JP2004281241A - Compound wire for wire harness and its manufacturing method - Google Patents

Compound wire for wire harness and its manufacturing method Download PDF

Info

Publication number
JP2004281241A
JP2004281241A JP2003071304A JP2003071304A JP2004281241A JP 2004281241 A JP2004281241 A JP 2004281241A JP 2003071304 A JP2003071304 A JP 2003071304A JP 2003071304 A JP2003071304 A JP 2003071304A JP 2004281241 A JP2004281241 A JP 2004281241A
Authority
JP
Japan
Prior art keywords
wire
stainless steel
mass
copper
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071304A
Other languages
Japanese (ja)
Other versions
JP3530181B1 (en
Inventor
Hiroshi Izumida
寛 泉田
Nozomi Kawabe
望 河部
Teruyuki Murai
照幸 村井
伸栄 ▲高▼村
Nobue Takamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2003071304A priority Critical patent/JP3530181B1/en
Application granted granted Critical
Publication of JP3530181B1 publication Critical patent/JP3530181B1/en
Publication of JP2004281241A publication Critical patent/JP2004281241A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound wire for a wire harness with corrosion resistance further improved with excellent conductive performance and strength maintained. <P>SOLUTION: The compound wire for the wire harness is a stainless steel wire made by twisting a first strand as a stainless steel wire containing in percent by mass C:0.01 to 0.25, N:0.01 to 0.25, Mn:0.5 to 4.0, Cr:16 to 20, and Ni:8.4 to 14.0, and the rest of Fe and impurities with a content of C and N satisfying: 0.15 mass %≤C+N≤0.30 mass %, and a second strand of at least a kind selected from a copper wire, copper alloy wire, aluminum wire and aluminum alloy wire. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車内に配備されるワイヤーハーネスに適したワイヤーハーネス用複合線及びその製造方法に関するものである。特に、優れた導電性能及び強度を具えながら、耐食性を向上することができるワイヤーハーネス用複合線、及びその製造方法に関する。
【0002】
【従来の技術】
自動車には、通常、車両内にワイヤーハーネス(内部配線)が配備されており、このワイヤーハーネスにより車両内の電装品への電源、通信、センシングなどを行っている。ワイヤーハーネスは、主に、自動車用電線、保護材、コネクタ類から構成され、自動車用電線の導体として、従来、銅を主成分とする金属線が用いられている。
【0003】
近年、自動車の低燃費化の要求から車両部品の軽量化が進められつつあり、ワイヤーハーネスも例外ではない。また、省資源やリサイクルの必要性からも、銅の使用量の低減が求められている。
【0004】
ここで、電線に必要な特性は、大きく分けて二つ挙げられる。一つは導体抵抗であり、もう一つは電線強度である。上記自動車用電線の導体によく用いられる銅は、非常に電気抵抗の低い金属材料であるため、線径が比較的細いものを用いても電線として十分な導電性が得られるが、電線に必要な強度を保つためには、線径をある程度大きくする必要がある。従って、電線強度を保ちつつ銅の使用量を低減することが求められる。
【0005】
一方、電線の導体として、ステンレス鋼線の外周に銅層を具える導体がある(例えば、特許文献1及び2参照)。また、ステンレス鋼線と銅線とを撚り合わせてなる撚線がある(例えば、特許文献3及び4参照)。
【0006】
【特許文献1】
特開平1−283707号公報
【特許文献2】
特公平7−31939号公報
【特許文献3】
特公昭63−23015号公報
【特許文献4】
特開平1−225006号公報
【0007】
【発明が解決しようとする課題】
上記自動車用電線の導体において、電線強度を保持しながら銅の使用量を低減する対策として、銅ではなく、銅以外の金属線や銅合金からなる金属線の使用が考えられる。銅以外の金属として、例えば、軽量のアルミニウムが挙げられる。しかし、アルミニウムは、銅と比較して靱性が低いため、電線に端子の圧着を行う際などに破損し易いという問題がある。そこで、アルミニウムに熱処理を施したり、アルミニウム合金化することによって靭性を高くし、圧着の際などの破損防止を図ることが考えられるが、この場合、強度が不足する恐れがあり、必ずしも十分な解決策となると限らない。また、銅合金を用いる場合は、そもそも強度の大きな向上が期待できないため、電線に求められる強度を考慮すると、銅の使用量の低減や軽量化に限界がある。
【0008】
そこで、上記のように単一種の金属のみで導体を形成するのではなく、複数種の金属を組み合わせることが考えられる。例えば、特許文献1や2に記載される導体は、めっき法やクラッド法にてステンレス鋼線の外周に断面積比5〜70%の銅層を形成することで、導体抵抗が低く、優れた電線強度を具えると共に、靭性にも優れる。しかし、これらの導体は、ステンレス鋼線を製造した後、銅層の形成をしなければならず、製造に時間がかかるだけでなく、このような銅層を既存のめっき法やクラッド法ですると、コストが非常に高くなる恐れがある。
【0009】
他方、特許文献3や4に記載される撚線は、銅などの金属線と一般に強度に優れるステンレス鋼線とを撚り合わせることで、比較的低コストで製造できると共に、電線強度を上げることが可能である。しかし、特許文献3及び4では、耐食性を更に向上するための構成について言及されていない。例えば、特許文献3に記載される撚線は、特許文献3の実施例に記載されるようにSUS430といったフェライト系ステンレス鋼や電気用軟銅の使用することで、優れた強度と共に、メッセンジャワイヤーとして海岸地区などでの使用に耐え得る耐食性を具える。しかし、自動車用電線の導体は、通常頻繁に電流が流れる条件の下で腐食雰囲気に曝されるため、頻繁に電流を流さない上記メッセンジャワイヤーよりも過酷な状況であり、上記フェライト系ステンレス鋼や電気用軟銅を用いた導体では、自動車用電線の導体として十分な耐食性を満たすことができない。特許文献4に記載される撚線は、ワイヤーハーネス用の導体であるが、電池腐食に対する耐食性の更なる向上が要望されている。
【0010】
そこで、特許文献1〜4に記載されるステンレス鋼線として、例えば、一般に耐食性が高いSUS304のようなオーステナイト系ステンレスを用いることが考えられる。しかし、上記ステンレスであっても、引張強さや破断荷重などの強度を向上するための線引き加工や撚線加工などの線加工を行うことで、マルテンサイト相が誘起されて、耐食性を下げるという危険性がある。また、より耐食性が高いオーステナイト系ステンレスとしてSUS316やSUS310が知られているが、これらのステンレスは、SUS304ほどの強度を具えていない。そのため、ワイヤーハーネスに求められる導電率を有するようにしながら、銅線を減らして換わりにこれらSUS316やSUS310からなるステンレス鋼線を用いた場合、強度の向上が望みにくい。
【0011】
そこで、本発明の主目的は、優れた導電性能及び強度を具えながら耐食性の更なる向上を図ることができるワイヤーハーネス用複合線を提供することにある。
【0012】
また、本発明の他の目的は、より低コストで、かつ軽量で銅の使用量を低減することができるワイヤーハーネス用複合線の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、銅などの素線と特定の組成のステンレスからなる素線とを撚り合わせることで上記目的を達成する。
即ち、本発明ワイヤーハーネス用複合線は、質量%でC:0.01〜0.25、N:0.01〜0.25、Mn:0.5〜4.0、Cr:16〜20、Ni:8.0〜14.0を含有し、残部がFe及び不純物からなるステンレス鋼線でCとNの含有量が0.15質量%≦C+N≦0.30質量%を満たす第一素線と、銅線、銅合金線、アルミニウム線及びアルミニウム合金線の少なくとも1種から選択される第二素線とを撚り合わせてなることを特徴とする。
【0014】
本発明は、まず、ステンレスからなる第一素線と銅などからなる第二素線とを組み合わせて用いることで、十分な導電性能を有しながら電線強度を維持し、かつ銅の使用量を低減して軽量化を図る。また、これら素線を撚り合わせて構成することで、より低コストでの製造を実現する。更に、アルミニウムのみ、といった単一の金属からなる導体と比較して、異なる複数種の金属を用いることで、靭性の低下を軽減することができる。そして、特に、第一素線であるステンレス鋼線の組成として、特に、オーステナイト生成元素であるC及びNを増量添加することで、オーステナイト相の安定性を向上させて、線引き加工や撚線加工などの線加工により誘起されるマルテンサイト相を抑制して、耐食性を向上させる。かつ、上記C及びNの固溶強化の効果によって、従来のオーステナイト系ステンレス鋼線よりも引張強さを増大して、強度の向上をも図ることができる。以下、本発明をより詳しく説明する。
【0015】
<第一素線>
本発明に用いるステンレス鋼線は、特に、侵入型固溶元素であるC、Nを通常のオーステナイト系ステンレス鋼よりも多めに含有させる。C、Nなどの侵入型固溶元素は、基地であるオーステナイト相(γ相)に含有させると、γ相の相安定化を行うと共に、結晶格子にひずみを生成して強化する固溶強化の効果や、金属組織中の転位を固着させる効果(コットレル雰囲気)を具える。これらの効果によって、強度を向上するべく線引き加工や撚線加工などの線加工を施しても、SUS316などと同等、或いは同等以上の優れた耐食性と高い機械的特性との両立を図ることが可能である。このような優れた効果を得るために、本発明では、ステンレス鋼線中のCとNの合計含有量(C+N量)を0.15質量%以上0.30質量%とする。C+N量が0.15質量%未満では、固溶強化や転位の固着が不十分であり、強度及び耐食性の向上が得られにくい。C+N量が0.30質量%超では、鋳造の際に炭化物、窒化物の生成量が多くなり、その後に行う伸線加工などの加工が困難になることに加えて、ブローホールが発生し易くなる。より好ましいC+N量は、0.20質量%以上0.30質量%以下である。
【0016】
また、自動車用電線をより細径にして軽量化を行うために、ステンレス鋼線の引張強さ及び靭性を適性に調整する必要がある。本発明者らが検討した結果、以下の条件により製造されたステンレス鋼線は、自動車用電線の導体として適正な強度と靭性とを具えることができるとの知見を得た。即ち、本発明に用いるステンレス鋼線は、ステンレス鋼材を減面率5%以上98%以下で線引き加工して所定の線径に調整し、その後、温度950℃以上1150℃以下、保持時間0.5秒以上60秒以下の熱処理を施したものが適する。より好ましくは、減面率:5%以上70%以下、熱処理温度:1000℃以上1100℃以下、保持時間:0.5秒以上20秒以下である。また、上記温度範囲において、熱処理温度を低めとする場合、保持時間を長くし、高めとする場合、保持時間を短くすることが好ましい。熱処理温度が950℃未満の場合、十分な加熱が得られにくく、鋼線の靭性が不足する恐れがある。逆に1150℃超の場合、加熱しすぎることで、強度不足やδ相の発生により靭性が不足する恐れがある。保持時間が0.5秒未満の場合、加熱時間が短く十分な加熱が得られにくく、鋼線の靭性が不足する恐れがある。同60秒超の場合、熱処理温度が高温だとδ相の発生を増長する恐れがあり、また、工業的に高コストになり易い。
【0017】
更に、熱処理後に得られたステンレス鋼線において、第二素線と撚り合わせる前の引張強さは、ステンレス鋼線が導体強度を決定する素線であることを考慮して下限を800N/mm、撚線加工の際の加工性を考慮して上限を1200N/mmとすることが好ましい。より好ましくは、900N/mm以上1100N/mm未満である。
【0018】
ステンレス鋼線において耐食性の向上を図るためには、線引き加工や撚線加工などの線加工により誘起されるマルテンサイト相が少ない、或いは含まない方が好ましい。本発明者らが検討した結果、自動車用のワイヤーハーネスとして使用に耐え得る耐食性を持たせるには、ステンレス鋼線の金属組織が加工誘起マルテンサイト相:10体積%以下、残部:主にオーステナイト相であることが好ましいとの知見を得た。より好ましくは、加工誘起マルテンサイト相の含有率が5体積%以下である。
【0019】
加工誘起マルテンサイト相は、オーステナイト相の安定性と加工条件(減面率、熱処理条件)とが相互に影響する。従って、例えば、通常の室温での加工において加工誘起マルテンサイト相を10体積%以下に制御するには、C+Nを上記規定の範囲に含有させて、オーステナイト相の相安定化を図ることが有効である。また、加工の際、ステンレス鋼の周囲の温度が低いほど、マルテンサイト相は、誘起され易いため、例えば、線引き加工の際のダイス冷却や線引きされた線材の巻き取り釜の冷却を停止するなどして、加工温度を高めにすることが有効である。
【0020】
以下、ステンレス鋼線の構成元素の選定及び成分範囲を限定する理由を述べる。
Cは、強力なオーステナイト形成元素である。また、結晶格子中に侵入型固溶し、ひずみを導入して強化する効果をもつ。更に、コットレル雰囲気を形成して金属組織中の転位を固着させる効果がある。しかし、Cr炭化物が結晶粒界に存在する場合、オーステナイト中のCrの拡散速度が低いため、粒界周辺にCr欠乏層が生じ、靭性及び耐食性の低下が生じる。そこで、有効な含有量としてC:0.01質量%以上0.25質量%以下とする。
【0021】
NもC同様に強力なオーステナイト形成元素であり、侵入型固溶強化元素でもある。また、コットレル雰囲気形成元素でもある。ただし、γ相中への固溶には限度があり、多量の添加(0.20質量%以上、特に、0.25質量%超)は溶解、鋳造の際にブローホールを発生する要因となる。この現象はCr、MnなどのNとの親和力が高い元素を添加することで固溶限を上げ、ある程度の抑制が可能である。しかし、過度に添加する場合、溶解の際に温度や雰囲気制御が必要となって、コスト増加を招く恐れがある。そこで、本発明では、N:0.01質量%以上0.25質量%以下とする。
【0022】
Mnは、溶解精錬時の脱酸剤として使用される。また、オーステナイト系ステンレスのγ相の相安定にも有効であり、高価なNiの代替元素となり得る。そして、上記のようにγ相中へのNの固溶限を上げる効果も有する。ただし、高温での耐酸化性には悪影響を及ぼすため、Mn:0.5質量%以上4.0質量%以下とする。なお、Mnの含有量は、特に耐食性を重視する場合、0.5質量%以上2.0質量%以下が好ましく、耐食性の若干の低下があるがNの固溶限を上げる、即ち、Nのミクロなブローホールを極めて少なくする場合、2.0質量%超4.0質量%以下の添加が大きな効果を有する。このように用途に応じて、Mnの含有量を調整することも可能である。
【0023】
Crは、オーステナイト系ステンレスの主要な構成元素であり、耐熱特性、耐酸化性を得るために有効な元素である。本発明では、他の元素成分から、Ni当量、Cr当量を算出し、γ相の相安定性を考慮した上で、ワイヤーハーネスに必要な耐熱特性を得るために16質量%以上、靭性劣化を考慮して20質量%以下とする。
【0024】
Niは、γ相の安定化に有効である。本発明においてNの含有量を0.2質量%以上とする場合、多量にNiを含有させると、ブローホール発生の原因となる。この場合、Nと親和力の高いMnを添加することが有効であり、オーステナイト系ステンレスを得るためにMnの添加量を考慮してNi添加を行う必要がある。そこで、Niの含有量は、γ相の安定化のために8.0質量%以上、ブローホール抑制とコスト上昇抑制のために14.0質量%以下とする。また、Niの含有量は、上記のように8.0質量%以上14.0質量%以下が好ましいが、10.0質量%未満の範囲では、特に、溶解鋳造工程においてNを容易に固溶させることが可能になるため、製造コストをより低減することができるというメリットがある。
【0025】
<第二素線>
本発明において第二素線は、銅線、銅合金線、アルミニウム線及びアルミニウム合金線からなる群より選ばれる少なくとも一種を用いる。従って、第二素線を複数本用いる場合は、全て同種でもよいし、複数種のものを組み合わせて用いてもよい。アルミニウム線、アルミニウム合金線を用いる場合、銅線や銅合金線と比較してより軽量にすることができる。銅線は、化学成分が銅及び不可避的不純物からなるものが挙げられる。銅合金線は、化学成分が銅と、Sn、Ag、Ni、Si、Cr、Zr、In、Al、Ti、Fe、P、Mg、Zn、Beよりなる群から選ばれる1種以上の元素と不可避的不純物とからなるものが挙げられる。アルミニウム線は、化学成分がアルミニウム及び不可避的不純物からなるものが挙げられる。アルミニウム合金線は、化学成分がアルミニウムと、Mg、Si、Cu、Ti、B、Mn、Cr、Ni、Fe、Sc、Zrよりなる群から選ばれる1種以上の元素と不可避的不純物とからなるものが挙げられる。
【0026】
<複合線>
本発明複合線は、上記ステンレス鋼線からなる第一素線と、上記銅などの金属線からなる第二素線とを組み合わせ、撚り合わせることで得られる。第一素線及び第二素線は、それぞれ1本以上用いる。第一素線の含有率が大きいほど、強度に優れる反面、導体抵抗が高くなり易い。一方、第二素線の含有率が大きいほど、導体抵抗は小さいが、強度が低くなり易い。従って、適当な導体抵抗、及び強度が得られるように第一素線及び第二素線の本数を適宜選択するとよい。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(実施例1)
ステンレス鋼線及び銅線を用いて複合線を作製し、この複合線の特性を調べてみた。用いたステンレス鋼線の化学成分を表1に示す。表1において、鋼種:ステンレス▲2▼は、一般的なオーステナイト系ステンレスであるJIS鋼種SUS304である。
【0028】
【表1】

Figure 2004281241
【0029】
表1に示す化学成分のステンレス鋼材(ステンレス▲1▼及び▲2▼)を溶解鋳造、鍛造、熱間圧延してステンレス線材(線径φ0.43mm)を作製し、これら線材に減面率86%で線引き加工を施した後、軟線化熱処理を施し、線径φ0.16mmのステンレス鋼線を得た。軟線化熱処理は、温度1100℃、保持時間約5秒間とした。これらステンレス鋼線の引張強さを表2に示す。
【0030】
【表2】
Figure 2004281241
【0031】
表2に示すようにステンレス素線▲1▼は、靭性を向上するための軟線化熱処理を行った場合であっても、SUS304のステンレス素線▲2▼と比較して、高い引張強さを有することが確認できる。従って、ステンレス素線▲1▼は、強度と靭性との双方に優れることがわかる。また、熱処理後のステンレス素線▲1▼の組織を調べたところ、加工誘起マルテンサイト相はほとんど見られず、オーステナイト相であった。
【0032】
銅線は、ほぼ純銅からなり、ワイヤーハーネスによく用いられる軟線を用いた。ステンレス鋼線と撚り合わせる銅線は、線径φ0.16mmのものを用意した。また、複合線と比較するために銅線のみの撚線を作製し、この銅線は、線径φ0.23mmのものを用意した。
【0033】
以上の素線(ステンレス鋼線、銅線)をそれぞれ組み合わせて7本として撚り合せて複合線及び銅撚線を作製した。そして、得られた複合線及び銅撚線の外周に塩化ビニルを所定の厚みに被覆して絶縁層を形成し、これら複合線、銅撚線を導体とする電線を作製した。
【0034】
<試験例1>
得られた電線において、導体の破断荷重、導体抵抗、導体質量、電線質量を測定した。その結果を表3に示す。
【0035】
【表3】
Figure 2004281241
【0036】
表3に示すように試料No.1〜4は、素線径0.23mmの銅線のみからなる銅撚線(試料No.8)と比較して、同等かそれ以上の破断荷重であり、強度に優れることがわかる。しかも、電線質量を半分、或いは半分以下に低減できることが確認できる。また、試料No.1〜4は、同一の素線径で銅線のみからなる銅撚線(試料No.7)と比較した場合、破断荷重が非常に高く、強度に優れると共に、電線質量も低減されることが確認できる。
【0037】
また、例えば、配線抵抗を電圧低下0.5V、負荷電流0.5A、配線長1.5mとする場合、自動車用電線の導体抵抗は、667mΩ/m以下であることが必要であるが、試料No.1〜4は、この要件を十分に満たしていることがわかる。
【0038】
更に、ステンレス鋼線と銅線との比率が等しい試料No.1と試料No.5、及び試料No.2と試料No.6を比較すると、導体抵抗がほぼ同等であるが、試料No.1、2は、破断荷重が10N以上大きいことがわかる。即ち、特定のステンレス鋼線を用いた試料No.1、2は、JIS鋼種SUS304を用いた電線よりも、強度に優れることが確認できる。JIS鋼種SUS304を用いた試料No.5、6の強度を試料No.1、2と同程度の強度とするには、ステンレス素線▲2▼に減面率20〜30%の線引き加工を1〜2回行う必要がある。しかし、線引き加工によりマルテンサイト相が増加して強度の向上を図ることはできても、後述するように耐食性が劣化し易い。これに対し、試料No.1、2は、特定の成分のステンレス素線▲1▼を用いることで、このような強度向上のための線引き加工を行わなくてもよいため、加工により耐食性が劣化することがなく、かつ製造性にも優れる。
【0039】
本試験の結果は、あくまでもワイヤーハーネスとしての一例であり、製品の形態や得られたデータの数値を持って全ての活用例に適用判断できるものではない。しかし、本試験の結果から、高強度と高導電率との両立が求められる場合、本発明は、比較的容易に目的を達成し得ることが確認できたと考える。また、本発明は、強度に優れるステンレス鋼線を用いることで、鋼線の使用量を減らして導電率を向上させることも可能である。
【0040】
<試験例2>
次に、耐食性の評価を行った。本試験に用いた試料は、上記試験例1で用いた試料No.1、2、5、6の複合線、及び加工誘起マルテンサイト相の含有率を変化させた試料を新たに用意した(試料No.9、10)。試料No.9は、試料No.1で用いたステンレス鋼線と同様の化学成分のステンレス鋼材(ステンレス▲1▼)を用い、試料No.10は、試料No.5で用いたステンレス鋼線と同様の化学成分のステンレス鋼材(ステンレス▲2▼)を用い、加工条件を変化させることで加工誘起マルテンサイトの含有率を変化させた。具体的には、加工度を高くとり(減面率96%)、より低温の軟線化熱処理(温度1050℃×保持時間2秒)を行うと共に、ステンレス鋼線の周囲の温度が低めにすることで、加工誘起マルテンサイト相の含有比率を上げたものである。なお、試料No.9に用いたステンレス鋼線の熱処理後の引張強さは、1187N/mmであった。
【0041】
耐食試験は、塩水噴霧試験機を用いて行い、塩水:人口海水(5%食塩水)、温度35℃、試験期間1ヶ月として行った。試験結果を表4に示す。表4において発錆面積率(%)とは、複合線の全表面積に対する発錆した個所の総面積の割合とする。
【0042】
【表4】
Figure 2004281241
【0043】
ステンレスと銅とではイオン化傾向が異なることで、ステンレス鋼線と銅線との接触部に電池ができ、表4に示すように接触部では、腐食が進行することが確認できる。また、接触部から銅線が腐食し始め、銅腐食生成物が更にステンレス鋼線にも悪影響を与えることが確認できた。そして、SUS304を用いた試料No.5、6よりも、特定の成分により加工誘起マルテンサイト相の制御を行った試料No.1、2の方が耐食性に優れることがわかる。また、成分に加えて加工条件により加工誘起マルテンサイト相の制御を行った試料No.9も、試料No.5よりも耐食性に優れることがわかる。特に、表4に示すようにステンレス鋼線の加工誘起マルテンサイト相の含有率(体積%)が大きいほど、腐食の進行具合が大きいことが確認できた。従って、加工によりマルテンサイト相を増加させると、引張強さの向上が図れる反面、耐食性が劣化することがわかる。
【0044】
(実施例2)
上記実施例1において、銅線の代わりに線径φ0.16mmの純アルミニウム(不可避的不純物を含む)からなるアルミニウム線を用いて、実施例1と同様に複合線を作製し、この複合線を導体とする電線を作製して、試験例1と同様に導体の破断荷重、導体抵抗、導体質量、電線質量を測定した。その結果、実施例1と同様に高強度と高導電率との両立することができることが確認された。また、より軽量化できることが確認された。
【0045】
一般に、アルミニウム線、アルミニウム合金線や銅合金線のみで導体を構成した場合、銅線のみで導体を構成する場合と比較して強度に優れるが、この強度向上はあまり大きくなく、電線の軽量化として特に細径化すると、強度の向上が望みにくい。これに対し、本発明は、アルミニウム線などのみとせず、ステンレス鋼線との撚線という形態をとることで、強度、導電率、軽量化といった要求特性に対して柔軟に対応することができる。
【0046】
また、試験例2と同様にして耐食性を評価した。アルミニウム線やその合金線、銅合金線を第二素線として用いる場合、ステンレス鋼線との間に形成される電池特性は多少異なる。しかし、加工誘起マルテンサイト量が10体積%以下であるステンレス鋼線を用いることで、試験例2と同様に優れた耐食性を発揮することが確認できた。
【0047】
【発明の効果】
以上のように本発明ワイヤーハーネス用複合線によれば、特定の化学成分のステンレス鋼線と銅などの第二素線とを撚り合わせて構成することで、自動車用電線の導体として優れた導電性能及び強度を具えると共に、耐食性をも向上させることができるという優れた効果を奏し得る。また、本発明複合線は、上記ステンレス鋼線を用いることで、銅の使用量を低減して軽量化を図ることができる。更に、本発明複合線は、従来のクラッド線やめっき線などのような製造工程を必要とせず、比較的容易に製造できるため、製造コストを低減することもできる。そして、このような本発明ワイヤーハーネス用複合線を自動車用電線の導体に用いると、自動車全体の軽量化やリサイクル性を向上することができ、今後の環境問題を考慮するにあたり、極めて有効であるとともに、工業的価値の高いものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite wire for a wire harness suitable for a wire harness deployed in an automobile and a method for manufacturing the same. In particular, the present invention relates to a composite wire for a wire harness that can improve corrosion resistance while having excellent conductive performance and strength, and a method for manufacturing the same.
[0002]
[Prior art]
In an automobile, a wire harness (internal wiring) is usually provided in the vehicle, and power, communication, sensing, and the like are performed to electrical components in the vehicle using the wire harness. A wire harness mainly includes an electric wire for automobiles, a protective material, and connectors, and a metal wire mainly containing copper is conventionally used as a conductor of the electric wire for automobiles.
[0003]
In recent years, weight reduction of vehicle parts has been promoted due to demand for lower fuel consumption of automobiles, and wire harnesses are no exception. Also, the need for resource saving and recycling has led to a demand for a reduction in the amount of copper used.
[0004]
Here, the characteristics required for the electric wire can be roughly classified into two. One is conductor resistance and the other is wire strength. Copper, which is often used for the conductors of the above-mentioned automotive electric wires, is a metal material having a very low electric resistance, so that even if a wire having a relatively small diameter is used, sufficient conductivity can be obtained as an electric wire. In order to maintain high strength, it is necessary to increase the wire diameter to some extent. Therefore, it is required to reduce the amount of copper used while maintaining the electric wire strength.
[0005]
On the other hand, as a conductor of an electric wire, there is a conductor provided with a copper layer on the outer periphery of a stainless steel wire (for example, see Patent Documents 1 and 2). There is also a stranded wire formed by twisting a stainless steel wire and a copper wire (for example, see Patent Documents 3 and 4).
[0006]
[Patent Document 1]
JP-A-1-283707 [Patent Document 2]
Japanese Patent Publication No. Hei 7-31939 [Patent Document 3]
JP-B-63-23015 [Patent Document 4]
JP-A-1-225006
[Problems to be solved by the invention]
As a countermeasure for reducing the amount of copper used in the conductor of the above-mentioned electric wire for automobiles while maintaining the electric wire strength, use of a metal wire other than copper or a metal wire made of a copper alloy instead of copper may be considered. Examples of the metal other than copper include lightweight aluminum. However, since aluminum has lower toughness than copper, there is a problem that aluminum is easily damaged when a terminal is crimped to an electric wire. Therefore, it is conceivable to increase the toughness by heat-treating the aluminum or to form an aluminum alloy to prevent breakage during crimping. However, in this case, the strength may be insufficient, and a sufficient solution is not necessary. This is not always a solution. Further, when a copper alloy is used, a great improvement in strength cannot be expected in the first place. Therefore, there is a limit to the reduction in the amount of copper used and the reduction in weight in consideration of the strength required for an electric wire.
[0008]
Therefore, it is conceivable to combine a plurality of types of metals instead of forming a conductor using only a single type of metal as described above. For example, the conductor described in Patent Literatures 1 and 2 has a low conductor resistance and is excellent in forming a copper layer having a cross-sectional area ratio of 5 to 70% on the outer periphery of a stainless steel wire by a plating method or a cladding method. It has excellent electric wire strength and toughness. However, for these conductors, after the stainless steel wire is manufactured, the copper layer must be formed, which not only takes time, but also if such a copper layer is formed by the existing plating method or cladding method. , The cost can be very high.
[0009]
On the other hand, the twisted wires described in Patent Documents 3 and 4 can be manufactured at a relatively low cost by twisting a metal wire such as copper and a stainless steel wire generally having excellent strength, and can increase the wire strength. It is possible. However, Patent Documents 3 and 4 do not mention a configuration for further improving corrosion resistance. For example, the stranded wire described in Patent Literature 3 uses a ferritic stainless steel such as SUS430 or soft copper for electric power as described in Examples of Patent Literature 3 to provide excellent strength and shore as a messenger wire. Equipped with corrosion resistance that can withstand use in districts. However, since the conductors of automotive wires are usually exposed to corrosive atmospheres under conditions where current frequently flows, the conductor is more severe than the messenger wire that does not frequently flow current, and the ferrite stainless steel or A conductor using soft copper for electricity cannot satisfy sufficient corrosion resistance as a conductor for electric wires for automobiles. The stranded wire described in Patent Document 4 is a conductor for a wire harness, but further improvement in corrosion resistance against battery corrosion is demanded.
[0010]
Therefore, it is conceivable to use, for example, an austenitic stainless steel such as SUS304, which generally has high corrosion resistance, as the stainless steel wire described in Patent Documents 1 to 4. However, even with the above stainless steel, the martensitic phase is induced by performing wire processing such as wire drawing or stranded wire processing to improve the strength such as tensile strength and breaking load, thereby causing a risk of lowering corrosion resistance. There is. In addition, SUS316 and SUS310 are known as austenitic stainless steels having higher corrosion resistance, but these stainless steels do not have strength as high as SUS304. Therefore, when the stainless steel wire made of SUS316 or SUS310 is used instead of reducing the number of copper wires while maintaining the conductivity required for the wire harness, improvement in strength is hardly expected.
[0011]
Accordingly, a main object of the present invention is to provide a composite wire for a wire harness which has excellent conductive performance and strength and can further improve corrosion resistance.
[0012]
Another object of the present invention is to provide a method for manufacturing a composite wire for a wire harness that is lower in cost, lighter in weight, and can reduce the amount of copper used.
[0013]
[Means for Solving the Problems]
The present invention achieves the above object by twisting a strand of copper or the like with a strand of stainless steel having a specific composition.
That is, the composite wire for a wire harness of the present invention is, in mass%, C: 0.01 to 0.25, N: 0.01 to 0.25, Mn: 0.5 to 4.0, Cr: 16 to 20, Ni: a first strand containing 8.0 to 14.0 and the balance being a stainless steel wire composed of Fe and impurities, wherein the contents of C and N satisfy 0.15% by mass ≦ C + N ≦ 0.30% by mass. And a second wire selected from at least one of a copper wire, a copper alloy wire, an aluminum wire, and an aluminum alloy wire.
[0014]
The present invention first uses a combination of a first strand made of stainless steel and a second strand made of copper or the like to maintain wire strength while having sufficient conductive performance, and reduce the amount of copper used. Reduce and reduce weight. Further, by forming these strands by twisting each other, production at lower cost is realized. Further, compared to a conductor made of a single metal such as aluminum alone, a decrease in toughness can be reduced by using a plurality of different metals. In particular, as the composition of the stainless steel wire as the first strand, the stability of the austenite phase is improved by increasing the addition of C and N, which are austenite-forming elements, and wire drawing or stranded wire processing is performed. And the like to suppress the martensite phase induced by wire processing and improve corrosion resistance. In addition, due to the effect of solid solution strengthening of C and N, the tensile strength can be increased as compared with the conventional austenitic stainless steel wire, and the strength can be improved. Hereinafter, the present invention will be described in more detail.
[0015]
<First strand>
The stainless steel wire used in the present invention particularly contains C and N, which are interstitial solid solution elements, in a larger amount than ordinary austenitic stainless steel. When interstitial solid solution elements such as C and N are contained in the austenite phase (γ phase) as a matrix, the phase stabilization of the γ phase and the generation of strain in the crystal lattice to strengthen the solid solution are performed. It has an effect and an effect of fixing dislocations in the metal structure (Cottrell atmosphere). Due to these effects, it is possible to achieve both excellent corrosion resistance equal to or higher than SUS316 and high mechanical properties even if wire processing such as wire drawing or twisting is performed to improve strength. It is. In order to obtain such excellent effects, in the present invention, the total content of C and N (C + N amount) in the stainless steel wire is set to 0.15% by mass or more and 0.30% by mass. When the amount of C + N is less than 0.15% by mass, solid solution strengthening and dislocation fixation are insufficient, and it is difficult to improve strength and corrosion resistance. If the amount of C + N exceeds 0.30% by mass, the amount of carbides and nitrides generated during casting increases, making it difficult to perform subsequent wire drawing and the like, and also tends to generate blowholes. Become. A more preferred C + N amount is 0.20% by mass or more and 0.30% by mass or less.
[0016]
Further, in order to reduce the weight of the electric wire for automobiles by reducing the diameter, it is necessary to appropriately adjust the tensile strength and toughness of the stainless steel wire. As a result of the study by the present inventors, it has been found that a stainless steel wire manufactured under the following conditions can have appropriate strength and toughness as a conductor of an electric wire for automobiles. That is, the stainless steel wire used in the present invention is adjusted to a predetermined wire diameter by drawing a stainless steel material at a surface reduction rate of 5% or more and 98% or less, and then at a temperature of 950 ° C. or more and 1150 ° C. or less and a holding time of 0.1 mm or less. Those subjected to heat treatment for 5 seconds to 60 seconds are suitable. More preferably, the area reduction rate is 5% or more and 70% or less, the heat treatment temperature is 1000 ° C or more and 1100 ° C or less, and the holding time is 0.5 seconds or more and 20 seconds or less. In the above-mentioned temperature range, when the heat treatment temperature is lowered, the holding time is lengthened, and when the heat treatment temperature is raised, the holding time is preferably shortened. If the heat treatment temperature is lower than 950 ° C., it is difficult to obtain sufficient heating, and the toughness of the steel wire may be insufficient. On the other hand, when the temperature is higher than 1150 ° C., excessive heating may result in insufficient strength or insufficient toughness due to generation of δ phase. If the holding time is less than 0.5 seconds, the heating time is short and sufficient heating is difficult to obtain, and the toughness of the steel wire may be insufficient. When the heat treatment temperature is higher than 60 seconds, the generation of the δ phase may be increased at a high heat treatment temperature, and the cost tends to be high industrially.
[0017]
Furthermore, in the stainless steel wire obtained after the heat treatment, the lower limit of the tensile strength before twisting with the second strand is 800 N / mm 2 in consideration of the fact that the stainless steel wire is the strand that determines the conductor strength. The upper limit is preferably set to 1200 N / mm 2 in consideration of workability at the time of stranded wire processing. More preferably, it is 900 N / mm 2 or more and less than 1100 N / mm 2 .
[0018]
In order to improve the corrosion resistance of the stainless steel wire, it is preferable that the martensite phase induced by wire working such as wire drawing or twisting be small or not included. As a result of investigations by the present inventors, in order to impart corrosion resistance that can withstand use as a wire harness for automobiles, the metal structure of the stainless steel wire must have a work-induced martensite phase: 10% by volume or less, and the balance: mainly an austenite phase Was found to be preferable. More preferably, the content of the work-induced martensite phase is 5% by volume or less.
[0019]
In the process-induced martensite phase, the stability of the austenite phase and the processing conditions (area reduction, heat treatment conditions) influence each other. Therefore, for example, in order to control the work-induced martensite phase to 10% by volume or less in normal working at room temperature, it is effective to include C + N in the above-defined range to stabilize the austenite phase. is there. Also, during processing, as the temperature around the stainless steel is lower, the martensite phase is more likely to be induced, such as stopping the cooling of the dies during wire drawing and the cooling of the winding pot of the drawn wire. Then, it is effective to increase the processing temperature.
[0020]
Hereinafter, the reasons for selecting the constituent elements of the stainless steel wire and limiting the component range will be described.
C is a strong austenite-forming element. Further, it has the effect of forming an interstitial solid solution in the crystal lattice, introducing strain and strengthening. Further, there is an effect that a Cottrell atmosphere is formed to fix dislocations in the metal structure. However, when Cr carbide is present at the crystal grain boundaries, the diffusion rate of Cr in austenite is low, so that a Cr-deficient layer is formed around the grain boundaries, and toughness and corrosion resistance are reduced. Therefore, the effective content of C is set to 0.01% by mass or more and 0.25% by mass or less.
[0021]
N is also a strong austenite forming element like C, and is also an interstitial solid solution strengthening element. It is also a cotrel atmosphere forming element. However, there is a limit to the solid solution in the γ phase, and a large amount of addition (0.20% by mass or more, particularly more than 0.25% by mass) causes blowholes during melting and casting. . This phenomenon can be suppressed to some extent by increasing the solid solubility limit by adding an element having a high affinity for N, such as Cr and Mn. However, if added excessively, it is necessary to control the temperature and atmosphere during melting, which may lead to an increase in cost. Therefore, in the present invention, N is set to 0.01% by mass or more and 0.25% by mass or less.
[0022]
Mn is used as a deoxidizing agent during refining. It is also effective for stabilizing the γ phase of austenitic stainless steel, and can be an expensive alternative to Ni. As described above, it also has the effect of increasing the solid solubility limit of N in the γ phase. However, since the oxidation resistance at high temperatures is adversely affected, Mn is set to 0.5% by mass or more and 4.0% by mass or less. In addition, the content of Mn is preferably 0.5% by mass or more and 2.0% by mass or less, especially when corrosion resistance is emphasized. Although there is a slight decrease in corrosion resistance, the solid solubility limit of N is increased, When the number of micro blow holes is extremely reduced, the addition of more than 2.0% by mass and 4.0% by mass or less has a great effect. Thus, the content of Mn can be adjusted according to the application.
[0023]
Cr is a main constituent element of the austenitic stainless steel, and is an effective element for obtaining heat resistance and oxidation resistance. In the present invention, Ni equivalent and Cr equivalent are calculated from other elemental components, and considering the phase stability of the γ phase, the toughness is reduced by 16% by mass or more to obtain the heat resistance required for the wire harness. It is set to 20% by mass or less in consideration of the above.
[0024]
Ni is effective in stabilizing the γ phase. In the present invention, when the N content is 0.2% by mass or more, a large amount of Ni causes blowholes. In this case, it is effective to add Mn having a high affinity for N, and it is necessary to add Ni in consideration of the amount of Mn to obtain an austenitic stainless steel. Therefore, the content of Ni is set to 8.0% by mass or more for stabilizing the γ phase, and 14.0% by mass or less for suppressing blowholes and suppressing cost increase. The Ni content is preferably 8.0% by mass or more and 14.0% by mass or less as described above, but within the range of less than 10.0% by mass, particularly, N is easily dissolved in the melting and casting step. Therefore, there is an advantage that the manufacturing cost can be further reduced.
[0025]
<Second strand>
In the present invention, as the second strand, at least one selected from the group consisting of a copper wire, a copper alloy wire, an aluminum wire, and an aluminum alloy wire is used. Therefore, when a plurality of second strands are used, all of them may be the same kind or a combination of a plurality of kinds may be used. When an aluminum wire or an aluminum alloy wire is used, the weight can be reduced as compared with a copper wire or a copper alloy wire. Examples of the copper wire include those having a chemical composition of copper and inevitable impurities. The copper alloy wire has a chemical component of copper and one or more elements selected from the group consisting of Sn, Ag, Ni, Si, Cr, Zr, In, Al, Ti, Fe, P, Mg, Zn, and Be. And unavoidable impurities. Examples of the aluminum wire include those having a chemical composition of aluminum and unavoidable impurities. The aluminum alloy wire is composed of aluminum, one or more elements selected from the group consisting of Mg, Si, Cu, Ti, B, Mn, Cr, Ni, Fe, Sc, and Zr, and inevitable impurities. Things.
[0026]
<Compound line>
The composite wire of the present invention is obtained by combining and twisting the first strand made of the stainless steel wire and the second strand made of the metal wire such as copper. The first strand and the second strand each use one or more. The higher the content of the first strand, the higher the strength, but the higher the conductor resistance tends to be. On the other hand, as the content of the second strand increases, the conductor resistance decreases, but the strength tends to decrease. Therefore, the numbers of the first strands and the second strands may be appropriately selected so as to obtain appropriate conductor resistance and strength.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Example 1)
A composite wire was prepared using a stainless steel wire and a copper wire, and the characteristics of the composite wire were examined. Table 1 shows the chemical components of the stainless steel wires used. In Table 1, steel type: stainless steel {circle around (2)} is JIS steel type SUS304 which is a general austenitic stainless steel.
[0028]
[Table 1]
Figure 2004281241
[0029]
Stainless steel materials (stainless steel (1) and (2)) having the chemical components shown in Table 1 were melt-cast, forged, and hot-rolled to produce stainless steel wires (wire diameter φ0.43 mm). %, A softening heat treatment was performed to obtain a stainless steel wire having a wire diameter of φ0.16 mm. The softening heat treatment was performed at a temperature of 1100 ° C. and a holding time of about 5 seconds. Table 2 shows the tensile strength of these stainless steel wires.
[0030]
[Table 2]
Figure 2004281241
[0031]
As shown in Table 2, the stainless steel wire (1) has a higher tensile strength than the stainless steel wire (2) of SUS304 even when softening heat treatment for improving toughness is performed. It can be confirmed that it has. Therefore, it is understood that the stainless steel wire (1) is excellent in both strength and toughness. Further, when the structure of the stainless steel wire (1) after the heat treatment was examined, almost no work-induced martensite phase was observed, and it was an austenite phase.
[0032]
The copper wire was made of substantially pure copper, and a soft wire often used for a wire harness was used. The copper wire to be twisted with the stainless steel wire had a wire diameter of φ0.16 mm. In addition, a stranded wire composed of only a copper wire was prepared for comparison with the composite wire, and the copper wire having a wire diameter of 0.23 mm was prepared.
[0033]
The above-mentioned strands (stainless steel wire and copper wire) were combined and stranded to form a composite wire and a copper stranded wire. Then, an outer periphery of the obtained composite wire and copper stranded wire was coated with vinyl chloride to a predetermined thickness to form an insulating layer, and an electric wire using these composite wire and copper stranded wire as a conductor was produced.
[0034]
<Test Example 1>
In the obtained electric wire, the breaking load of the conductor, the conductor resistance, the mass of the conductor, and the mass of the electric wire were measured. Table 3 shows the results.
[0035]
[Table 3]
Figure 2004281241
[0036]
As shown in Table 3, sample no. In comparison with the copper stranded wire (sample No. 8) consisting of only a copper wire having a strand diameter of 0.23 mm, Nos. 1 to 4 have breaking loads equal to or higher than those of the stranded wires, indicating that they are excellent in strength. Moreover, it can be confirmed that the mass of the electric wire can be reduced to half or less than half. Further, the sample No. When compared with a copper stranded wire (sample No. 7) consisting of only a copper wire with the same element wire diameter, the breaking load is extremely high, the strength is excellent, and the wire mass is reduced. You can check.
[0037]
Further, for example, when the wiring resistance is set to a voltage drop of 0.5 V, a load current of 0.5 A, and a wiring length of 1.5 m, the conductor resistance of the automobile electric wire needs to be 667 mΩ / m or less. No. It can be seen that Nos. 1-4 satisfy this requirement sufficiently.
[0038]
Further, the sample No. having the same ratio between the stainless steel wire and the copper wire. 1 and sample no. 5 and sample no. 2 and sample no. When the sample Nos. 6 were compared, the conductor resistances were almost the same. 1 and 2 show that the breaking load is 10 N or more. That is, Sample No. using a specific stainless steel wire was used. It can be confirmed that Nos. 1 and 2 are superior in strength to electric wires using JIS steel type SUS304. Sample No. using JIS steel type SUS304. The strength of Sample Nos. 5 and 6 was measured. In order to obtain the same strength as that of the stainless steel wires (1) and (2), it is necessary to perform the drawing process once or twice on the stainless steel wire (2) with a surface reduction rate of 20 to 30%. However, although the martensite phase can be increased by wire drawing to improve the strength, the corrosion resistance tends to deteriorate as described later. On the other hand, the sample No. Nos. 1 and 2 use a stainless steel wire (1) of a specific component, so that it is not necessary to perform such a wire drawing process for improving the strength. Also excellent in nature.
[0039]
The results of this test are merely examples of a wire harness, and cannot be applied to all applications using the form of the product and the numerical values of the obtained data. However, from the results of this test, it is considered that in the case where compatibility between high strength and high electrical conductivity is required, it was confirmed that the present invention could achieve the object relatively easily. Further, in the present invention, by using a stainless steel wire having excellent strength, it is also possible to reduce the amount of use of the steel wire and improve the electrical conductivity.
[0040]
<Test Example 2>
Next, the corrosion resistance was evaluated. The sample used in this test was the sample No. used in Test Example 1 above. Samples in which the content of the composite wires 1, 2, 5, and 6 and the work-induced martensite phase were changed were newly prepared (samples Nos. 9 and 10). Sample No. Sample No. 9 is a sample No. Using a stainless steel material (stainless steel (1)) having the same chemical composition as the stainless steel wire used in sample No. 1, Sample No. 10 is a sample No. Using a stainless steel material (stainless steel (2)) having the same chemical composition as the stainless steel wire used in No. 5, the content of the work-induced martensite was changed by changing the processing conditions. Specifically, a high degree of work (96% area reduction), a lower temperature softening heat treatment (1050 ° C x 2 seconds holding time), and a lower temperature around the stainless steel wire Thus, the content ratio of the work-induced martensite phase was increased. The sample No. The tensile strength of the stainless steel wire used for No. 9 after the heat treatment was 1187 N / mm 2 .
[0041]
The corrosion resistance test was performed using a salt spray tester, and the test was performed with salt water: artificial seawater (5% saline) at a temperature of 35 ° C. and a test period of one month. Table 4 shows the test results. In Table 4, the rusting area ratio (%) is the ratio of the total area of rusted portions to the total surface area of the composite wire.
[0042]
[Table 4]
Figure 2004281241
[0043]
Since the ionization tendency is different between stainless steel and copper, a battery is formed at the contact portion between the stainless steel wire and the copper wire, and as shown in Table 4, it can be confirmed that corrosion progresses at the contact portion. In addition, it was confirmed that the copper wire began to corrode from the contact portion, and that the copper corrosion product further adversely affected the stainless steel wire. Then, the sample No. using SUS304 was used. Sample Nos. 5 and 6 in which the process-induced martensite phase was controlled by a specific component rather than Sample Nos. 5 and 6. It turns out that 1 and 2 are more excellent in corrosion resistance. In addition, the sample No. in which the processing induced martensite phase was controlled by the processing conditions in addition to the components. Sample No. 9 also It turns out that it is more excellent than 5 in corrosion resistance. In particular, as shown in Table 4, it was confirmed that the greater the content (volume%) of the work-induced martensite phase of the stainless steel wire, the greater the progress of corrosion. Therefore, it can be seen that when the martensite phase is increased by working, the tensile strength can be improved, but the corrosion resistance deteriorates.
[0044]
(Example 2)
In the first embodiment, a composite wire is produced in the same manner as in the first embodiment by using an aluminum wire made of pure aluminum (including unavoidable impurities) having a wire diameter of φ0.16 mm instead of the copper wire. An electric wire was prepared as a conductor, and the breaking load, conductor resistance, conductor mass, and electric wire mass of the conductor were measured in the same manner as in Test Example 1. As a result, it was confirmed that both high strength and high electrical conductivity could be achieved as in Example 1. Further, it was confirmed that the weight can be further reduced.
[0045]
In general, when a conductor is composed only of aluminum wire, aluminum alloy wire or copper alloy wire, the strength is better than when a conductor is composed only of copper wire, but this strength improvement is not so large, and the weight of the wire is reduced. In particular, when the diameter is reduced, improvement in strength is hardly expected. On the other hand, the present invention can flexibly cope with required characteristics such as strength, conductivity, and weight reduction by adopting a form of a stranded wire with a stainless steel wire instead of using only an aluminum wire or the like.
[0046]
Further, the corrosion resistance was evaluated in the same manner as in Test Example 2. When an aluminum wire, its alloy wire, or a copper alloy wire is used as the second strand, the battery characteristics formed between the wire and the stainless steel wire are slightly different. However, it was confirmed that the use of a stainless steel wire having a work-induced martensite amount of 10% by volume or less exhibited excellent corrosion resistance as in Test Example 2.
[0047]
【The invention's effect】
As described above, according to the composite wire for a wire harness of the present invention, a stainless steel wire having a specific chemical composition and a second element wire such as copper are twisted to form an excellent conductor as a conductor of an electric wire for an automobile. An excellent effect that not only is provided with performance and strength, but also corrosion resistance can be improved. In addition, by using the above stainless steel wire, the composite wire of the present invention can reduce the amount of copper used and achieve weight reduction. Further, the composite wire of the present invention does not require a manufacturing process such as a conventional clad wire or plated wire, and can be manufactured relatively easily, so that the manufacturing cost can be reduced. When such a composite wire for a wire harness of the present invention is used as a conductor of an electric wire for an automobile, the entire automobile can be reduced in weight and recyclability can be improved, and in consideration of future environmental problems, it is extremely effective. In addition, it has high industrial value.

Claims (4)

質量%でC:0.01〜0.25、N:0.01〜0.25、Mn:0.5〜4.0、Cr:16〜20、Ni:8.0〜14.0を含有し、残部がFe及び不純物からなるステンレス鋼線でCとNの含有量が0.15質量%≦C+N≦0.30質量%を満たす第一素線と、
銅線、銅合金線、アルミニウム線及びアルミニウム合金線の少なくとも1種から選択される第二素線とを撚り合わせてなることを特徴とするワイヤーハーネス用複合線。
C: 0.01 to 0.25, N: 0.01 to 0.25, Mn: 0.5 to 4.0, Cr: 16 to 20, Ni: 8.0 to 14.0% by mass% And a first strand in which the balance of C and N satisfies 0.15% by mass ≦ C + N ≦ 0.30% by mass, the balance being a stainless steel wire composed of Fe and impurities;
A composite wire for a wire harness, comprising twisting a second element wire selected from at least one of a copper wire, a copper alloy wire, an aluminum wire, and an aluminum alloy wire.
第一素線の金属組織は、線加工によって誘起されるマルテンサイト相が10体積%以下であり、残部がオーステナイト相であることを特徴とする請求項1に記載のワイヤーハーネス用複合線。2. The composite wire for a wire harness according to claim 1, wherein a metal structure of the first strand is such that a martensite phase induced by wire working is 10% by volume or less, and the remainder is an austenite phase. 第一素線は、ステンレス鋼材を所定の線径まで減面率5%〜98%で線引き加工した後、温度950℃〜1150℃、保持時間0.5秒〜60秒の熱処理を施し、第二素線と撚り合わせる前の引張強さが800N/mm以上1200N/mm未満であることを特徴とする請求項1又は2に記載のワイヤーハーネス用複合線。The first strand is formed by drawing a stainless steel material to a predetermined wire diameter at a surface reduction rate of 5% to 98%, and then performing a heat treatment at a temperature of 950 ° C. to 1150 ° C. and a holding time of 0.5 seconds to 60 seconds. The composite wire for a wire harness according to claim 1 or 2, wherein a tensile strength before being twisted with the two strands is 800 N / mm 2 or more and less than 1200 N / mm 2 . 質量%でC:0.01〜0.25、N:0.01〜0.25、Mn:0.5〜4.0、Cr:16〜20、Ni:8.0〜14.0を含有し、残部がFe及び不純物からなり、CとNの含有量が0.15質量%≦C+N≦0.30質量%であるステンレス鋼材を所定の線径まで減面率5%〜98%で線引き加工する工程と、
線引き加工された線材に温度950℃〜1150℃、保持時間0.5秒〜60秒の熱処理を施す工程と、
得られたステンレス鋼線を1本以上と銅線、銅合金線、アルミニウム線及びアルミニウム合金線の少なくとも1種から選択される金属線を1本以上とを撚り合わせる工程とを具え、
撚り合わせる前のステンレス鋼線の引張強さが800N/mm以上1200N/mm未満であることを特徴とするワイヤーハーネス用複合線の製造方法。
C: 0.01 to 0.25, N: 0.01 to 0.25, Mn: 0.5 to 4.0, Cr: 16 to 20, Ni: 8.0 to 14.0% by mass% The remainder is made of Fe and impurities, and the C and N contents are 0.15% by mass ≦ C + N ≦ 0.30% by mass, and a stainless steel material is drawn to a predetermined wire diameter at a surface reduction rate of 5% to 98%. Processing,
Subjecting the drawn wire to a heat treatment at a temperature of 950 ° C. to 1150 ° C. and a holding time of 0.5 to 60 seconds;
Twisting one or more of the obtained stainless steel wires with one or more metal wires selected from a copper wire, a copper alloy wire, an aluminum wire and an aluminum alloy wire,
Method for producing a composite wire for wire harness, wherein the tensile strength of the prior stainless steel wire is less than 800 N / mm 2 or more 1200 N / mm 2 stranding.
JP2003071304A 2003-03-17 2003-03-17 Composite wire for wire harness and manufacturing method thereof Expired - Lifetime JP3530181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071304A JP3530181B1 (en) 2003-03-17 2003-03-17 Composite wire for wire harness and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071304A JP3530181B1 (en) 2003-03-17 2003-03-17 Composite wire for wire harness and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP3530181B1 JP3530181B1 (en) 2004-05-24
JP2004281241A true JP2004281241A (en) 2004-10-07

Family

ID=32463705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071304A Expired - Lifetime JP3530181B1 (en) 2003-03-17 2003-03-17 Composite wire for wire harness and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3530181B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024851A1 (en) * 2003-09-02 2005-03-17 Sumitomo (Sei) Steel Wire Corp. Covered wire and automobile-use wire harness
WO2006008981A1 (en) * 2004-07-15 2006-01-26 Sumitomo Wiring Systems, Limited Electric wire for automobile
WO2006070690A1 (en) * 2004-12-27 2006-07-06 Autonetworks Technologies, Limited Wire for automobiles
US7491891B2 (en) 2004-05-19 2009-02-17 Sumitomo (Sei) Steel Wire Corp. Composite wire for wire-harness and process for producing the same
JP2012190615A (en) * 2011-03-09 2012-10-04 Nisshin Steel Co Ltd Aluminum coated thin steel wire for heat-resistant electric wire
WO2013085003A1 (en) * 2011-12-07 2013-06-13 大電株式会社 Composite conductor and electric wire using same
CN104233849A (en) * 2013-06-08 2014-12-24 丰田纺织株式会社 Cloth material
US9637843B2 (en) 2013-06-06 2017-05-02 Toyota Boshoku Kabushiki Kaisha Fabric material
CN109791815A (en) * 2016-11-16 2019-05-21 住友电气工业株式会社 Harness strands and harness

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264929A (en) 2009-01-19 2011-11-30 古河电气工业株式会社 Aluminum alloy wire
JP4609866B2 (en) 2009-01-19 2011-01-12 古河電気工業株式会社 Aluminum alloy wire

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024851A1 (en) * 2003-09-02 2005-03-17 Sumitomo (Sei) Steel Wire Corp. Covered wire and automobile-use wire harness
US7230186B2 (en) 2003-09-02 2007-06-12 Sumitomo (Sei) Steel Wire Corp. Covered wire and automobile-use wire harness
US7491891B2 (en) 2004-05-19 2009-02-17 Sumitomo (Sei) Steel Wire Corp. Composite wire for wire-harness and process for producing the same
WO2006008981A1 (en) * 2004-07-15 2006-01-26 Sumitomo Wiring Systems, Limited Electric wire for automobile
WO2006070690A1 (en) * 2004-12-27 2006-07-06 Autonetworks Technologies, Limited Wire for automobiles
JP2012190615A (en) * 2011-03-09 2012-10-04 Nisshin Steel Co Ltd Aluminum coated thin steel wire for heat-resistant electric wire
WO2013085003A1 (en) * 2011-12-07 2013-06-13 大電株式会社 Composite conductor and electric wire using same
JPWO2013085003A1 (en) * 2011-12-07 2015-04-27 大電株式会社 Composite conductor and electric wire using the same
US9293232B2 (en) 2011-12-07 2016-03-22 Dyden Corporation Composite conductor and electric wire using the same
US9637843B2 (en) 2013-06-06 2017-05-02 Toyota Boshoku Kabushiki Kaisha Fabric material
CN104233849A (en) * 2013-06-08 2014-12-24 丰田纺织株式会社 Cloth material
CN109791815A (en) * 2016-11-16 2019-05-21 住友电气工业株式会社 Harness strands and harness
US10475552B2 (en) 2016-11-16 2019-11-12 Sumitomo Electric Industries, Ltd. Strand for wiring harness and wiring harness
DE112017005779T5 (en) 2016-11-16 2019-12-12 Sumitomo Electric Industries, Ltd. Wire for a wiring harness and wiring harness
CN109791815B (en) * 2016-11-16 2020-08-14 住友电气工业株式会社 Wire strand for wire harness and wire harness

Also Published As

Publication number Publication date
JP3530181B1 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
WO2005112046A1 (en) Composite wire for wire harness and process for producing the same
JP5128109B2 (en) Electric wire conductor and manufacturing method thereof
CN110337502B (en) Aluminum alloy material, and fastening member, structural member, spring member, conductive member, and battery member each using aluminum alloy material
CN101326593B (en) Conductor of electric cable for wiring, electric cable for wiring, and methods of producing them
US20100294534A1 (en) Conductor wire for electronic apparatus and electrical wire for wiring using the same
EP3604579B1 (en) Aluminium alloy material, conductive member using same, conductive component, spring member, spring component, semiconductor module member, semiconductor module component, structure member, and structure component
CN111566240B (en) Aluminum alloy material, and conductive member, battery member, fastening member, spring member, and structural member using same
KR102613710B1 (en) Aluminum alloy materials and conductive members using them, battery members, fastening parts, spring parts, structural parts, cabtire cables
JP6615413B1 (en) Movable cable
US7230186B2 (en) Covered wire and automobile-use wire harness
JP3530181B1 (en) Composite wire for wire harness and manufacturing method thereof
JP2008041447A (en) Conductor for cable, manufacturing method of the same, and flex-resistant cable using the same
CN111263824A (en) Stranded conductor for insulated wire, flexible wire and cable
CN103757485A (en) Al-Fe-Cu-Mg aluminum alloy and low-voltage cable manufactured by alloy
US20170154700A1 (en) Aluminum-alloy electric wire and wire harness
JP5467789B2 (en) Al-plated steel wire having good wire drawing workability and manufacturing method thereof
JP6635732B2 (en) Method for manufacturing aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using the same
JP6858310B2 (en) Aluminum alloy material and conductive members, battery members, fastener parts, spring parts, structural parts, cabtire cables using it
JP2002356741A (en) Wire rod for steel code and method for producing steel code
CN103725927A (en) Al-Fe-Cu-Mg aluminum alloy and medium-voltage cable prepared from Al-Fe-Cu-Mg aluminum alloy
JP7398315B2 (en) Aluminum alloy wire and electric wire
JPH11229088A (en) High tensile strength wire rod for steel wire excellent in twisting value and its production
JP2500143B2 (en) Copper alloy member with both conductivity and strength
JPS63186852A (en) Ultra high strength steel wire having good heat resistance
JPH09190718A (en) Suspension feeder wire

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3530181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term