JPH09190718A - Suspension feeder wire - Google Patents

Suspension feeder wire

Info

Publication number
JPH09190718A
JPH09190718A JP321896A JP321896A JPH09190718A JP H09190718 A JPH09190718 A JP H09190718A JP 321896 A JP321896 A JP 321896A JP 321896 A JP321896 A JP 321896A JP H09190718 A JPH09190718 A JP H09190718A
Authority
JP
Japan
Prior art keywords
wire
tensile strength
copper alloy
suspension
feeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP321896A
Other languages
Japanese (ja)
Inventor
Teruichi Honda
照一 本田
Koichi Hosokawa
浩一 細川
Tomohiko Muto
智彦 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP321896A priority Critical patent/JPH09190718A/en
Publication of JPH09190718A publication Critical patent/JPH09190718A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make installation inside a narrow tunnel, and enhance tensile strength, corrosion resistance, and especially conductivity by interwining a specific copper alloy wire with a hard-drawn copper wire. SOLUTION: In a suspension feeder wire 1 comprising strands 2 of a specific copper alloy wire and strands 3 of hard-drawn copper wires intertwined on the strand 2, the strand 2 is made of a copper alloy containing 0.1-1wt.% chromium, 0.01-0.3wt.% zirconium, 0.006-0.1wt.% silicon, and unavoidable impurities. The tensile strength of the stringing 1 is specified to 40-60Kgf/mm<2> , the conductivity to 70-99.9% IACS. In the case that the wire 1 is installed as the feeding suspension stringing of a trolley line, the tensile strength and the conductivity usually required are satisfied. The wire 1 has high tensile strength, corrosion resistance and conductivity, and is suitable as the suspension feeder wire inside a narrow tunnel for example.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、き電吊架線に関す
る。さらに詳しくは、本発明はトロリー線などのき電吊
架線として用いることができ、とくに狭小トンネル内な
どにおいて好適に用いられうる。
TECHNICAL FIELD The present invention relates to a feeder suspension line. More specifically, the present invention can be used as a feeder suspension line such as a trolley wire, and can be suitably used particularly in a narrow tunnel.

【0002】[0002]

【従来の技術】従来、直流電化区間の狭小トンネル内な
どでは、空頭に余裕がないためにき電吊架方式架線が架
設されて用いられている。
2. Description of the Related Art Conventionally, in a narrow tunnel of a direct current electrification section or the like, a feeder suspension system has been installed and used because there is no room in the empty head.

【0003】前記き電吊架方式架線とは、トロリ線に送
電するためのき電線(すなわち、送電線)と、トロリ線
を吊架するための吊架線との両方の機能を合せ持つき電
吊架線を有する架線である。すなわち、き電吊架方式架
線では、送電線、トロリ線およびトロリ線を吊るための
吊架線からなる3本系の架線方式とは異なり、送電線と
吊架線との機能を一体化したき電吊架線とトロリ線との
2本系の架線方式としているので、前記狭小トンネル内
などにおける架線としてはコンパクト化が図れるという
メリットがある。
The feeder suspension line is a feeder having both the functions of a feeder line for transmitting power to the trolley wire (that is, a power transmission line) and a suspension wire for suspending the trolley wire. It is an overhead wire that has a suspension overhead wire. That is, in the feeder suspension system overhead line, unlike the three-line system that consists of a power transmission line, a trolley wire, and a suspension line for suspending the trolley wire, a feeder line that integrates the functions of the power transmission line and the suspension line is provided. Since the system is a two-wire system of a suspension overhead wire and a trolley wire, there is an advantage that the overhead wire can be made compact in the narrow tunnel or the like.

【0004】前記き電吊架線には、き電線としての役
割、すなわち導電性に優れていることが、また吊架線と
しての役割、すなわち引張強度が大きいことがいずれも
要求される。
The feeder suspension line is required to have a role as a feeder line, that is, have excellent conductivity, and a role as a suspension line, that is, have high tensile strength.

【0005】しかし、前記き電線として通常用いられて
いる、たとえばアルミ被覆鋼線をき電吊架線として用い
ようとしても、導電率が低いうえに、異種金属が接して
いることにより生じる電位差を原因とする腐食、海岸の
近くに架設されたときの海水による腐食、トンネル内に
架設されたときの漏水による腐食が起こるという問題が
ある。
However, even if an aluminum-coated steel wire, which is usually used as the feeder, is used as the feeder suspension wire, the electrical conductivity is low and the potential difference caused by the contact of dissimilar metals causes There are problems such as corrosion caused by seawater, corrosion caused by seawater when installed near the coast, and corrosion caused by water leakage when installed inside a tunnel.

【0006】また、前記吊架線として用いることが提案
されている、たとえば特公昭63−23015号公報記
載の銅被覆亜鉛めっき鋼線をき電吊架線として用いよう
としても、導電率が低く、また前記電位差による腐食が
起こるという問題がある。
[0006] Further, even if an attempt is made to use a copper-coated galvanized steel wire described in Japanese Patent Publication No. 63-23015 as a suspension line, it has a low electric conductivity, There is a problem that corrosion due to the potential difference occurs.

【0007】また、導電率を高めるために、き電吊架線
として硬銅線を用いることも提案されているが、機械的
強度(引張強度)が充分ではなかった。すなわち、硬銅
線をき電吊架線として用いたばあい、機械的強度が充分
でないために、該き電吊架線をトンネル内天井などに留
めるための支持点を多く設けなければならず、その結
果、電車の走行時、パンタグラフが離線しやすくなると
いった問題がある。
It has also been proposed to use a hard copper wire as a feeder suspension wire in order to increase the electrical conductivity, but the mechanical strength (tensile strength) was not sufficient. That is, when a hard copper wire is used as a feeder suspension wire, since the mechanical strength is not sufficient, it is necessary to provide a large number of supporting points for fastening the feeder suspension wire to a ceiling in a tunnel, etc. As a result, there is a problem that the pantograph easily separates when the train is running.

【0008】[0008]

【発明が解決しようとする課題】本発明者らは、前記の
ような問題に鑑み鋭意検討の結果、特定の銅合金線と硬
銅線とを組み合わせて用いることにより、前記問題を解
決できることを見出した。
DISCLOSURE OF THE INVENTION As a result of intensive studies in view of the above problems, the present inventors have found that the problems can be solved by using a specific copper alloy wire and a hard copper wire in combination. I found it.

【0009】すなわち、本発明の目的は、狭小トンネル
内などで架設して用いることができ、引張強度、耐腐食
性、とくに導電性に優れたき電吊架線を提供することに
ある。
[0009] That is, an object of the present invention is to provide an electric suspension line which can be installed and used in a narrow tunnel or the like and is excellent in tensile strength, corrosion resistance, and particularly conductivity.

【0010】[0010]

【課題を解決するための手段】本発明は、銅合金線と銅
線とが撚り合わされているき電吊架線であって、該銅合
金線が、クロム0.1〜1重量%、ジルコニウム0.0
1〜0.3重量%、ケイ素0.006〜0.1重量%お
よび不可避不純物を含む銅合金からなり、かつ該銅線が
硬銅線であることを特徴とするき電吊架線に関する。
DISCLOSURE OF THE INVENTION The present invention relates to a feeder suspension wire in which a copper alloy wire and a copper wire are twisted together, wherein the copper alloy wire contains 0.1 to 1% by weight of chromium and 0% zirconium. .0
The present invention relates to a feeder suspension wire, which is made of a copper alloy containing 1 to 0.3% by weight, 0.006 to 0.1% by weight of silicon, and unavoidable impurities, and the copper wire is a hard copper wire.

【0011】[0011]

【発明の実施の形態】本発明のき電吊架線は、特定の銅
合金線と硬銅線とが撚り合わされていることに最大の特
徴がある。
BEST MODE FOR CARRYING OUT THE INVENTION The feeder line of the present invention is characterized in that a specific copper alloy wire and a hard copper wire are twisted together.

【0012】前記特定の銅合金線は、特開平6−154
838号公報に記載されている銅合金トロリ線・吊架線
の製造法によりえられる銅合金線である。
The above-mentioned specific copper alloy wire is disclosed in JP-A-6-154.
It is a copper alloy wire obtained by the method for manufacturing a copper alloy trolley wire / suspended wire described in Japanese Patent No. 838.

【0013】すなわち、その製造法の骨子は、つぎのと
おりである。クロム0.1〜1%(重量%、以下同
様)、ジルコニウム0.01〜0.3%、ケイ素0.0
06〜0.1%を含有し、残りが銅および不可避不純物
からなる組成の銅合金ビレットを、(1)温度860〜
1000℃、加工率90%以上の条件で熱間加工したの
ち、ただちに急冷して素線を製造し、この素線に少なく
とも1回の冷間加工を施したのち時効処理を施す製造
法、(2)温度860〜1000℃、加工率90%以上
の条件で熱間加工したのち、ただちに急冷して素線を製
造し、この素線に、冷間加工と時効処理を2回以上施す
製造法、(3)温度860〜1000℃、加工率90%
以上の条件で熱間加工したのち放冷し、さらに温度86
0〜1000℃に加熱したのち急冷の溶体化処理を施し
て素線を製造し、この素線に少なくとも1回の冷間加工
を施したのち時効処理を施す製造法または(4)温度8
60〜1000℃、加工率90%以上の条件で熱間加工
したのち放冷し、さらに温度860〜1000℃に加熱
したのち急冷の溶体化処理を施して素線を製造し、この
素線に、冷間加工したのち時効処理する操作を2回以上
施す製造法である。
That is, the outline of the manufacturing method is as follows. Chromium 0.1-1% (wt%, the same below), zirconium 0.01-0.3%, silicon 0.0
A copper alloy billet containing 06-0.1% and the balance of copper and unavoidable impurities was used.
A manufacturing method in which hot working is performed under conditions of 1000 ° C. and a working rate of 90% or more, then immediately quenched to manufacture a wire, and the wire is subjected to at least one cold working and then an aging treatment ( 2) A manufacturing method in which hot working is performed under conditions of a temperature of 860 to 1000 ° C. and a working rate of 90% or more, then immediately quenched to manufacture a wire, and the wire is subjected to cold working and aging treatment twice or more. , (3) Temperature 860-1000 ° C, processing rate 90%
After hot working under the above conditions, it is allowed to cool, and the temperature is 86
A manufacturing method in which a wire is manufactured by heating it to 0 to 1000 ° C., then subjecting it to rapid solution treatment, and subjecting this wire to cold working at least once and then subjecting it to an aging treatment, or (4) temperature 8
After hot working under the conditions of 60 to 1000 ° C and a working rate of 90% or more, it is left to cool, then heated to a temperature of 860 to 1000 ° C, and then subjected to a solution treatment of rapid cooling to produce a wire. It is a manufacturing method in which the operation of cold working and then aging treatment is performed twice or more.

【0014】より具体的には、通常のカソード銅を溶解
してえられた溶銅に所定量のクロムを添加し、さらに所
定量のジルコニウムおよびケイ素を添加したのち鋳造し
て円柱または角柱状のビレットを製造する。
More specifically, a predetermined amount of chromium is added to molten copper obtained by melting ordinary cathode copper, and further a predetermined amount of zirconium and silicon are added, followed by casting to obtain a cylindrical or prismatic shape. Manufacture billets.

【0015】ついで、このビレットを好ましくは還元性
雰囲気下で860〜1000℃に加熱し、一回の加工率
が90%以上の熱間加工を施して素線を製造し、この素
線が860℃以下に冷却しないうちにただちに水冷もし
くはガスで急冷し、または熱間加工したのち放冷し、再
び860〜1000℃、0.1〜6時間に加熱保持した
のち急冷の溶体化処理を施し、さらに冷間加工を繰り返
したのち時効処理するかまたは冷間加工および時効処理
を繰り返すことにより所定の断面寸法の銅合金線がえら
れる。
Then, the billet is heated to 860 to 1000 ° C., preferably in a reducing atmosphere, and hot-worked at a working rate of 90% or more to produce a wire, and the wire is 860. Immediately water-cooled or gas-quenched without cooling to ℃ or less, or hot-worked and then left to cool, and then heat-retained again at 860 to 1000 ° C. for 0.1 to 6 hours, and then subjected to rapid solution treatment. Further, the cold working and then the aging treatment or the cold working and the aging treatment are repeated to obtain a copper alloy wire having a predetermined cross-sectional dimension.

【0016】本発明において、クロムの含有率が前記範
囲内であれば、引張強度に優れるが、0.2〜0.8%
であればさらに好ましい。
In the present invention, when the chromium content is within the above range, the tensile strength is excellent, but 0.2 to 0.8%.
Is more preferable.

【0017】また、ジルコニウムの含有率が前記範囲内
であれば、引張強度に優れるが、0.05〜0.2%で
あればさらに好ましい。
When the content of zirconium is within the above range, the tensile strength is excellent, but 0.05 to 0.2% is more preferable.

【0018】また、ケイ素の含有率が前記範囲内であれ
ば、引張強度に優れるが、0.01〜0.08%であれ
ばさらに好ましい。
When the silicon content is within the above range, the tensile strength is excellent, but 0.01 to 0.08% is more preferable.

【0019】また、本発明においてリンを含有させても
よく、リンの含有率が0.006〜0.1%であれば、
引張強度に優れる。
In the present invention, phosphorus may be contained, and if the phosphorus content is 0.006 to 0.1%,
Excellent tensile strength.

【0020】本発明において不可避不純物は、たとえば
Ag、硫黄(S)などがあげられるが、これらの含有率
は、引張強度、導電性、耐腐食性などに悪影響を与えな
い程度であればよく、たとえば0.001%以下である
ことが好ましい。
The unavoidable impurities in the present invention include, for example, Ag and sulfur (S), but the content of these may be such that they do not adversely affect tensile strength, conductivity, corrosion resistance and the like. For example, it is preferably 0.001% or less.

【0021】本発明で用いられる銅合金は引張強度の点
から無酸素状態のものが好ましい。たとえば銅合金中の
溶存酸素が10ppm以下のものである。
The copper alloy used in the present invention is preferably in an oxygen-free state from the viewpoint of tensile strength. For example, the dissolved oxygen in the copper alloy is 10 ppm or less.

【0022】本発明において、このような特定の銅合金
線を用いることにより、引張強度が大きく、耐腐食性、
導電性のよいき電吊架線がえられる。
In the present invention, by using such a specific copper alloy wire, the tensile strength is high, the corrosion resistance,
It is possible to obtain an electric suspension line with good conductivity.

【0023】前記硬銅線は、たとえばJIS C310
1において規定されている性質のものがあげられ、たと
えば純銅から冷間加工、必要に応じて熱処理などの工程
を含む通常の製法によりえられるものである。このよう
な硬銅線と前記特定の銅合金線とを撚り合わせて用いる
ことにより、またとくに硬銅線を前記特定の銅合金線の
まわりに撚り合せて用いることによりえられるき電吊架
線は、引張強度、耐腐食性が向上し、とくに導電性にさ
らに優れるとともに、海水などによる腐食が起こらず、
また同種の金属同士が接触しているので、前記のような
電位差を原因とする腐食が起こらない。
The hard copper wire is, for example, JIS C310.
The properties specified in No. 1 are listed, for example, those obtained from ordinary copper by an ordinary manufacturing method including steps such as cold working and, if necessary, heat treatment. By using such a hard copper wire and the specific copper alloy wire twisted together, and in particular, by using a hard copper wire twisted around the specific copper alloy wire, a feeder suspension wire obtained can be obtained. In addition, the tensile strength and corrosion resistance are improved, especially the conductivity is excellent, and corrosion by seawater does not occur,
Further, since metals of the same kind are in contact with each other, the corrosion due to the potential difference as described above does not occur.

【0024】本発明のき電吊架線の外周の直径は、20
〜100mm、好ましくは30〜80mmであり、これ
を構成する特定の銅合金線の素線の直径は、0.5〜
5.0mm、好ましくは1.0〜4.0mmであり、硬
銅線の素線の直径は、0.5〜5.0mm、好ましくは
1.0〜4.0mmである。
The outer diameter of the feeder suspension wire of the present invention is 20
˜100 mm, preferably 30 to 80 mm, and the diameter of the wire of the specific copper alloy wire constituting this is 0.5 to
It is 5.0 mm, preferably 1.0 to 4.0 mm, and the diameter of the wire of the hard copper wire is 0.5 to 5.0 mm, preferably 1.0 to 4.0 mm.

【0025】本発明のき電吊架線は、該架線や各素線の
直径が前記各範囲内に入るように、前記特定の銅合金線
の素線5〜20本、好ましくは7〜19本のまわりに、
通常の方法により、前記硬銅線の素線40〜55本、好
ましくは42〜54本を撚り合わせてえられる。
The feeder wire of the present invention has 5 to 20 strands, preferably 7 to 19 strands of the specific copper alloy wire so that the diameter of each of the strands and each strand falls within the above range. Around
It is possible to twist 40 to 55, preferably 42 to 54, strands of the hard copper wire by a usual method.

【0026】特定の銅合金線の素線の本数を前記範囲内
とすることにより、引張強度、導電性が向上し、硬銅線
の素線の本数を前記範囲内とすることにより、引張強
度、とくに導電性が向上する。
When the number of strands of a specific copper alloy wire is within the above range, the tensile strength and conductivity are improved, and when the number of strands of hard copper wire is within the above range, the tensile strength is , Especially the conductivity is improved.

【0027】本発明のき電吊架線は、引張強度が40〜
60kgf/mm2、好ましくは45〜55kgf/m
2であり、導電率が70〜99.9%IACS、好ま
しくは80〜95%IACSであるので、たとえば狭小
トンネル内において、トロリー線のき電吊架線として架
設されても、通常要求される引張強度および導電率をク
リアーしている。
The feeder cable of the present invention has a tensile strength of 40 to 40.
60 kgf / mm 2 , preferably 45-55 kgf / m
m 2 and the electric conductivity is 70 to 99.9% IACS, preferably 80 to 95% IACS, so that it is usually required even when installed as a feeder suspension line for a trolley wire in a narrow tunnel, for example. Clears tensile strength and conductivity.

【0028】本発明のき電吊架線では、き電吊架線を留
めるための支持点を多く設ける必要がないので、トロリ
ー線の摩耗の程度が減少し、トロリー線の張り替え回数
が大幅に減少する。
In the feeder suspension wire of the present invention, it is not necessary to provide many support points for holding the feeder suspension wire, so that the degree of wear of the trolley wire is reduced, and the number of times the trolley wire is replaced is significantly reduced. .

【0029】なお、前記トロリー線やこれとき電吊架線
とを電気的に接続するドロッパー線にも前記特定の銅合
金線を用いることができる。
The specific copper alloy wire can also be used for the trolley wire and the dropper wire for electrically connecting the electric suspension wire at this time.

【0030】本発明のき電吊架線において、各素線の本
数としては、たとえばつぎのようなものがあげられる。
なお、これらの例において、総撚り線数は61本、総断
面積(各素線の断面積の合計)は400mm2であり、
引張強度および導電率は後記する方法により測定した。
In the feeder suspension line of the present invention, the number of each wire is, for example, as follows.
In these examples, the total number of twisted wires is 61, and the total cross-sectional area (total cross-sectional area of each wire) is 400 mm 2 .
The tensile strength and the electrical conductivity were measured by the methods described below.

【0031】(1)特定の銅合金線の素線1本と硬銅線
の素線60本とからなるばあい 引張強度:44.1kgf/mm2、導電率:96.6
%IACS (2)特定の銅合金線の素線19本と硬銅線の素線42
本とからなるばあい 引張強度:47.2kgf/mm2、導電率:90.4
%IACS (3)特定の銅合金線の素線37本と硬銅線の素線24
本とからなるばあい 引張強度:50.4kgf/mm2、導電率:84.2
%IACS (4)特定の銅合金線の素線60本と硬銅線の素線1本
とからなるばあい 引張強度:54.5kgf/mm2、導電率:76.3
%IACS (5)特定の銅合金線の素線42本と硬銅線の素線19
本とからなるばあい 引張強度:51.3kgf/mm2、導電率:82.5
%IACS (6)特定の銅合金線の素線24本と硬銅線の素線37
本とからなるばあい 引張強度:48.1kgf/mm2、導電率:88.6
%IACS これらのうち、引張強度および導電率がともに大きいと
いう点から(3)または(5)のばあいが好ましい。
(1) When it consists of one strand of a specific copper alloy wire and 60 strands of hard copper wire Tensile strength: 44.1 kgf / mm 2 , conductivity: 96.6
% IACS (2) Specific copper alloy wire 19 and hard copper wire 42
When composed of a book, tensile strength: 47.2 kgf / mm 2 , conductivity: 90.4
% IACS (3) 37 wires of specific copper alloy wire and 24 wires of hard copper wire
When composed of a book, tensile strength: 50.4 kgf / mm 2 , conductivity: 84.2
% IACS (4) When consisting of 60 wires of a specific copper alloy wire and 1 wire of hard copper wire Tensile strength: 54.5 kgf / mm 2 , conductivity: 76.3
% IACS (5) 42 specific copper alloy wires and 19 hard copper wires
When composed of a book Tensile strength: 51.3 kgf / mm 2 , conductivity: 82.5
% IACS (6) 24 specific copper alloy wires and 37 hard copper wires
When composed of a book Tensile strength: 48.1 kgf / mm 2 , conductivity: 88.6
% IACS Among these, the case of (3) or (5) is preferable from the viewpoint that both the tensile strength and the conductivity are large.

【0032】本発明のき電吊架線としては、たとえばつ
ぎのようなものが、好ましくあげられる。
Preferred examples of the feeder suspension wire of the present invention include the following.

【0033】 (A)特定の銅合金線 クロム 0.1〜1% ジルコニウム 0.01〜0.3% ケイ素 0.006〜0.1% 不可避不純物 (B)硬銅線 このき電吊架線は、導電性、引張強度、耐腐食性の点で
有利である。
(A) Specific copper alloy wire Chromium 0.1 to 1% Zirconium 0.01 to 0.3% Silicon 0.006 to 0.1% Inevitable impurities (B) Hard copper wire It is advantageous in terms of conductivity, tensile strength, and corrosion resistance.

【0034】より好ましくは、 (A1)特定の銅合金線 クロム 0.2〜0.8% ジルコニウム 0.05〜0.2% ケイ素 0.01〜0.08% 不可避不純物 (B)硬銅線 このき電吊架線は、導電性、引張強度、耐蝕性の点で優
れている。
More preferably, (A1) Specific copper alloy wire Chromium 0.2 to 0.8% Zirconium 0.05 to 0.2% Silicon 0.01 to 0.08% Inevitable impurities (B) Hard copper wire This feeder line is excellent in terms of conductivity, tensile strength and corrosion resistance.

【0035】さらに好ましくは、 (A2)特定の銅合金線 クロム 0.3〜0.6% ジルコニウム 0.1〜0.15% ケイ素 0.01〜0.05% 不可避不純物 素線の数 7〜19本 (B1)硬銅線 素線の数 42〜54本 このき電吊架線は、導電性、引張強度、耐蝕性の点でさ
らに優れている。
More preferably, (A2) specific copper alloy wire chromium 0.3 to 0.6% zirconium 0.1 to 0.15% silicon 0.01 to 0.05% unavoidable impurity strands 7 to 7 19 (B1) Hard copper wire Number of strands 42 to 54 This suspended electric wire is further excellent in terms of conductivity, tensile strength and corrosion resistance.

【0036】[0036]

【実施例】つぎに、本発明のき電吊架線を実験例に基づ
いてさらに具体的に説明するが、本発明はこれらのみに
限定されるものではない。
EXAMPLES Next, the feeder suspension wire of the present invention will be described more specifically based on experimental examples, but the present invention is not limited to these.

【0037】実験例1 図1は、実験例1でえられるき電吊架線を説明するため
の断面の模式図である。図1において、1はき電吊架
線、2は前記特定の銅合金線の素線、3は該銅合金線の
まわりに撚り合わされている前記硬銅線の素線を示して
いる。
Experimental Example 1 FIG. 1 is a schematic cross-sectional view for explaining the feeder suspension wire obtained in Experimental Example 1. In FIG. 1, reference numeral 1 is a suspension wire of a feeding wire, 2 is a wire of the specific copper alloy wire, and 3 is a wire of the hard copper wire twisted around the copper alloy wire.

【0038】特定の銅合金線の素線2は、前記製法によ
りえられるものであり、クロム0.4%、ジルコニウム
0.1%、ケイ素0.06%、不可避不純物(S、Ag
など)0.001%を含む銅合金からなり、該素線2の
直径は2.7mmである。
The wire 2 of the specific copper alloy wire is obtained by the above-mentioned manufacturing method, and contains chromium 0.4%, zirconium 0.1%, silicon 0.06%, and unavoidable impurities (S, Ag).
Etc.) made of a copper alloy containing 0.001%, and the diameter of the wire 2 is 2.7 mm.

【0039】硬銅線の素線3は、前記製法によりえられ
るものであり、該素線の直径は2.9mmである。
The hard copper wire 3 is obtained by the above-mentioned manufacturing method, and the diameter of the wire is 2.9 mm.

【0040】前記き電吊架線1は、まず中心線として特
定の銅合金線の素線2を7本撚り合せ、さらにこのまわ
りに硬銅線の素線3を54本撚り合せることによりえら
れる。えられたき電吊架線1について、つぎの試験を行
なった。
The feeder line 1 is obtained by first twisting seven strands 2 of a specific copper alloy wire as the center line, and further twisting 54 strands 3 of hard copper wire around this. . The following tests were conducted on the obtained electric cable suspension wire 1.

【0041】引張強度:各種類の素線1本について引張
強度(kgf/mm2)をJISZ 2201に準じ
て、島津製作所(株)製AG−5000Dを用いて銅合
金線および硬銅線を素線の状態で測定し、次式によりき
電吊架線の引張強度(kgf/mm2)を算出した。
Tensile strength: Tensile strength (kgf / mm 2 ) of one kind of wire was measured according to JISZ 2201 using AG-5000D manufactured by Shimadzu Corporation to prepare a copper alloy wire and a hard copper wire. The tensile strength (kgf / mm 2 ) of the feeder suspension wire was calculated by the following equation.

【0042】(引張強度)=[(特定の銅合金線の素線
の引張強度)×(特定の銅合金線が占める断面積)+
(硬銅線の素線の引張強度)×(硬銅線が占める断面
積)]/(特定の合金線および硬銅線が占める総断面
積) 導電率 :JIS H 5050に準じて、横河電機
(株)製ダブルブリッジを用いて銅合金線および硬銅線
を素線の状態で測定し、次式によりき電吊架線の導電率
(%IACS)を算出した。
(Tensile strength) = [(Tensile strength of strand of specific copper alloy wire) × (Cross sectional area occupied by specific copper alloy wire) +
(Tensile strength of strand of hard copper wire) x (cross-sectional area occupied by hard copper wire)] / (total cross-sectional area occupied by specific alloy wire and hard copper wire) Electrical conductivity: Yokogawa according to JIS H 5050 A copper alloy wire and a hard copper wire were measured in a bare state using a double bridge manufactured by Denki Co., Ltd., and the electrical conductivity (% IACS) of the feeder suspension wire was calculated by the following formula.

【0043】(導電率)=[(特定の銅合金線の素線の
導電率)×(特定の銅合金線が占める断面積)+(硬銅
線の素線の導電率)×(硬銅線が占める断面積)]/
(特定の合金線および硬銅線が占める総断面積) 耐腐食性:JIS Z 2371に準じて、室容積が
0.2m3以上、気圧が0.098±0.010MPa
および室内温度が35℃±2℃の暴露帯室内にき電吊架
線を鉛直線に対し20°±5°とし、塩濃度5±0.5
%(pH6.5〜7.2、35℃での比重1.0259
〜1.0329)の水溶液をき電吊架線に直接当たらな
いように3ケ月間連続して噴霧したのち、き電吊架線の
表面状態を光学顕微鏡(倍率50倍)を用いて観察し、
試験開始前の表面状態と変わらないときを○とし、孔食
が発生しているときを×として評価した。
(Electrical conductivity) = [(Electrical conductivity of strand of specific copper alloy wire) × (Cross sectional area occupied by specific copper alloy wire) + (Electrical conductivity of strand of hard copper wire) × (Hard copper Cross-sectional area occupied by the line)] /
(Total cross-sectional area occupied by specific alloy wire and hard copper wire) Corrosion resistance: Chamber volume is 0.2 m 3 or more and atmospheric pressure is 0.098 ± 0.010 MPa according to JIS Z2371.
And, the indoor temperature is 35 ° C ± 2 ° C, and the electrical suspension line is 20 ° ± 5 ° with respect to the vertical line and the salt concentration is 5 ± 0.5 ° C.
% (PH 6.5-7.2, specific gravity at 35 ° C. 1.0259
~ 1.0329) after continuously spraying the aqueous solution for 3 months so as not to directly hit the feeder line, observe the surface state of the feeder line using an optical microscope (magnification 50 times),
When the surface condition was the same as before the start of the test, it was evaluated as ◯, and when pitting corrosion occurred, it was evaluated as x.

【0044】結果を表1に示す。The results are shown in Table 1.

【0045】実験例2 実験例1において、特定の銅合金線の素線1本および硬
銅線の素線60本を用いたこと以外は、実験例1と同様
にしてき電吊架線をえ、実験例1と同様にして試験を行
なった。結果を表1に示す。
Experimental Example 2 A feeder line was prepared in the same manner as in Experimental Example 1 except that one specific copper alloy wire and 60 hard copper wires were used in Experimental Example 1. The test was conducted in the same manner as in Experimental Example 1. The results are shown in Table 1.

【0046】実験例3 実験例1において、特定の銅合金線の素線19本および
硬銅線の素線42本を用いたこと以外は、実験例1と同
様にしてき電吊架線をえ、実験例1と同様にして試験を
行なった。結果を表1に示す。
Experimental Example 3 A feeder line was obtained in the same manner as in Experimental Example 1 except that 19 pieces of the specific copper alloy wire and 42 pieces of the hard copper wire were used in Experimental Example 1. The test was conducted in the same manner as in Experimental Example 1. The results are shown in Table 1.

【0047】実験例4 実験例1において、特定の銅合金線の素線37本および
硬銅線の素線24本を用いたこと以外は、実験例1と同
様にしてき電吊架線をえ、実験例1と同様にして試験を
行なった。結果を表1に示す。
Experimental Example 4 A feeder line was obtained in the same manner as in Experimental Example 1 except that 37 specific copper alloy wires and 24 hard copper wires were used in Experimental Example 1. The test was conducted in the same manner as in Experimental Example 1. The results are shown in Table 1.

【0048】実験例5 実験例1において、特定の銅合金線の素線60本および
硬銅線の素線1本を用いたこと以外は、実験例1と同様
にしてき電吊架線をえ、実験例1と同様にして試験を行
なった。結果を表1に示す。
Experimental Example 5 A feeder line was obtained in the same manner as in Experimental Example 1, except that 60 wires of a specific copper alloy wire and 1 wire of hard copper wire were used in Experimental Example 1. The test was conducted in the same manner as in Experimental Example 1. The results are shown in Table 1.

【0049】実験例6 実験例1において、特定の銅合金線の素線42本および
硬銅線の素線19本を用いたこと以外は、実験例1と同
様にしてき電吊架線をえ、実験例1と同様にして試験を
行なった。結果を表1に示す。
Experimental Example 6 A feeder line was obtained in the same manner as in Experimental Example 1, except that 42 specific copper alloy wires and 19 hard copper wires were used in Experimental Example 1. The test was conducted in the same manner as in Experimental Example 1. The results are shown in Table 1.

【0050】実験例7 実験例1において、特定の銅合金線の素線24本および
硬銅線の素線37本を用いたこと以外は、実験例1と同
様にしてき電吊架線をえ、実験例1と同様にして試験を
行なった。結果を表1に示す。
Experimental Example 7 A feeder line was obtained in the same manner as in Experimental Example 1, except that 24 specific copper alloy wires and 37 hard copper wires were used in Experimental Example 1. The test was conducted in the same manner as in Experimental Example 1. The results are shown in Table 1.

【0051】実験例8 図2は実験例8でえられるき電吊架線を説明するための
断面の模式図である。図2において、4はき電吊架線、
5は圧縮型アルミ被覆鋼線の素線、6は鋼線の素線、7
は圧縮型アルミ被覆層、8は該圧縮型アルミ被覆鋼線の
まわりに撚り合されている耐熱アルミ線の素線を示して
いる。
Experimental Example 8 FIG. 2 is a schematic cross-sectional view for explaining the feeder suspension wire obtained in Experimental Example 8. In FIG. 2, 4 Hakiden suspension overhead lines,
5 is a compression type aluminum coated steel wire, 6 is a steel wire, 7
Indicates a compression type aluminum coating layer, and 8 indicates a heat resistant aluminum wire strand twisted around the compression type aluminum coating steel wire.

【0052】前記き電吊架線4は、まず中心線として圧
縮型アルミ被覆鋼線の素線5を7本束ね、さらにこのま
わりに耐熱アルミ線の素線8を41本撚り合せることに
よりえられる。えられたき電吊架線4について、実験例
1と同様にして試験を行なった。ただし、引張強度と導
電率は次式により算出した。
The feeder suspension wire 4 is obtained by first bundling seven compression-type aluminum-coated steel wires 5 as a center line and further twisting 41 heat-resistant aluminum wires 8 around the wires. . The obtained suspension cable 4 was tested in the same manner as in Experimental Example 1. However, the tensile strength and the conductivity were calculated by the following equations.

【0053】(引張強度)=[(圧縮型アルミ被覆鋼線
の素線の引張強度)×(圧縮型アルミ被覆鋼線が占める
断面積)+(アルミ素線の引張強度)×(アルミ素線が
占める断面積)]/(圧縮型アルミ被覆鋼線およびアル
ミ素線が占める総断面積) (導電率)=[(圧縮型アルミ被覆鋼線の素線の導電
率)×(圧縮型アルミ被覆鋼線が占める断面積)+(ア
ルミ素線の導電率)×(アルミ素線が占める断面積)]
/(圧縮型アルミ被覆鋼線およびアルミ素線が占める総
断面積) 結果を表1に示す。
(Tensile strength) = [(Tensile strength of compression type aluminum-coated steel wire) × (Cross-sectional area occupied by compression type aluminum-coated steel wire) + (Tensile strength of aluminum element wire) × (Aluminum element wire) Cross-sectional area occupied by]) / (total cross-sectional area occupied by compression-type aluminum-coated steel wire and aluminum element wire) (conductivity) = [(conductivity of element wire of compression-type aluminum-coated steel wire) x (compression-type aluminum coating) Cross-sectional area occupied by steel wire) + (conductivity of aluminum element wire) x (cross-sectional area occupied by aluminum element wire)]
/ (Total cross-sectional area occupied by compression type aluminum coated steel wire and aluminum element wire) The results are shown in Table 1.

【0054】実験例9 図3は実験例9でえられるき電線を説明するための断面
の模式図である。図3において、9はき電線、10は純
アルミ線の素線を示している。
Experimental Example 9 FIG. 3 is a schematic cross-sectional view for explaining the feeder wire obtained in Experimental Example 9. In FIG. 3, 9 is a feeder wire and 10 is a pure aluminum wire.

【0055】前記き電線9は、純アルミ線の素線(直径
4.2mm)10を37本束ねてえられる。えられたき
電線9について実験例1と同様にして試験を行なった。
ただし、引張強度は次式により算出した。
The feeder wire 9 can be obtained by bundling 37 pure aluminum wires (diameter 4.2 mm) 10. The obtained electric wire 9 was tested in the same manner as in Experimental Example 1.
However, the tensile strength was calculated by the following formula.

【0056】(引張強度)=(純アルミ線の素線の引張
強度)×(純アルミ線が占める総断面積)/(純アルミ
線が占める総断面積) (導電率)=(純アルミの素線の導電率) 結果を表1に示す。
(Tensile strength) = (Tensile strength of element wire of pure aluminum wire) × (Total cross-sectional area occupied by pure aluminum wire) / (Total cross-sectional area occupied by pure aluminum wire) Conductivity = (Pure aluminum Conductivity of strand) The results are shown in Table 1.

【0057】実験例10 図4は実験例10でえられるき電吊架線を説明するため
の断面の模式図である。図4において、11はき電吊架
線、12は1種硬銅線の素線を示している。
Experimental Example 10 FIG. 4 is a schematic cross-sectional view for explaining the feeder suspension wire obtained in Experimental Example 10. In FIG. 4, reference numeral 11 indicates a suspended suspension wire, and reference numeral 12 indicates a type 1 hard copper wire.

【0058】前記き電吊架線11は、1種硬銅線の素線
(直径2.6mm)12を61本束ねてえられる。えら
れたき電吊架線11について実験例1と同様にして試験
を行なった。ただし、引張強度は次式により算出した。
The feeder suspension wire 11 can be obtained by bundling 61 wires of a type 1 hard copper wire (diameter 2.6 mm) 12. A test was performed on the obtained suspended electric wire 11 in the same manner as in Experimental Example 1. However, the tensile strength was calculated by the following formula.

【0059】(引張強度)=(1種硬銅線の素線の引張
強度)×(1種硬銅線が占める総断面積)/(1種硬銅
線が占める総断面積) (導電率)=(硬銅線の素線の導電率) 結果を表1に示す。
(Tensile strength) = (Tensile strength of strand of type 1 hard copper wire) × (total cross-sectional area occupied by type 1 hard copper wire) / (total cross-sectional area occupied by type 1 hard copper wire) (conductivity ) = (Conductivity of strand of hard copper wire) The results are shown in Table 1.

【0060】実験例11 図5は実験例11でえられる吊架線を説明するための断
面の模式図である。図5において、13は吊架線、14
は前記特定の銅合金(合金の組成は実験例1と同じ)線
の素線を示している。
Experimental Example 11 FIG. 5 is a schematic cross-sectional view for explaining the suspension wire obtained in Experimental Example 11. In FIG. 5, 13 is a suspension wire, 14
Shows the strand of the above-mentioned specific copper alloy wire (the composition of the alloy is the same as in Experimental Example 1).

【0061】前記吊架線13は、特定の銅合金線の素線
(直径2.6mm)14を61本束ねてえられる。えら
れた吊架線13について実験例1と同様にして試験を行
なった。ただし、引張強度は次式により算出した。
The suspension overhead wire 13 can be obtained by bundling 61 strands (diameter 2.6 mm) 14 of a specific copper alloy wire. The obtained suspended overhead wire 13 was tested in the same manner as in Experimental Example 1. However, the tensile strength was calculated by the following formula.

【0062】(引張強度)=(特定の銅合金線の素線の
引張強度)×(特定の銅合金線が占める総断面積)/
(特定の銅合金線が占める総断面積) (導電率)=(特定の銅合金線の素線の導電率) 結果を表1に示す。
(Tensile strength) = (Tensile strength of strand of specific copper alloy wire) × (total cross-sectional area occupied by specific copper alloy wire) /
(Total cross-sectional area occupied by specific copper alloy wire) (Electrical conductivity) = (Electrical conductivity of strand of specific copper alloy wire) The results are shown in Table 1.

【0063】[0063]

【表1】 [Table 1]

【0064】表1の結果から明らかなように、本発明の
き電吊架線は、引張強度、耐腐食性に優れ、とくに導電
性に優れている。前記き電吊架線は従来のき電線および
吊架線のふたつに要求される性質をあわせて有してお
り、たとえば狭小トンネル内にコンパクト化して架設す
ることができ、また海岸付近や漏水の多いトンネル内に
架設しても腐食しにくい。さらに中心線とそのまわりに
撚り合わされている線は、同種の金属(銅)であるの
で、異種金属が接したときのような電位差を原因とする
腐食が起こりにくい。
As is clear from the results shown in Table 1, the feeder suspension wire of the present invention is excellent in tensile strength and corrosion resistance, and particularly excellent in conductivity. The feeder suspension line has the properties required for both conventional feeders and suspension lines, and can be installed compactly in a narrow tunnel, for example, and can be installed near a coast or in a leaky tunnel. Hard to corrode even when installed inside. Furthermore, since the center line and the wires twisted around it are the same kind of metal (copper), corrosion due to the potential difference as when different metals are in contact does not easily occur.

【0065】[0065]

【発明の効果】本発明のき電吊架線は、引張強度、耐腐
食性、とくに導電性に優れたものであり、たとえば狭小
トンネル内のき電吊架線に好適に使用されうる。
EFFECTS OF THE INVENTION The feeder suspension wire of the present invention is excellent in tensile strength, corrosion resistance, and particularly conductivity, and can be suitably used for feeder suspension wires in narrow tunnels, for example.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験例1でえられるき電吊架線を説明するため
の断面の模式図である。
FIG. 1 is a schematic view of a cross section for explaining a feeder suspension line obtained in Experimental Example 1.

【図2】実験例8でえられるき電吊架線を説明するため
の断面の模式図である。
FIG. 2 is a schematic cross-sectional view for explaining a feeder suspension line obtained in Experimental Example 8.

【図3】実験例9でえられるき電線を説明するための断
面の模式図である。
FIG. 3 is a schematic cross-sectional view for explaining a feeder line obtained in Experimental Example 9.

【図4】実験例10でえられるき電吊架線を説明するた
めの断面の模式図である。
FIG. 4 is a schematic cross-sectional view for explaining a feeder suspension wire obtained in Experimental Example 10.

【図5】実験例11でえられる吊架線を説明するための
断面の模式図である。
5 is a schematic view of a cross section for explaining a suspension overhead wire obtained in Experimental Example 11. FIG.

【符号の説明】[Explanation of symbols]

1 き電吊架線 2 特定の銅合金線の素線 3 硬銅線の素線 4 き電吊架線 5 圧縮型アルミ被覆鋼線の素線 6 鋼線の素線 7 圧縮型アルミ被覆層 8 アルミ線 9 き電線 10 純アルミ線 11 き電吊架線 12 1種硬銅線の素線 13 吊架線 14 特定の銅合金線の素線 1 Suspended suspension wire 2 Specific copper alloy wire strand 3 Hard copper wire strand 4 Suspended suspension wire 5 Compressed aluminum coated steel wire strand 6 Steel wire strand 7 Compressed aluminum coating layer 8 Aluminum Wire 9 Electric wire 10 Pure aluminum wire 11 Suspended electric wire 12 Element 1 hard copper wire 13 Suspended wire 14 Specific copper alloy wire

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 銅合金線と銅線とが撚り合わされている
き電吊架線であって、該銅合金線が、クロム0.1〜1
重量%、ジルコニウム0.01〜0.3重量%、ケイ素
0.006〜0.1重量%および不可避不純物を含む銅
合金からなり、かつ該銅線が硬銅線であることを特徴と
するき電吊架線。
1. A feeder suspension line in which a copper alloy wire and a copper wire are twisted together, wherein the copper alloy wire is chromium 0.1 to 1
% Copper, 0.01 to 0.3% by weight of zirconium, 0.006 to 0.1% by weight of silicon and a copper alloy containing inevitable impurities, and the copper wire is a hard copper wire. Electric suspension line.
【請求項2】 銅合金線のまわりに銅線が撚り合わされ
ている請求項1記載のき電吊架線。
2. The feeder suspension line according to claim 1, wherein the copper wire is twisted around the copper alloy wire.
【請求項3】 引張強度が40〜60kgf/mm2
あり、かつ導電率が70〜99.9%IACSである請
求項1または2記載のき電吊架線。
3. The feeder line according to claim 1, wherein the tensile strength is 40 to 60 kgf / mm 2 and the electrical conductivity is 70 to 99.9% IACS.
【請求項4】 銅合金線の素線5〜20本のまわりに銅
線の素線40〜55本が撚り合わされており、かつ架線
の外周の直径が20〜100mmである請求項1〜3の
いずれかに記載のき電吊架線。
4. The wire of 40 to 55 of copper wire is twisted around the wire of 5 to 20 of copper alloy wire, and the outer diameter of the overhead wire is 20 to 100 mm. Suspended overhead cable according to any one of.
JP321896A 1996-01-11 1996-01-11 Suspension feeder wire Withdrawn JPH09190718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP321896A JPH09190718A (en) 1996-01-11 1996-01-11 Suspension feeder wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP321896A JPH09190718A (en) 1996-01-11 1996-01-11 Suspension feeder wire

Publications (1)

Publication Number Publication Date
JPH09190718A true JPH09190718A (en) 1997-07-22

Family

ID=11551308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP321896A Withdrawn JPH09190718A (en) 1996-01-11 1996-01-11 Suspension feeder wire

Country Status (1)

Country Link
JP (1) JPH09190718A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902096A1 (en) * 1997-09-12 1999-03-17 Fisk Alloy Wire, Inc. Method for manufacturing copper alloy wire and copper alloy wire
WO2010084989A1 (en) * 2009-01-26 2010-07-29 古河電気工業株式会社 Electrical wire conductor for wiring, method for producing electrical wire conductor for wiring, electrical wire for wiring, and copper alloy wire
JP2010218927A (en) * 2009-03-18 2010-09-30 Autonetworks Technologies Ltd Vehicular electric wire conductor for automobile, and vehicular electric wire
JP2021059247A (en) * 2019-10-08 2021-04-15 日立金属株式会社 Feeder suspension wire, and integrated wire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902096A1 (en) * 1997-09-12 1999-03-17 Fisk Alloy Wire, Inc. Method for manufacturing copper alloy wire and copper alloy wire
WO2010084989A1 (en) * 2009-01-26 2010-07-29 古河電気工業株式会社 Electrical wire conductor for wiring, method for producing electrical wire conductor for wiring, electrical wire for wiring, and copper alloy wire
JP2011210730A (en) * 2009-01-26 2011-10-20 Furukawa Electric Co Ltd:The Wire conductor for wiring, method for manufacturing the same, electric wire for wiring, and copper alloy element wire
EP2385530A1 (en) * 2009-01-26 2011-11-09 Furukawa Electric Co., Ltd. Electrical wire conductor for wiring, method for producing electrical wire conductor for wiring, electrical wire for wiring, and copper alloy wire
US8624119B2 (en) 2009-01-26 2014-01-07 Furukawa Electric Co., Ltd. Conductor of an electrical wire for wiring, method of producing a conductor of an electrical wire for wiring, electrical wire for wiring, and copper alloy solid wire
EP2385530A4 (en) * 2009-01-26 2014-08-06 Furukawa Electric Co Ltd Electrical wire conductor for wiring, method for producing electrical wire conductor for wiring, electrical wire for wiring, and copper alloy wire
JP2010218927A (en) * 2009-03-18 2010-09-30 Autonetworks Technologies Ltd Vehicular electric wire conductor for automobile, and vehicular electric wire
JP2021059247A (en) * 2019-10-08 2021-04-15 日立金属株式会社 Feeder suspension wire, and integrated wire

Similar Documents

Publication Publication Date Title
KR100429965B1 (en) Aluminium Alloy Having High Strength and Heat-Resistance, Electrically-Conductive Wire, Over-head Electrical Wire, and The Process for The Production of Aluminium Alloy Having High Strength and Heat-Resistance
JP2018138696A (en) Aluminum wire for automobile
JP2008112620A (en) Electric wire conductor and its manufacturing method
US5045131A (en) Contact conductor for electric vehicles
CN103757485A (en) Al-Fe-Cu-Mg aluminum alloy and low-voltage cable manufactured by alloy
JPH09190718A (en) Suspension feeder wire
JP2004281241A (en) Compound wire for wire harness and its manufacturing method
CN103730185A (en) Al-Fe-Cu-Mg aluminum alloy and electric wire made of the same
JP6461570B2 (en) Transmission line and method for manufacturing transmission line
JP2944907B2 (en) Method of manufacturing aluminum alloy wire for electric conduction
CN108929968A (en) A kind of production technology of high conductivity copper alloy wire
CN103725927A (en) Al-Fe-Cu-Mg aluminum alloy and medium-voltage cable prepared from Al-Fe-Cu-Mg aluminum alloy
EP3446317A1 (en) Aluminum conductors
JP2002373526A (en) Overhead wire
JP3351023B2 (en) Suspension line
JP7398315B2 (en) Aluminum alloy wire and electric wire
WO2024043284A1 (en) Aluminum-based wire, aluminum-based strand wire, and aluminum-based cable
JP2004027294A (en) Corrosion resistant and heat resistant aluminum alloy wire, and overhead transmission line
JPH0689621A (en) Manufacture of high conductivity and high strength stranded wire
CN110120273B (en) Rare earth element doped aluminum alloy conductor of circuit cable and manufacturing method
JPH1096036A (en) High strength and high conductivity copper alloy wire rod
RU2791313C1 (en) Electrical alloy based on aluminum and a product made therefrom
JP2562447B2 (en) Flexible cable conductor
KR20190062409A (en) Manufacturing method of aluminum alloy wire, working transmission wire and aluminum alloy wire
JP4415070B2 (en) High corrosion resistance transmission line

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040324

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041006