JPH09189683A - Method and device for ultrasonic flaw detection in ductile grain steel plate - Google Patents

Method and device for ultrasonic flaw detection in ductile grain steel plate

Info

Publication number
JPH09189683A
JPH09189683A JP8002745A JP274596A JPH09189683A JP H09189683 A JPH09189683 A JP H09189683A JP 8002745 A JP8002745 A JP 8002745A JP 274596 A JP274596 A JP 274596A JP H09189683 A JPH09189683 A JP H09189683A
Authority
JP
Japan
Prior art keywords
defect
probe
flaw detection
ultrasonic
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8002745A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okubo
寛之 大久保
Minoru Iwata
穣 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8002745A priority Critical patent/JPH09189683A/en
Publication of JPH09189683A publication Critical patent/JPH09189683A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0427Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect only reflections at a defect without detecting tree-like echoes at a grain boundary, so as to provide a high defect-detecting ability, by causing ultrasonic waves to enter from a direction tilted from a line perpendicular to a direction for rolling a ductile grain steel plate. SOLUTION: A transmitted signal with a preset frequency is input from a transmitter to a transmitter-receiver probe 2, and an ultrasonic wave is made to enter a steel plate 1 at an inclination angle θ. If there is a defect (d), the probe 2 detects a reflected echo γ, converts it into an electric signal, and imparts the signal to a receiver. A probe 3 used exclusively for reception constantly receives ultrasonic waves from the probe 2. If the defect (d) moves along with the steel 1 and enters an area connecting the probes 2, 3, part of the ultrasonic wave is reflected because of the presence of the defect, and the levels of the signals received by the probe 3 and the receiver are lowered. Therefore, the length of the defect (d) can be calculated by detecting the duration of sound pressure lowering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に展伸粒鋼板の
超音波探傷方法およびその装置に係り、さらに詳しく
は、探触子を展伸粒鋼板の圧延方向と直交する線から一
定角度傾斜させて配することにより、展伸粒鋼板内に存
在する欠陥を適確に探傷する方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method and apparatus for wrought steel sheets, and more particularly, to a probe tilted at a constant angle from a line orthogonal to the rolling direction of the wrought steel sheets. The present invention relates to a method and an apparatus for accurately detecting defects existing in an expanded grain steel sheet by arranging them.

【0002】[0002]

【従来の技術】薄鋼板の内部や表面に存在する欠陥を検
査する場合、超音波探触子を用いて超音波を入射させ、
その反射エコーを受信することにより、表面欠陥および
内部欠陥を検出する超音波探傷方法は従来より良く知ら
れている。しかし、このような超音波探傷法では、結晶
粒が粗大な被検査材の場合、超音波が結晶粒界で散乱さ
れるため、減衰量が大きく、微小欠陥の検出は困難であ
った。
2. Description of the Related Art When inspecting for defects existing inside or on the surface of a thin steel sheet, ultrasonic waves are made incident by using an ultrasonic probe.
An ultrasonic flaw detection method for detecting a surface defect and an internal defect by receiving the reflected echo is well known in the art. However, in such an ultrasonic flaw detection method, in the case of a material to be inspected with coarse crystal grains, the ultrasonic waves are scattered at the crystal grain boundaries, so the amount of attenuation is large and it is difficult to detect minute defects.

【0003】これについて説明すると、一般に、このよ
うな超音波の減衰は、被検査材の材質および寸法によっ
ても異なるが、(1)式で表せる。
To explain this, in general, such attenuation of ultrasonic waves varies depending on the material and size of the material to be inspected, but can be expressed by equation (1).

【0004】[0004]

【数1】 [Equation 1]

【0005】伝播距離xにおける音圧Pは、(1)式に
示されるように、伝播距離xおよび減衰定数αの増加に
対して指数関数的に減少する。ここで、減衰定数αは、
超音波の周波数の4乗に比例することから、結晶粒が粗
大な被検査材の探傷を行う際には、低周波数の超音波を
用いることにより、超音波の減衰を軽減できることがわ
かる。したがって、従来から低周波数の超音波を選択し
て探傷を行っていた。
The sound pressure P at the propagation distance x decreases exponentially as the propagation distance x and the damping constant α increase, as shown in the equation (1). Where the damping constant α is
Since it is proportional to the fourth power of the frequency of the ultrasonic wave, it can be understood that the attenuation of the ultrasonic wave can be reduced by using the ultrasonic wave of low frequency when detecting the material to be inspected with coarse crystal grains. Therefore, conventionally, low frequency ultrasonic waves have been selected for flaw detection.

【0006】ところが、超音波探傷において、伝播距離
xにある面積Sの欠陥を検出した場合の音圧Pr は、下
記(2)式で表される。
However, in ultrasonic flaw detection, the sound pressure P r when a defect of the area S at the propagation distance x is detected is expressed by the following equation (2).

【0007】[0007]

【数2】 [Equation 2]

【0008】(2)式より、前述のごとく低周波数の超
音波を用いた場合には、波長λが長いために音圧Pr
小さくなり、欠陥検出能の低下を招く問題が生じてく
る。
From the equation (2), when the low frequency ultrasonic wave is used as described above, the sound pressure P r becomes small because the wavelength λ is long, which causes a problem that the defect detectability is deteriorated. .

【0009】また、結晶が通板方向にある程度方向性を
有する展伸粒鋼板においては、超音波を通板方向に垂直
に入射させ、反射エコーを検出する場合、反射エコーに
結晶粒界からの散乱エコーが重なって受信されることに
よって林状エコー(シャワーエコー)となり、結果的に
受信信号のS/N比を大きく低下させるという問題もあ
る。
Further, in the expanded grain steel sheet in which crystals have a certain degree of directionality in the sheet passing direction, when ultrasonic waves are incident perpendicularly to the sheet passing direction and a reflected echo is detected, the reflected echo is reflected from the grain boundary. There is also a problem in that scattered echoes are overlapped and received to form forest-like echoes (shower echoes), and as a result, the S / N ratio of the received signal is greatly reduced.

【0010】上述したような、被検査材の結晶粒が粗大
で方向性を有する場合の、低周波数の超音波の利用によ
る検出能低下、および林状エコーの発生によるS/N比
の大幅な低下等に対処するために、以下に示す先行例が
提案されている。
As described above, when the crystal grains of the material to be inspected are coarse and directional, the detectability is lowered by the use of low-frequency ultrasonic waves, and the S / N ratio is greatly increased by the generation of forest echo. In order to deal with the decrease and the like, the following prior art examples have been proposed.

【0011】(1)特開昭62−85859(以下、先
行例1という)公報には、ステンレス被覆管を水中に浸
漬し、このステンレス被覆管に対して、5〜15MHz の
広帯域型周波数特性を有する斜角式の超音波探触子か
ら、ビーム径を絞り、かつ波長がステンレス被覆管の結
晶粒径よりも大きい超音波を発信させて探傷することに
より、GS.No.が8.3よりも粗粒なステンレス被覆管で
も、超音波の散乱および減衰を抑制し、微小欠陥の超音
波探傷を可能とする超音波探傷方法が開示されている。
(1) In Japanese Patent Application Laid-Open No. 62-85859 (hereinafter referred to as "Prior Art 1"), a stainless clad tube is immersed in water and a wide band type frequency characteristic of 5 to 15 MHz is applied to the stainless clad tube. GS.No. is from 8.3 by narrowing the beam diameter and transmitting ultrasonic waves with a wavelength larger than the crystal grain size of the stainless clad tube from the oblique angle ultrasonic probe. Also disclosed is an ultrasonic flaw detection method that enables ultrasonic flaw detection of minute defects by suppressing the scattering and attenuation of ultrasonic waves even with a coarse-grained stainless clad tube.

【0012】(2)特開平2−186261号(以下、
先行例2という)公報には、被検査材に対して、高周波
で広帯域の超音波を用いて超音波探傷を行うとともに、
反射エコーの周波数領域のうちノイズ信号が少ない所定
周波数で欠陥検出を行うことにより、欠陥検出能が良
く、S/N比が良好な超音波探傷方法が開示されてい
る。
(2) JP-A-2-186261 (hereinafter, referred to as
According to Japanese Patent Laid-Open Publication No. 2002-27242, the material to be inspected is subjected to ultrasonic flaw detection using high-frequency and wide-band ultrasonic waves.
An ultrasonic flaw detection method has been disclosed in which defect detection is good and S / N ratio is good by performing defect detection at a predetermined frequency in which a noise signal is small in the frequency range of reflected echo.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、前述し
た各先行例には以下に示す問題点が存在する。 <先行例1の問題点>この超音波探傷方法では、5〜1
5MHz の広帯域型周波数をもった探傷器および探触子を
用いることが有効であるとしても、本願発明が対象とす
る薄鋼板の超音波探傷のように広範囲な探傷を必要とす
る場合には、5MHz 以上の超音波は採用できない。さら
に、結晶粒径よりも超音波の波長が大きくなるように検
査周波数を設定した場合には、確かに、結晶粒界での散
乱による減衰および林状エコーの発生は減少するもの
の、超音波の波長を結晶粒径より大きくするということ
は、この超音波の波長が欠陥径よりも大きくなる可能性
があることを意味し、前記(2)式の意義のとおり、欠
陥面積Sに対して超音波の波長λが大きくなることにな
るため、検出音圧Pr は減少し、欠陥検出能が低下す
る。したがって、結晶粒度より波長が大きくなるように
周波数を選定すると、欠陥検出を行うことができない問
題が生じる。
However, the above-mentioned respective prior art examples have the following problems. <Problem of Prior Art Example 1> In this ultrasonic flaw detection method, 5 to 1
Even if it is effective to use a flaw detector and a probe having a broadband frequency of 5 MHz, when a wide range flaw detection is required, such as ultrasonic flaw detection of a thin steel plate targeted by the present invention, Ultrasonic waves above 5MHz cannot be adopted. Furthermore, when the inspection frequency is set so that the wavelength of the ultrasonic waves is larger than the crystal grain size, although the attenuation due to scattering at the crystal grain boundaries and the occurrence of forest echo are reduced, the ultrasonic wave Making the wavelength larger than the crystal grain size means that the wavelength of this ultrasonic wave may be larger than the defect diameter, and as the meaning of the above-mentioned formula (2), the wavelength is larger than the defect area S. Since the wavelength λ of the sound wave is increased, the detected sound pressure P r is reduced and the defect detectability is reduced. Therefore, if the frequency is selected so that the wavelength is larger than the crystal grain size, there arises a problem that the defect cannot be detected.

【0014】<先行例2の問題点>先行例2で示される
超音波探傷方法では、反射エコーのうち、予備探傷に基
づいて設定された任意の周波数帯域のみの欠陥信号を検
出しているため、結晶粒がきわめて粗大な場合や薄鋼板
のように探傷範囲が広い場合には、先行例1と同様な理
由により適切でないものである。
<Problem of Prior Art 2> In the ultrasonic flaw detection method shown in Prior Art 2, a defect signal of only an arbitrary frequency band set based on preliminary flaw detection is detected from the reflected echo. However, when the crystal grains are extremely coarse or when the flaw detection range is wide as in the case of a thin steel plate, it is not suitable for the same reason as in the first example.

【0015】このような問題点は、超音波の周波数を選
定することにのみ依拠して解消しようとする限界に基づ
くものである。
Such a problem is based on the limit to be solved only by selecting the frequency of the ultrasonic wave.

【0016】そこで、本発明の主たる課題は、従来使用
していた周波数の超音波を用いながらも、結晶粒界での
散乱エコーによる林状エコーを直接検出せずに、欠陥反
射エコーのみを検出することができ、もって高い欠陥検
出能を発揮する展伸粒鋼板の超音波探傷方法とその装置
を提供することにある。
Therefore, the main object of the present invention is to detect only the defect reflection echo without directly detecting the forest-like echo due to the scattering echo at the crystal grain boundary, while using the ultrasonic wave of the frequency conventionally used. It is possible to provide an ultrasonic flaw detection method for an expanded grained steel sheet and a device therefor capable of achieving high defect detection ability.

【0017】[0017]

【課題を解決するための手段】前述した課題を達成した
請求項1に記載の発明は、展伸粒鋼板に対して超音波を
入射させ、欠陥部での反射エコーを検知することにより
欠陥を検出する超音波探傷方法であって、前記展伸粒鋼
板の圧延方向と直交する線から傾斜した方向から、より
望ましくは2.5度〜45度の傾斜角度範囲内の位置か
ら、前記鋼板へ超音波を入射することを特徴とする展伸
粒鋼板の超音波探傷方法である。
According to the invention of claim 1 which has achieved the above-mentioned problems, an ultrasonic wave is incident on the wrought steel sheet and a reflection echo at the defect portion is detected to detect the defect. An ultrasonic flaw detection method for detecting, wherein the steel plate is moved from a direction inclined from a line orthogonal to a rolling direction of the wrought steel sheet, more preferably from a position within an inclination angle range of 2.5 degrees to 45 degrees. It is an ultrasonic flaw detection method for wrought grained steel sheets, characterized by applying ultrasonic waves.

【0018】フェライト系ステンレス鋼板などの展伸粒
鋼板の結晶粒界は、圧延方向に異方性を有し、かつ欠陥
が圧延方向に延びているものが多いので、圧延方向に対
して直交する方向から超音波の送受信を行うと、欠陥反
射エコーだけでなく結晶粒界での直接散乱エコーも受信
してしまう。また、圧延方向から超音波の送受信を行う
と、直接散乱エコーを受信せず、ノイズが減少するもの
の、対象とする欠陥が圧延方向に延びているので、欠陥
からの反射エコーも検出できなくなる。
Since grain boundaries of wrought grained steel sheets such as ferritic stainless steel sheets have anisotropy in the rolling direction and many defects extend in the rolling direction, they are orthogonal to the rolling direction. When ultrasonic waves are transmitted and received from the direction, not only the defect reflection echo but also the direct scattering echo at the grain boundary is received. Further, when ultrasonic waves are transmitted and received from the rolling direction, the scattered echoes are not directly received and the noise is reduced, but since the target defect extends in the rolling direction, the reflected echo from the defect cannot be detected either.

【0019】そこで、本発明に従って、展伸粒鋼板の圧
延方向と直交する線から傾斜した方向か、好適には2.
5度〜45度の傾斜角度θ(図1参照)範囲内の位置か
ら超音波の送受信を行うと、結晶粒界からの超音波の散
乱自体は発生するものの、展伸粒鋼板は圧延方向に異方
性を有するために散乱エコーの直接的な受信は回避で
き、かつ欠陥からの反射エコーを検出することができ
る。
Therefore, according to the present invention, a direction inclined from a line orthogonal to the rolling direction of the wrought steel sheet, or preferably 2.
When ultrasonic waves are transmitted and received from a position within the range of the inclination angle θ of 5 degrees to 45 degrees (see FIG. 1), although the ultrasonic waves themselves are scattered from the grain boundaries, the wrought grained steel sheet is rolled in the rolling direction. Due to the anisotropy direct reception of scattered echoes can be avoided and reflected echoes from defects can be detected.

【0020】図4は超音波Cスキャン装置で検出した展
伸粒鋼板の欠陥のミクロ写真に基づいて描いた欠陥の説
明図であり、欠陥は圧延方向に延びており、かつその先
端は丸みを帯びた楕円形であることが判る。このこと
は、図3に示す実際の組織のミクロ写真で表されている
形状とも符合している。しかるに、本発明に従って前記
傾斜角度範囲内の位置から超音波の送受信を行うと、欠
陥の丸みを帯びた個所で超音波が反射するために、欠陥
を良好に検出することができるのである。 かくして、
本発明の超音波探傷方法の従って、欠陥の存在は検出で
きるが、欠陥の長さは測定できないという問題点があ
る。
FIG. 4 is an explanatory view of a defect drawn based on a microphotograph of a defect of an expanded grain steel sheet detected by an ultrasonic C-scan device. The defect extends in the rolling direction and its tip is rounded. It can be seen that it is oval-shaped. This is in agreement with the shape shown in the micrograph of the actual structure shown in FIG. However, when the ultrasonic waves are transmitted and received from the position within the tilt angle range according to the present invention, the ultrasonic waves are reflected at the rounded portion of the defect, so that the defect can be satisfactorily detected. Thus,
According to the ultrasonic flaw detection method of the present invention, the presence of a defect can be detected, but the length of the defect cannot be measured.

【0021】そこで、請求項3および請求項4に記載の
発明に従って、欠陥の長さについては、入射した超音波
を受信し、その音圧の低下継続時間に基づいて計測する
ようにしたものである。
Therefore, according to the third and fourth aspects of the invention, the length of the defect is measured by receiving the incident ultrasonic wave and measuring the duration of the decrease in the sound pressure. is there.

【0022】すなわち、請求項3に記載の発明は、入射
した超音波を受信し、その音圧の低下状態継続時間に基
づいて欠陥の長さを計測するものである。
That is, the invention described in claim 3 is to receive the incident ultrasonic wave and measure the length of the defect based on the duration time of the state of the reduced sound pressure.

【0023】請求項4に記載の発明は、展伸粒鋼板に対
して超音波を入射させ、欠陥部での反射エコーを検知す
ることにより欠陥を検出する超音波探傷装置であって、
前記展伸粒鋼板の圧延方向と直交する線から傾斜した位
置に配置され、超音波の送信および反射エコーを受信す
る送受信探触子と、この送受信探触子に対向する位置に
配置された受信専用の探触子と、前記送受信探触子での
受信反射エコーレベルに基づいて欠陥の有無を、前記受
信専用の探触子での受信音圧の低下状態継続時間に基づ
いて欠陥の長さをそれぞれ検知する信号処理系とを備え
たことをことを特徴とする展伸粒鋼板の超音波探傷装置
である。
The invention according to claim 4 is an ultrasonic flaw detector for detecting a defect by injecting ultrasonic waves into a wrought grained steel sheet and detecting a reflection echo at the defect portion,
A transmission / reception probe which is arranged at a position inclined from a line orthogonal to the rolling direction of the wrought steel sheet and receives ultrasonic waves and reflected echoes, and a reception which is arranged at a position facing the transmission / reception probe The presence or absence of a defect based on the reflection echo level received by the dedicated probe and the transmission / reception probe, and the length of the defect based on the duration of the state in which the reception sound pressure is reduced in the reception-only probe. And a signal processing system for detecting each of the above.

【0024】[0024]

【発明の実施の形態】本発明を実施するための展伸粒鋼
板の超音波探傷装置は、例えば図1および図2に示され
ているように、展伸粒鋼板1の上方に、指向性を有する
送受信探触子2を圧延方向と直交する方向線5から傾斜
角度θをなすように展伸粒鋼板1に接触媒質介して接触
させて配置し、また受信専用探触子3を、送受信探触子
2と探傷部位を挟んで対向的に配置する。さらに、両探
触子2,3は、探触子旋回治具4a、4bにより保持
し、直交線5に対する、超音波の送発信および受信方向
の偏位角度(傾斜角度)θを任意に設定できるようにな
っている。
BEST MODE FOR CARRYING OUT THE INVENTION An ultrasonic flaw detector for a wrought grained steel sheet for carrying out the present invention has a directivity above the wrought grained steel sheet 1, as shown in FIGS. 1 and 2, for example. The transmitting and receiving probe 2 having the above is arranged in contact with the expanded grained steel plate 1 through the contact medium so as to form an inclination angle θ from the direction line 5 orthogonal to the rolling direction, and the receiving-only probe 3 is transmitted and received. The probe 2 and the probe 2 are arranged so as to face each other with the flaw detection site interposed therebetween. Further, the two probes 2 and 3 are held by the probe turning jigs 4a and 4b, and the displacement angle (tilt angle) θ of the ultrasonic wave transmission / reception direction with respect to the orthogonal line 5 is arbitrarily set. You can do it.

【0025】このような装置では、まず、発振器7より
予め設定された周波数の発振信号が送受信探触子2に入
力され、この送受信探触子2では前記周波数の超音波を
傾斜角度θで展伸粒鋼板1に入射する(図示t)。送受
信探触子2では、欠陥dがある場合には、反射エコーr
を検出し、電気信号に変換して受信器6に与える。受信
器6での受信信号は演算器10に与えられる。
In such a device, first, an oscillation signal of a preset frequency is input from the oscillator 7 to the transmission / reception probe 2, and the transmission / reception probe 2 spreads the ultrasonic wave of the frequency at the inclination angle θ. It enters the grain-rolled steel sheet 1 (t in the figure). In the transmission / reception probe 2, when there is a defect d, the reflection echo r
Is detected, converted into an electric signal, and given to the receiver 6. The signal received by the receiver 6 is given to the calculator 10.

【0026】一方、受信専用探触子3では、送受信探触
子2からの超音波を常時受信し、その信号を受信器8で
受信する。この受信のタイミングは、発振器7からの発
振タイミングに同期している。
On the other hand, the reception-only probe 3 always receives the ultrasonic waves from the transmission / reception probe 2, and the receiver 8 receives the signal. The timing of this reception is synchronized with the oscillation timing from the oscillator 7.

【0027】鋼板1の移動に伴って欠陥dが移動し、送
受信探触子2と受信専用探触子3ととを結ぶ領域内に入
ると、欠陥dがあるために超音波の一部が反射し、受信
専用探触子3および受信器8での受信信号は(音圧)レ
ベルが低下する。この音圧レベルの低下は、欠陥dが前
記領域から抜けるまで継続する。したがって、その音圧
レベルの低下の継続時間を検出することにより、欠陥d
の長さを検出することができる。受信器8の受信信号は
フィルター9を通して演算器10に取り込まれる。
The defect d moves as the steel sheet 1 moves, and when it enters the area connecting the transmitting / receiving probe 2 and the reception-only probe 3, a part of the ultrasonic wave is generated due to the defect d. Reflection occurs, and the (sound pressure) level of the reception signals at the reception-only probe 3 and the receiver 8 decreases. This reduction in the sound pressure level continues until the defect d comes out of the area. Therefore, by detecting the duration of the decrease in the sound pressure level, the defect d
The length of can be detected. The reception signal of the receiver 8 is taken into the calculator 10 through the filter 9.

【0028】他方、前記受信器6,8、発振器7、フィ
ルター9および演算器10からなる信号処理系による欠
陥判断の信号処理について、図7の説明図を参照しなが
らさらに詳述する。送受信探触子2および受信器6での
受信信号は、経時的なコイル長相当量の変化に対して、
図7に示す欠陥反射エコー強度として変化を示す。この
場合、ノイズをも欠陥として判定する可能性があるの
で、演算器10において、予め適切にしきい値を設定
し、そのしきい値を超える場合のみを欠陥と判定する。
On the other hand, the signal processing of the defect judgment by the signal processing system consisting of the receivers 6, 8, the oscillator 7, the filter 9, and the calculator 10 will be described in more detail with reference to the explanatory view of FIG. The signals received by the transmission / reception probe 2 and the receiver 6 are:
A change is shown as the defect reflection echo intensity shown in FIG. 7. In this case, since noise may be determined as a defect, the arithmetic unit 10 appropriately sets a threshold value in advance, and only when the threshold value is exceeded, a defect is determined.

【0029】他方、欠陥dの長さ判定に際して、欠陥d
の存在による受信専用探触子3からの受信器8への入力
信号は、正常部での入力信号に比較して、数%しか低下
しない。
On the other hand, when determining the length of the defect d, the defect d
The input signal from the reception-dedicated probe 3 to the receiver 8 due to the presence of is reduced by only a few percent as compared with the input signal in the normal part.

【0030】しかるに、この数%程度の入力信号の低下
は、次記のような要因によっても変化する。 ・主に、鋼板の通板速度変化に起因する、超音波の入射
に使用する接触媒質の量の不安定性。 ・製造条件(圧延圧下率、冷却パターン、焼鈍温度な
ど)のばらつきに起因する、鋼板組織の変化にともなう
受信信号の減衰量の変動。 しかし、上記要因による変動周期は、低周期であるのに
対して、正常部位−欠陥部位−正常部位というような変
動周期は高周期であり、したがって、受信信号強度の変
動周期のうち、フィルター9により、図7に示すよう
に、低周期の受信信号変動を取り除くことにより、上記
要因による変動と欠陥部の存否による変動とを明確に弁
別でき、欠陥の長さを正確に測定できる。
However, the decrease of the input signal of about several percent also changes due to the following factors. -Instability of the amount of the contact medium used for the incidence of ultrasonic waves, which is mainly due to the change in the steel sheet passing speed. -Variation in the amount of attenuation of the received signal due to changes in the steel sheet structure due to variations in manufacturing conditions (rolling reduction rate, cooling pattern, annealing temperature, etc.). However, the fluctuation cycle due to the above factors is a low cycle, whereas the fluctuation cycle such as normal part-defective part-normal part is a high cycle. Thus, as shown in FIG. 7, by removing low-cycle received signal fluctuations, fluctuations due to the above factors and fluctuations due to the presence or absence of defective portions can be clearly discriminated, and the length of defects can be accurately measured.

【0031】なお、受信専用探触子3によってのみ欠陥
を検出しようとしても、欠陥の有無は把握できるとして
も、欠陥の位置を特定できないため、欠陥検出には適さ
ないので、欠陥検出には送受信探触子2を用いるもので
ある。
Even if the defect is detected only by the reception-only probe 3, the position of the defect cannot be specified even if the presence / absence of the defect can be grasped. Therefore, it is not suitable for the defect detection. The probe 2 is used.

【0032】<実験例>次に、本発明に係る展伸粒鋼板
の超音波探傷方法の完成に到る過程でのフェライト系ス
テンレス鋼板の探傷実験の結果について説明する。
<Experimental example> Next, the result of the flaw detection experiment of the ferritic stainless steel sheet in the process of reaching the completion of the ultrasonic flaw detection method for the wrought grain steel sheet according to the present invention will be described.

【0033】図5に示されるように、このフェライト系
ステンレス鋼板に人工欠陥として貫通穴11を加工した
後、送受信探触子2を前記貫通穴11の中心から300
mm離間して配し、かつ前記傾斜角度θを、0度、2.5
度、5度、10度、22.5度、45度に設定して探傷
を行った。この探傷結果を図6(a)〜(f)に示す。
As shown in FIG. 5, after the through hole 11 is machined into this ferritic stainless steel plate as an artificial defect, the transmission / reception probe 2 is placed at 300 from the center of the through hole 11.
mm apart, and the tilt angle θ is 0 degree, 2.5
The flaw detection was performed by setting the angle to 5 degrees, 10 degrees, 22.5 degrees, and 45 degrees. The results of this flaw detection are shown in FIGS.

【0034】(1)0度の場合(図6(a)) 結晶粒界での散乱エコーを直接受信してしまうため、全
体として林状エコーとなり、符号Fで図示される欠陥反
射エコーの弁別が不可能である。
(1) In case of 0 degree (FIG. 6 (a)) Since the scattered echo at the crystal grain boundary is directly received, it becomes a forest echo as a whole and discrimination of the defect reflection echo shown by the symbol F Is impossible.

【0035】(2)2.5度の場合(図6(b)) 0度の場合と比較して、結晶粒界での散乱エコーを直接
受信しなくなるため、林状エコーは減少しているが、符
号Bで示される鋼板のエッジの反射エコーを大きく受信
するために、欠陥反射エコーFの弁別に最適とはいえな
い。 (3)5度の場合(図6(c)) 2.5度の場合と比較して、さらに林状エコーは減少し
ており、欠陥反射エコーFの弁別は容易である。しか
し、エッジの反射エコーBは依然として受信するもの
の、レベルが小さく、欠陥判別に支障はない。 (4)10度、22.5度、45度の場合(それぞれ、
図6(d)、(e)、(f)) 5度の場合と比較して、林状エコーが小さくかつエッジ
の反射エコーBは受信せず、欠陥反射エコーFの弁別に
優れる。
(2) Case of 2.5 degrees (FIG. 6 (b)) Compared with the case of 0 degrees, the scattered echoes at the grain boundaries are not directly received, so the forest echoes are reduced. However, since the reflection echo of the edge of the steel sheet indicated by the symbol B is largely received, it cannot be said that discrimination of the defect reflection echo F is optimal. (3) Case of 5 degrees (FIG. 6C) Compared with the case of 2.5 degrees, the number of forest echoes is further reduced, and the defect reflection echo F can be easily discriminated. However, although the reflected echo B of the edge is still received, the level is small and there is no problem in defect discrimination. (4) In case of 10 degrees, 22.5 degrees, 45 degrees (respectively,
6 (d), (e), (f)) Compared to the case of 5 degrees, the forest echo is small and the reflected echo B at the edge is not received, and the discrimination of the defective reflected echo F is excellent.

【0036】一方、傾斜角度に相違に基づくS/N比の
変化を図8に示す。これらの一連の結果から、前記の傾
斜角度としては、2.5度〜45度、特に5〜45度が
好適である。しかし、45度を超えた傾斜角度とするこ
とによっても、探傷は可能であるものの、板幅方向の探
傷範囲が狭くなり、探触子を含む探傷装置を板幅方向に
複数台設ける必要があり、コスト的に得策ではない。
On the other hand, FIG. 8 shows the change in the S / N ratio due to the difference in the tilt angle. From these series of results, the inclination angle is preferably 2.5 to 45 degrees, particularly preferably 5 to 45 degrees. However, even if the angle of inclination exceeds 45 degrees, flaw detection is possible, but the flaw detection range in the plate width direction becomes narrower, and it is necessary to provide a plurality of flaw detection devices including the probe in the plate width direction. However, it is not a good idea in terms of cost.

【0037】さらに、本発明の展伸粒鋼板の超音波探傷
方法は、主に内部に存在する介在物を検出するために用
いるのが好適である。
Further, the ultrasonic flaw detection method for wrought grain steel sheet of the present invention is preferably used mainly for detecting inclusions present inside.

【0038】本発明における探傷周波数は1MHz〜5
MHzとすることができる。送受信探触子は、鋼板表面
面に対して直角のほか、種々の角度で変化させながら最
適な角度を選定しながら超音波を送信できる。
The flaw detection frequency in the present invention is 1 MHz to 5 MHz.
It can be MHz. The transmission / reception probe can transmit ultrasonic waves while selecting an optimal angle while changing at various angles in addition to a right angle to the steel plate surface.

【0039】[0039]

【発明の効果】以上のとおり、本発明によれば、従来使
用していた周波数の超音波を用いながらも、結晶粒界で
の散乱エコーによる林状エコーを直接検出せずに、欠陥
反射エコーのみを検出することができ、もって高い欠陥
検出能を発揮するものとなる。
As described above, according to the present invention, the defect reflection echo can be directly detected without directly detecting the forest-like echo due to the scattering echo at the crystal grain boundary, while using the ultrasonic wave of the frequency conventionally used. Only the defects can be detected, and thus high defect detectability is exhibited.

【0040】さらに、欠陥の長さをも検出できる。Further, the length of the defect can be detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る超音波探傷方法の概略図である。FIG. 1 is a schematic diagram of an ultrasonic flaw detection method according to the present invention.

【図2】本発明に係る超音波探傷装置の構成を示すブロ
ック図である。
FIG. 2 is a block diagram showing a configuration of an ultrasonic flaw detector according to the present invention.

【図3】フェライト系ステンレス鋼板の金属組織の顕微
鏡写真である。
FIG. 3 is a micrograph of a metal structure of a ferritic stainless steel plate.

【図4】展伸粒鋼板における検出した欠陥の説明図であ
る。
FIG. 4 is an explanatory diagram of a detected defect in an expanded grain steel sheet.

【図5】超音波探傷の傾斜角度選定実験の説明図であ
る。
FIG. 5 is an explanatory view of an inclination angle selection experiment for ultrasonic flaw detection.

【図6】フェライト系ステンレス鋼板の各傾斜角度にお
ける超音波探傷結果である。
FIG. 6 is a result of ultrasonic flaw detection at each inclination angle of a ferritic stainless steel plate.

【図7】信号処理の説明図である。FIG. 7 is an explanatory diagram of signal processing.

【図8】S/N比の変化グラフである。FIG. 8 is a graph showing changes in S / N ratio.

【符号の説明】[Explanation of symbols]

1…鋼板、2…送受信探触子、3…受信専用探触子、5
…直交線、6…受信器、7…発振器、8…受信器、9…
フィルター、10…演算器。
1 ... steel plate, 2 ... transmission / reception probe, 3 ... reception-only probe, 5
... Orthogonal line, 6 ... Receiver, 7 ... Oscillator, 8 ... Receiver, 9 ...
Filter, 10 ... calculator.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】展伸粒鋼板に対して超音波を入射させ、欠
陥部での反射エコーを検知することにより欠陥を検出す
る超音波探傷方法であって、 前記展伸粒鋼板の圧延方向と直交する線から傾斜した方
向から、前記鋼板へ超音波を入射することを特徴とする
展伸粒鋼板の超音波探傷方法。
1. An ultrasonic flaw detection method for detecting defects by injecting ultrasonic waves to a wrought grained steel sheet and detecting reflection echoes at the defect portion, the method comprising: An ultrasonic flaw detection method for an expanded grain steel sheet, characterized in that ultrasonic waves are incident on the steel sheet from a direction inclined from an orthogonal line.
【請求項2】前記方向が、展伸粒鋼板の圧延方向と直交
する線から2.5度〜45度の傾斜角度範囲内である請
求項1記載の展伸粒鋼板の超音波探傷方法。
2. The ultrasonic flaw detection method for a wrought grained steel sheet according to claim 1, wherein the direction is within a tilt angle range of 2.5 to 45 degrees from a line orthogonal to the rolling direction of the wrought grained steel sheet.
【請求項3】入射した超音波を受信し、その音圧の低下
状態継続時間に基づいて欠陥の長さを計測する請求項1
記載の展伸粒鋼板の超音波探傷方法。
3. The length of the defect is measured based on the duration of the state in which the sound pressure is reduced, by receiving the incident ultrasonic wave.
Ultrasonic flaw detection method for the wrought expanded steel sheet described.
【請求項4】展伸粒鋼板に対して超音波を入射させ、欠
陥部での反射エコーを検知することにより欠陥を検出す
る超音波探傷装置であって、 前記展伸粒鋼板の圧延方向と直交する線から傾斜した位
置に配置され、超音波の送信および反射エコーを受信す
る送受信探触子と、この送受信探触子に対向する位置に
配置された受信専用の探触子と、前記送受信探触子での
受信反射エコーレベルに基づいて欠陥の有無を、前記受
信専用の探触子での受信音圧の低下状態継続時間に基づ
いて欠陥の長さをそれぞれ検知する信号処理系とを備え
たことを特徴とする展伸粒鋼板の超音波探傷装置。
4. An ultrasonic flaw detector for detecting a defect by injecting an ultrasonic wave into the expanded grained steel sheet and detecting a reflection echo at the defect portion, the ultrasonic flaw detection device comprising: A transmission / reception probe that is arranged at a position inclined from the orthogonal line and that receives ultrasonic waves and reflected echoes, and a reception-only probe that is arranged at a position facing the transmission / reception probe, and the transmission / reception A signal processing system for detecting the presence or absence of a defect on the basis of the reflected echo level received by the probe, and a signal processing system for detecting the length of the defect on the basis of the duration of the reduced state of the received sound pressure in the reception-only probe. An ultrasonic flaw detector for expanded grained steel sheets, which is characterized by being provided.
JP8002745A 1996-01-11 1996-01-11 Method and device for ultrasonic flaw detection in ductile grain steel plate Pending JPH09189683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8002745A JPH09189683A (en) 1996-01-11 1996-01-11 Method and device for ultrasonic flaw detection in ductile grain steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8002745A JPH09189683A (en) 1996-01-11 1996-01-11 Method and device for ultrasonic flaw detection in ductile grain steel plate

Publications (1)

Publication Number Publication Date
JPH09189683A true JPH09189683A (en) 1997-07-22

Family

ID=11537896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8002745A Pending JPH09189683A (en) 1996-01-11 1996-01-11 Method and device for ultrasonic flaw detection in ductile grain steel plate

Country Status (1)

Country Link
JP (1) JPH09189683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU774737B2 (en) * 1997-09-05 2004-07-08 Kawasaki Steel Corporation Method and apparatus for ultrasonic flaw detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU774737B2 (en) * 1997-09-05 2004-07-08 Kawasaki Steel Corporation Method and apparatus for ultrasonic flaw detection
AU774737C (en) * 1997-09-05 2005-04-21 Kawasaki Steel Corporation Method and apparatus for ultrasonic flaw detection

Similar Documents

Publication Publication Date Title
US10908126B2 (en) Ultrasonic flaw detection device, ultrasonic flaw detection method, method of manufacturing welded steel pipe, and welded steel pipe quality control method
WO2008105111A1 (en) Tubular object ultrasonic test device and ultrasonic test method
EP1271097A2 (en) Method for inspecting clad pipe
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP4144703B2 (en) Tube inspection method using SH waves
Karaojiuzt et al. Defect detection in concrete using split spectrum processing
JP2000241397A (en) Method and apparatus for detecting surface defect
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JPH1183815A (en) Ultrasonic flaw detecting method and detector
JPH09189683A (en) Method and device for ultrasonic flaw detection in ductile grain steel plate
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
JP2004245598A (en) Probe and material evaluation test method using the same
JPH09304363A (en) Method for ultrasonically detecting flaw in austenitic steel casting
JP2001004600A (en) Method for detecting surface damage and surface damage detector
WO2018135242A1 (en) Inspection method
JP3603804B2 (en) Internal defect detection method
JPH07248317A (en) Ultrasonic flaw detecting method
JP4135512B2 (en) Ultrasonic signal processing method and ultrasonic measurement apparatus
JP2962194B2 (en) Plate wave ultrasonic inspection method and apparatus
JP4552230B2 (en) Ultrasonic flaw detection method and apparatus
JPH1164309A (en) Method and apparatus for measuring material characteristic of roll material
JP2513013B2 (en) Ultrasonic flaw detection method
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JPH1151911A (en) Line focus type ultrasonic flaw detecting method and device
JP3388316B2 (en) Ultrasonic inspection method