ている。
Further, the poured molten steel 1 overflows from the pouring portion and flows into the first bath B1 so as to cover the free surface of the molten metal. In addition, the molten metal surface in the first bath B1 is partitioned by a slag mixture prevention weir 12, and impurities such as alumina are blocked by the prevention weir 12 to prevent invasion of the downstream second and third B2 and B3. I am trying to do it.

【0020】溶鋼1は溶融金属浴の自由表面上に拡が
り、溶鋼1もまた自由表面を形成して所定厚みに保持さ
れる。なお、溶鋼1の厚みは、注湯速度と凝固して引き
抜きされる薄平板の引き抜き速度とのバランスで決定さ
れる。所定厚みに制御されている母材溶鋼は、銀もしく
は鉛の融点以上の温度に制御されている溶融金属浴B2
のなかで凝固成長する。これにより所望厚さの母材鋼板
3が形成される。
The molten steel 1 spreads on the free surface of the molten metal bath, and the molten steel 1 also forms a free surface and is held at a predetermined thickness. The thickness of the molten steel 1 is determined by the balance between the pouring speed and the drawing speed of a thin plate that is solidified and drawn. The base material molten steel controlled to a predetermined thickness is a molten metal bath B2 controlled to a temperature equal to or higher than the melting point of silver or lead.
It solidifies and grows in the inside. Thereby, the base material steel plate 3 having a desired thickness is formed.

【0021】凝固成長量によって決定される鋼板3の板
厚は、溶融金属浴B2での凝固速度と通過時間とで決ま
る。凝固速度は、浴B2での抜熱量、換言すれば、浴B
2の温度によって決定され、通過時間は、浴B2に滞在
する時間であり、浴B2の引き抜き方向の長さS2と引
き抜き速度で支配される。
The plate thickness of the steel plate 3 determined by the solidification growth amount is determined by the solidification rate and the passage time in the molten metal bath B2. The solidification rate is the amount of heat removed from bath B2, in other words, bath B2.
It is determined by the temperature of 2 and the passage time is the time to stay in the bath B2, and is controlled by the length S2 of the bath B2 in the drawing direction and the drawing speed.

【0022】すなわち、鋳片の引き抜き速度をVcとす
ると、浴B2での通過時間はS2/Vcであるから、浴
B2での凝固定数をK1 とすれば浴B2を出る時の凝固
した鋳片厚みTは、おおよそT=K1 (S2/Vc)
1/2 となる。
That is, when the drawing speed of the slab is Vc, the passage time in the bath B2 is S2 / Vc, so if the solidification constant in the bath B2 is K 1 , the solidified casting when leaving the bath B2 The piece thickness T is approximately T = K 1 (S2 / Vc)
1/2 .

【0023】このように厚みが決定された母材鋼板3
は、次の溶融金属浴B3の自由表面上に保持されている
合わせ材(クラッド材)となる異なった組成の溶融金属
(溶鋼)2に片面を浸漬させた状態で通過する。その
際、浸漬している面に合わせ材溶湯2が凝固溶着してク
ラッド材4が形成される。
Base material steel plate 3 having the thickness thus determined
Passes through with one surface immersed in a molten metal (molten steel) 2 having a different composition to be a laminated material (cladding material) held on the free surface of the next molten metal bath B3. At this time, the clad material 4 is formed by solidifying and melting the molten material 2 for the joining material on the surface that is being immersed.

【0024】鋳片は第3の浴B3の入側で支点ロール1
3によって上向きに少し曲げられ、所望の引き抜き仰角
θでピンチロール14によって引き抜かれる。ここで、
鋳片引き抜き速度は母材鋼板3の板厚を制御するために
設定されている。このため、合わせ材4の厚み(クラッ
ド厚)を制御するためには、浴B3では斜め上方に引き
抜き、その引き抜き角度θを適正範囲に調整することに
より浴B3での滞在時間を決定して合わせ材4の凝固量
を制御するようにしている。その際、浴B3の温度制御
も合わせ材4の厚みを決定する上で極めて重要であり、
その温度範囲は、合わせ材4の溶融温度に対する過熱度
で約50℃以内が現実的である。
The slab is fulcrum roll 1 on the entry side of the third bath B3.
It is slightly bent upward by 3 and is pulled out by the pinch roll 14 at a desired pull-up elevation angle θ. here,
The slab drawing speed is set to control the plate thickness of the base steel plate 3. Therefore, in order to control the thickness (cladding thickness) of the laminated material 4, the bath B3 is pulled obliquely upward and the pull-out angle θ is adjusted to an appropriate range to determine the staying time in the bath B3. The amount of solidification of the material 4 is controlled. At that time, controlling the temperature of the bath B3 is also extremely important in determining the thickness of the laminated material 4,
The temperature range is practically within about 50 ° C. in terms of the degree of superheat with respect to the melting temperature of the laminated material 4.

【0025】一方、合わせ材の厚みを制御する上で、母
材側からの冷却制御がより一層重要である。具体的に
は、図1に示すように、何らかの形で強制冷却が必要で
あるが、この場合、下方に溶湯が存在することを考える
と、強制空冷が簡単である。
On the other hand, in controlling the thickness of the laminated material, cooling control from the base material side is even more important. Specifically, as shown in FIG. 1, forced cooling is required in some form, but in this case, considering that the molten metal exists below, forced air cooling is easy.

【0026】上記の抜熱条件が決定されて合わせ材の凝
固溶着速度、即ち、合わせ材の凝固定数K2 が定まると
合わせ材の厚みt(mm)は、合わせ材の溶融厚みを
D、鋳片の上方への引き抜き角度(仰角)をθとする
と、下式(1)のように表わすことができる。
When the above-mentioned heat removal conditions are determined and the solidification and welding speed of the composite material, that is, the solidification constant K 2 of the composite material is determined, the thickness t (mm) of the composite material is D, the melt thickness of the composite material, and When the upward pulling angle (elevation angle) of the piece is θ, it can be expressed by the following equation (1).

【0027】 t=k2 {(D/Vc)sinθ}1/2 …(1) なお、溶融状態にある母材および、合わせ材の表面に
は、保温と酸化防止および、浮上してくる介在物の吸収
材の目的で所定のフラックスで覆うことが望ましい。さ
らに、これらの表面を不活性ガスで覆うことも操業の安
定性の観点から望ましい。
T = k 2 {(D / Vc) sin θ} 1/2 (1) It should be noted that the surfaces of the base material and the laminated material in the molten state are kept warm and are prevented from being oxidized, and floating surfaces are present. It is desirable to cover with a predetermined flux for the purpose of absorbing material. Further, it is also desirable to cover these surfaces with an inert gas from the viewpoint of operation stability.

【0028】また、合わせ材溶湯2は、図2及び図3に
示すように、凝固完了した鋳片3,4の引き抜きを邪魔
しないようにストランドの側面から注湯すればよい。さ
らに、両面複層鋳片を製造する場合は、厚みが決定され
た凝固完了後の母材鋳片を、合わせ材の溶融深さ以上に
一旦浸漬させ、その後、所定の仰角で引き抜きを行って
母材の表裏面に合わせ材4を凝固付着させればよい。
Further, as shown in FIGS. 2 and 3, the melt 2 for the joining material may be poured from the side surface of the strand so as not to interfere with the pulling out of the cast pieces 3 and 4 which have been solidified. Furthermore, in the case of producing a double-sided multi-layered slab, the base material slab after completion of solidification, the thickness of which has been determined, is once dipped at a melting depth of the laminated material or more, and then pulled out at a predetermined elevation angle. The mating material 4 may be solidified and adhered to the front and back surfaces of the base material.

【0029】以下、具体的な鋳片の製造の例について説
明する。 (実施例1)炭素濃度が約0.08重量%の低炭素アル
ミキルド鋼を母材とし、オーステナイト系ステンレス鋼
(SUS304)を合わせ材として800mm幅のクラ
ッド鋼の製造を目的として鋳造テストを試みた。
Hereinafter, a specific example of manufacturing a cast piece will be described. (Example 1) A casting test was attempted for the purpose of producing a clad steel having a width of 800 mm using a low carbon aluminum killed steel having a carbon concentration of about 0.08% by weight as a base material and an austenitic stainless steel (SUS304) as a composite material. .

【0030】図1に示す連続鋳造設備を鋳造テストに用
いた。溶融金属浴B1,B2,B3の各々の長さS1,
S2,S3を2m,8m,9mとし、また、それらの浴
の温度を1560℃,1250℃,1495℃にそれぞ
れ保持した。
The continuous casting equipment shown in FIG. 1 was used for the casting test. Each length S1, of the molten metal baths B1, B2, B3
S2 and S3 were set to 2 m, 8 m, and 9 m, and the temperatures of the baths were kept at 1560 ° C, 1250 ° C, and 1495 ° C, respectively.

【0031】第1浴B1の近傍の注湯部に第1の鍋5か
ら浸漬ノズルを介して母材溶鋼1を注ぎ込むとともに、
第2の鍋6から浸漬ノズルを介して合わせ材溶湯2を注
ぎ込む。引き抜き速度を毎分5mに設定して、溶鋼の厚
みDを20〜25mmに調整し、ほぼこれに等しい厚み
の母材鋼板3が凝固形成され、浴S3での上方引き抜き
角度θを0.5〜2.0°の範囲で変更することによ
り、合わせ材(SUS304)4の厚みは、5〜12m
mを得ることができた。
While pouring molten steel 1 as the base material into the pouring part near the first bath B1 from the first pot 5 through the dipping nozzle,
Molten metal 2 is poured from the second pot 6 through the dipping nozzle. The drawing speed is set to 5 m / min, the thickness D of the molten steel is adjusted to 20 to 25 mm, the base material steel plate 3 having substantially the same thickness is solidified and formed, and the upper drawing angle θ in the bath S3 is set to 0.5. By changing in the range of up to 2.0 °, the thickness of the laminated material (SUS304) 4 is 5 to 12 m.
I was able to obtain m.

【0032】また、鋳片引き抜き速度を毎分3.5mに
設定した場合に、母材鋼板3の厚みとして28〜32m
m、合わせ材(SUS304)4の厚みとして7.5〜
18mmを得た。 (実施例2)母材の厚みとして更に厚いものを製造する
意図で浴B2における二面凝固を試みた。浴B2内のフ
ラックスを取り除き、下流側(浴B3側)の約半分に対
して強制空冷を行った。その結果、凝固定数は約50%
増大し、2.0m/minの引き抜き速度で80mm厚
みの母材板厚を確保できた。また鋳片引き抜き角度θを
1.0°に設定した結果、強制空冷制御と浴B3の温度
調節により、合わせ材4の厚みとして17.5〜28m
mを得ることができた。
When the cast strip drawing speed is set to 3.5 m / min, the thickness of the base steel plate 3 is 28 to 32 m.
m, the thickness of the laminated material (SUS304) 4 is 7.5
18 mm was obtained. (Example 2) Two-side solidification in bath B2 was attempted with the intention of producing a thicker base material. The flux in the bath B2 was removed, and about half of the downstream side (the bath B3 side) was subjected to forced air cooling. As a result, the coagulation constant is about 50%
It was increased, and a base material plate thickness of 80 mm was able to be secured at a drawing speed of 2.0 m / min. Further, as a result of setting the slab drawing angle θ to 1.0 °, the thickness of the laminated material 4 was 17.5 to 28 m by the forced air cooling control and the temperature control of the bath B3.
I was able to obtain m.

【0033】上記実施例によれば、簡単な設備を用いて
母材と合わせ材との界面が良好な母材板厚20〜80m
m、合わせ材厚み5〜28mmのクラッド鋳片を効率良
く製造することが可能になった。
According to the above-mentioned embodiment, the base material plate thickness is 20 to 80 m and the interface between the base material and the laminated material is good by using simple equipment.
It has become possible to efficiently produce a clad slab having a thickness of m and a thickness of the laminated material of 5 to 28 mm.

【0034】[0034]

【発明の効果】本発明によれば、簡単な設備を用いて母
材と合わせ材との界面が良好なクラッド鋳片を高効率で
製造することができる。
According to the present invention, a clad slab having a good interface between the base material and the laminated material can be manufactured with high efficiency by using a simple facility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る複層鋳片の製造方法に
用いられる連続鋳造設備の概要を示す側断面図。
FIG. 1 is a side sectional view showing an outline of continuous casting equipment used in a method for producing a multi-layer cast product according to an embodiment of the present invention.

【図2】本発明の実施形態に係る複層鋳片の製造方法に
用いられる連続鋳造設備の平面図。
FIG. 2 is a plan view of a continuous casting facility used in the method for producing a multi-layer cast product according to the embodiment of the present invention.

【図3】図2のIII −III 線で切断した設備の縦断面図
である。
3 is a vertical cross-sectional view of the equipment taken along the line III-III in FIG.

【符号の説明】[Explanation of symbols]

1…母材溶鋼、2…合わせ材溶湯、3…母材鋳片、4…
合わせ材、5…母材溶鋼保持鍋、6…合わせ材溶湯保持
鍋、7…浴B1温度制御装置、8…浴B2温度制御装
置、9…浴B3温度制御装置、10,11…浴仕切堰、
12…ノロ混入防止堰、13…鋳片傾斜引き抜き支点ロ
ール、14…引き抜き駆動ロール、15…強制冷却ノズ
ル、16…側面堰。
1 ... Base material molten steel, 2 ... Laminated material molten metal, 3 ... Base material cast piece, 4 ...
Laminated material, 5 ... Base material molten steel holding pan, 6 ... Laminated material molten metal holding pan, 7 ... Bath B1 temperature control device, 8 ... Bath B2 temperature control device, 9 ... Bath B3 temperature control device, 10, 11 ... Bath partition weir ,
12 ... Noro mixing prevention weir, 13 ... Cast slab inclined drawing fulcrum roll, 14 ... Drawing driving roll, 15 ... Forced cooling nozzle, 16 ... Side weir.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属浴の表面に母材溶鋼を注湯し、
この母材溶鋼を前記溶融金属浴の自由表面上で凝固成長
させて母材鋼板を連続的に引き抜き形成し、引き続き前
記母材鋼板をその引き抜き方向の延長線上にある溶融金
属浴上に浮遊させた前記母材溶鋼とは異なる組成の合わ
せ材用の鋼または金属に接触させ、前記母材鋼板の片面
又は両面に前記合わせ材用の鋼または金属を凝固堆積さ
せながら一方向に引き抜くことを特徴とする複層鋳片の
製造方法。
1. A molten base metal is poured onto the surface of a molten metal bath,
This base material molten steel is solidified and grown on the free surface of the molten metal bath to continuously draw and form the base material steel plate, and then the base material steel plate is suspended on the molten metal bath on the extension line of the drawing direction. It is characterized in that it is brought into contact with a steel or metal for a laminating material having a composition different from that of the base material molten steel, and is drawn in one direction while solidifying and depositing the steel or metal for a laminating material on one or both surfaces of the base material steel plate. And a method for producing a multi-layer cast slab.
【請求項2】 前記溶融金属浴として溶融銀浴又は溶融
鉛浴を用い、 この溶融銀浴又は溶融鉛浴は、少なくとも母材鋼板の凝
固成型のための第1の槽と、合わせ材を凝固堆積させる
ための第2の槽と、を備え、 前記第1及び第2の槽は、液面近傍の連通部を除いて、
堰によって仕切られていることを特徴とする請求項1記
載の複層鋳片の製造方法。
2. A molten silver bath or a molten lead bath is used as the molten metal bath, and the molten silver bath or the molten lead bath solidifies at least a first tank for solidification molding of a base steel sheet and a laminated material. A second tank for depositing the first and second tanks, except for the communicating portion near the liquid surface,
The method for producing a multi-layer cast product according to claim 1, wherein the multi-layer cast product is partitioned by a weir.
【請求項3】 合わせ材の厚みを、母材鋳片の冷却速度
と鋳片の引き抜き速度、合わせ材を保持している溶融金
属浴の温度、および、鋳片の引き抜き仰角によって制御
することを特徴とする請求項1記載の複層鋳片の製造方
法。
3. The thickness of the laminated material is controlled by controlling the cooling rate of the base material slab and the withdrawal rate of the slab, the temperature of the molten metal bath holding the laminated material, and the elevation angle of the slab withdrawal. The method for producing a multi-layer cast product according to claim 1, which is characterized in that.
JP593196A 1996-01-17 1996-01-17 Production of complex cast slab Pending JPH09192784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP593196A JPH09192784A (en) 1996-01-17 1996-01-17 Production of complex cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP593196A JPH09192784A (en) 1996-01-17 1996-01-17 Production of complex cast slab

Publications (1)

Publication Number Publication Date
JPH09192784A true JPH09192784A (en) 1997-07-29

Family

ID=11624649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP593196A Pending JPH09192784A (en) 1996-01-17 1996-01-17 Production of complex cast slab

Country Status (1)

Country Link
JP (1) JPH09192784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464881C (en) * 2005-03-21 2009-03-04 孙恩波 Continuous casting continuous rolling composite metal board and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464881C (en) * 2005-03-21 2009-03-04 孙恩波 Continuous casting continuous rolling composite metal board and its production method

Similar Documents

Publication Publication Date Title
US8415025B2 (en) Composite metal as cast ingot
US4828015A (en) Continuous casting process for composite metal material
JPH09192784A (en) Production of complex cast slab
FI78250C (en) FARING EQUIPMENT FOR DIRECTIVE PROCESSING OF SMALL METAL.
EP0743115B1 (en) Method and apparatus for continuous casting of steel materials
JP2003251438A (en) Method for continuously casting cast slab having little blow hole and steel material obtained by working the cast slab
FI78249B (en) FOERFARANDE OCH ANORDNING FOER DIREKTGJUTNING AV SMAELT METALL TILL ETT FORTLOEPANDE KRISTALLINT METALLBAND.
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP2001232450A (en) Method for manufacturing continuous cast slab
EP0387006A2 (en) Dual plate strip caster
JPH11286761A (en) Hot dip galvanizing device and method therefor
JP3984476B2 (en) Continuous casting method of cast slab with few bubble defects and manufactured slab
JP2002501438A (en) Method and apparatus for manufacturing a slab
JP4207562B2 (en) Continuous casting method and continuous cast slab manufactured by the method
KR101400035B1 (en) Method for producing high quality slab
RU2073585C1 (en) Method and apparatus for continuous casting of small-section bimetallic billets
JP7389335B2 (en) Method for producing thin slabs
JPS61289947A (en) Method and apparatus for continuous casting of clad ingot
JPS61135463A (en) Method and device for continuous casting of metal-clad material
JPH0760408A (en) Production of steel plate for thin sheet
JPH0255643A (en) Method and nozzle for continuously casting metal strip
JPH0780600A (en) Method for continuous casting of composite ingot
JPS6087956A (en) Continuous casting method of metal
KR101377484B1 (en) Method for estimating carbon-increasing of molten steel
EP0342020A2 (en) Method and apparatus for continuous strip casting