JPH09188596A - Processing of lithium niobate single crystal - Google Patents
Processing of lithium niobate single crystalInfo
- Publication number
- JPH09188596A JPH09188596A JP399096A JP399096A JPH09188596A JP H09188596 A JPH09188596 A JP H09188596A JP 399096 A JP399096 A JP 399096A JP 399096 A JP399096 A JP 399096A JP H09188596 A JPH09188596 A JP H09188596A
- Authority
- JP
- Japan
- Prior art keywords
- lithium niobate
- single crystal
- crystal
- niobate single
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、導波路型光デバイスな
どの光学材料に用いられる高品質のニオブ酸リチウム単
結晶の加工方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a high quality lithium niobate single crystal used for an optical material such as a waveguide type optical device.
【0002】[0002]
【従来の技術】ニオブ酸リチウムは高い電気光学効果を
有し、光変調器や光スイッチなどの導波路型光デバイス
に広く用いられている。導波路型光デバイスではニオブ
酸リチウム基板にチタンやプロトンなどを拡散して作製
されるが、従来、導波路型光デバイスとしてニオブ酸リ
チウム単結晶を使用する場合、主にZ軸、すなわち<0
01>方向に育成した単結晶を育成方向に垂直に切断研
磨したZカット基板を使用してきた。しかしながら、Z
カット基板は、特定の偏波方向を持った光に対してのみ
その特性を発揮し、すなわち、偏波依存性を持ち、現行
のシングルモード光ファイバー伝送路の途中に任意に挿
入して使用することができない。デバイス構成が方向性
結合器であるため、温度などの環境条件に影響されやす
い。(参考文献;石川、古田 電子情報通信学会技術研
究報告vol.91,No.511,OCS91 75 85Page 51-58,1992)な
どの欠点を有しており、特に双方向光伝送用外部変調器
などに使用することが困難であった。2. Description of the Related Art Lithium niobate has a high electro-optical effect and is widely used in waveguide type optical devices such as optical modulators and optical switches. A waveguide type optical device is manufactured by diffusing titanium, protons or the like into a lithium niobate substrate. Conventionally, when a lithium niobate single crystal is used as a waveguide type optical device, it is mainly the Z axis, that is, <0.
A Z-cut substrate has been used in which a single crystal grown in the 01> direction is cut and polished perpendicularly to the growth direction. However, Z
The cut substrate exhibits its characteristics only for light with a specific polarization direction, that is, it has polarization dependence, and can be used by inserting it arbitrarily in the middle of the existing single-mode optical fiber transmission line. I can't. Since the device configuration is a directional coupler, it is easily affected by environmental conditions such as temperature. (Reference: Ishikawa, Furuta The Institute of Electronics, Information and Communication Engineers Technical Research Report vol.91, No.511, OCS91 75 85 Page 51-58, 1992) and other disadvantages, especially external modulators for bidirectional optical transmission, etc. Was difficult to use.
【0003】一方、X軸、すなわち<100>方向に育
成したニオブ酸リチウム単結晶を育成方位に垂直に切断
研磨したXカット基板を用い、Z軸方向に光を伝播する
ように光導波路を構成し、Y軸方向に電界を印加する場
合には偏波無依存性が容易に得られ、Zカット基板に比
較して温度などの環境条件による特性変動の少ない導波
路型光デバイスが製造できる利点があり、最近注目を集
め研究が進められている。このX軸育成したニオブ酸リ
チウム単結晶は、従来から行われてきたZ軸育成したニ
オブ酸リチウム単結晶に比べ育成の際の温度条件が厳し
い、加工時の割れが発生し易い等の問題があり、これを
解決する必要がある。On the other hand, an optical waveguide is constructed so as to propagate light in the Z-axis direction by using an X-cut substrate obtained by cutting and polishing a lithium niobate single crystal grown in the X-axis, that is, the <100> direction, perpendicularly to the growing direction. However, when an electric field is applied in the Y-axis direction, polarization independence can be easily obtained, and it is possible to manufacture a waveguide type optical device with less characteristic variation due to environmental conditions such as temperature, compared to a Z-cut substrate. There is a lot of attention, and research has been advanced recently. This X-axis grown lithium niobate single crystal has problems that the temperature conditions during growth are more severe and cracks are likely to occur during processing, as compared with the conventional Z-axis grown lithium niobate single crystal. Yes, there is a need to resolve this.
【0004】ニオブ酸リチウム単結晶は、白金るつぼ中
の融液からチョコラルスキー法(略してCZ法)と呼ば
れる引き上げ法により育成される。融液の組成は48.
4〜48.6Li2 O%付近で融液の組成と結晶の組成
が一致するコングルエント組成といわれる組成が用いら
れる。このコングルエント組成は結晶の育成条件により
変化し育成方位(X軸、Z軸引き上げ)や育成中の温度
分布により決められている。A lithium niobate single crystal is grown from a melt in a platinum crucible by a pulling method called Czochralski method (abbreviated as CZ method). The composition of the melt is 48.
A composition called a congruent composition in which the composition of the melt and the composition of the crystal match in the vicinity of 4 to 48.6 Li 2 O% is used. This congruent composition changes depending on the crystal growth conditions and is determined by the growth orientation (X axis, Z axis pulling up) and the temperature distribution during growth.
【0005】結晶のサイズは1つのウェーハから取るデ
バイスの数を増やすため、通常直径3インチか4インチ
の結晶が育成される。このニオブ酸リチウム単結晶をア
ニールした後、切断加工、単一分極処理、円筒研削加
工、スライシングそして研磨をすることでニオブ酸リチ
ウム基板が得られる。しかしながら結晶が大径化したた
め、徐冷時の結晶内の温度分布の不均一等により発生し
た内部歪みにより、結晶育成やその後の加工の段階で割
れが生じ歩留まりを低下させる。これを改善し割れの少
ないニオブ酸リチウム単結晶を作ることがコストの低い
ニオブ酸リチウム基板を提供する上で重要である。Z軸
育成の結晶では例えば特開昭57−11896号や特開
昭63−285197号公報記載の発明において、ま
た、X軸育成したニオブ酸リチウム単結晶に関しては例
えば特開平7−144997号公報記載の発明で、育成
条件の変更により割れの低減を図っている。育成後は内
部歪みを取り除くため通常900〜1100℃の温度で
アニールが行われているがZ軸育成されたニオブ酸リチ
ウム単結晶では多少効果があるもののX軸育成されたニ
オブ酸リチウム単結晶での有効な割れの対策にはなって
いない。Since the size of the crystal increases the number of devices taken from a single wafer, crystals with a diameter of 3 inches or 4 inches are usually grown. After annealing this lithium niobate single crystal, cutting, single polarization, cylindrical grinding, slicing and polishing are performed to obtain a lithium niobate substrate. However, since the crystal has a large diameter, internal strain caused by non-uniform temperature distribution in the crystal during slow cooling causes cracks during crystal growth and subsequent processing, resulting in a reduced yield. It is important to improve this and make a lithium niobate single crystal with less cracks in order to provide a low cost lithium niobate substrate. Z-axis grown crystals are described, for example, in the inventions described in JP-A Nos. 57-11896 and 63-285197, and X-axis grown lithium niobate single crystals are described in, for example, JP-A-7-144997. In the invention, the cracks are reduced by changing the growing conditions. After the growth, annealing is usually performed at a temperature of 900 to 1100 ° C. to remove the internal strain. However, although the Z-axis grown lithium niobate single crystal has some effect, it is an X-axis grown lithium niobate single crystal. It is not an effective countermeasure against cracking.
【0006】[0006]
【発明が解決しようとする課題】ニオブ酸リチウム単結
晶、特にX軸方位に育成した単結晶を切断加工する際に
割れが発生しやすく、加工歩留まりが上がらなかった。
割れが発生しない加工方法による歩留まりの向上が望ま
れていた。When a lithium niobate single crystal, especially a single crystal grown in the X-axis direction, is cut and processed, cracks tend to occur and the processing yield cannot be increased.
It has been desired to improve the yield by a processing method that does not cause cracks.
【0007】[0007]
【課題を解決するための手段】本発明者らは、ニオブ酸
リチウムの加工時の割れは、X軸育成ニオブ酸リチウム
単結晶に多く発生し、これは単結晶の分極構造に大きく
影響を受けることをみいだした。Z軸育成ニオブ酸リチ
ウム単結晶では細かく反対方向に分極した多分極構造を
とる(図1)。この多分極構造では、焦電効果により電
荷が生じても分極軸が反対を向いているため、全体で打
ち消しあって表面電荷はゼロになる。また、同じZ軸育
成ニオブ酸リチウム単結晶でも、育成条件の違いにより
どちらかの分極の強い擬単分極構造(図2)が見られる
が、この場合電荷は完全には打ち消されないものの、表
面に溜まった電荷は空気中や結晶表面を通じて緩やかに
放電する。一方、X軸育成ニオブ酸リチウム単結晶では
結晶の中央が(−)極で外側が(+)極の二分割分極構
造(図3)をとることが判った。この二分割分極構造で
は、圧電もしくは焦電効果により電荷が生じた場合、結
晶の内部抵抗が高いため結晶中央に(−)電荷が溜ま
り、これが結晶表面との間に高電界を誘起する。この高
電界により結晶は絶縁抵抗の低い部分で絶縁破壊を起こ
し、これが引き金になって結晶が割れることが判明し
た。この絶縁抵抗の低い部分は、サブグレインや空孔の
集まった部分などが考えられる。The inventors of the present invention have found that many cracks of lithium niobate during processing occur in an X-axis grown lithium niobate single crystal, which is greatly affected by the polarization structure of the single crystal. I found a thing. The Z-axis grown lithium niobate single crystal has a multi-polarized structure finely polarized in opposite directions (FIG. 1). In this multi-polarized structure, even if charges are generated due to the pyroelectric effect, the polarization axes are opposite to each other, so that they cancel each other out and the surface charge becomes zero. Even in the same Z-axis grown lithium niobate single crystal, a quasi-single-polarized structure with strong polarization is observed depending on the growth conditions (Fig. 2). In this case, the charges are not completely canceled but The electric charges accumulated in the electric field are slowly discharged in the air or through the crystal surface. On the other hand, it was found that in the X-axis grown lithium niobate single crystal, the center of the crystal had a (−) pole and the outside had a (+) pole, which was a two-divided polarization structure (FIG. 3). In this two-divided polarization structure, when a charge is generated by the piezoelectric or pyroelectric effect, the internal resistance of the crystal is high, so that (-) charge is accumulated in the center of the crystal, which induces a high electric field between the crystal surface and the crystal surface. It was found that the high electric field caused dielectric breakdown of the crystal at a portion having low insulation resistance, which triggered the crystal to break. The part with a low insulation resistance may be a part where subgrains or holes are gathered.
【0008】いろいろ検討した結果、この二分割分極構
造により発生する高電界が割れの原因となるためこの二
分割分極構造を解消して多分極や擬単分極構造にするこ
とにより加工時の割れが防げることが判り、分極構造を
変えるための熱処理が最も有効であることが判った。通
常、Z軸育成ニオブ酸リチウム単結晶のアニールは90
0〜1100℃の温度で行うが、X軸育成ニオブ酸リチ
ウム単結晶において、この温度範囲でのアニールは熱歪
みを多少低減するものの、加工時の割れを防ぐには十分
ではなく、結晶のキュリー温度により求められる温度で
の熱処理により分極構造を二分割分極構造から多分極構
造又は擬単分極構造に変えることによってX軸方位育成
のニオブ酸リチウム単結晶の加工時の割れを十分抑制し
得ることが見出されたのである。As a result of various investigations, the high electric field generated by this two-divided polarization structure causes cracking. Therefore, by eliminating this two-divided polarization structure into a multi-polarization or quasi-single-polarization structure, cracking during processing occurs. It was found that the heat treatment can be prevented, and that the heat treatment for changing the polarization structure is the most effective. Normally, annealing of a Z-axis grown lithium niobate single crystal is 90
Although it is performed at a temperature of 0 to 1100 ° C., in the X-axis grown lithium niobate single crystal, annealing in this temperature range slightly reduces thermal strain, but it is not sufficient to prevent cracking during processing, and the crystal curie It is possible to sufficiently suppress cracking during processing of an X-axis oriented lithium niobate single crystal by changing the polarization structure from a bipartite polarization structure to a multi-polarization structure or a pseudo-single polarization structure by heat treatment at a temperature determined by the temperature. Was found.
【0009】よって本発明は、引上法により育成し、育
成方位をX軸とするニオブ酸リチウム単結晶を該ニオブ
酸リチウムのキュリー温度を少なくとも10℃上回る温
度以上、融点以下の温度にて熱処理をした後加工を行う
ことを特徴とするニオブ酸リチウム単結晶の加工方法を
提供するものである。Therefore, according to the present invention, a lithium niobate single crystal grown by the pulling method and having a growth orientation on the X-axis is heat-treated at a temperature of at least 10 ° C. above the Curie temperature of the lithium niobate and below its melting point. The present invention provides a method for processing a lithium niobate single crystal, which is characterized in that the processing is carried out.
【0010】本発明者らの研究、実験によれば、X軸育
成ニオブ酸リチウム単結晶の分極構造を変えるためには
キュリー温度を少なくとも10℃以上上回る温度で熱処
理することが必要なのであり、キュリー温度付近、もし
くはそれ以下の温度での熱処理ではX軸育成で発生する
加工時の割れを防ぐことができない。熱処理の上限温度
は結晶の融点(1260℃=1533°K)以下にする
必要があるが、1240℃以下が好ましい。より好まし
い熱処理温度範囲としては、キュリー温度を少なくとも
40℃以上上回る温度から1220℃以下の温度範囲で
熱処理することが望ましい。キュリー温度は結晶の組成
の変化1%当たり40℃以上変化するため、良好な熱処
理の結果を得るためにはそれぞれの結晶組成に合わせた
熱処理温度を設定する必要がある。また、同一の原料組
成であっても育成条件や徐冷環境の違いによりニオブ酸
リチウム中の酸化リチウムの外拡散速度が異なり、結晶
の組成が変化するため、同一組成、同一育成条件での熱
処理温度を定める必要がある。According to the studies and experiments conducted by the present inventors, it is necessary to perform heat treatment at a temperature at least 10 ° C. higher than the Curie temperature in order to change the polarization structure of the X-axis grown lithium niobate single crystal. Heat treatment at a temperature near or below the temperature cannot prevent cracking during processing that occurs during X-axis growth. The upper limit temperature of the heat treatment needs to be the melting point of the crystal (1260 ° C. = 1533 ° K.) or less, but 1240 ° C. or less is preferable. As a more preferable heat treatment temperature range, it is desirable to perform the heat treatment in a temperature range of at least 40 ° C. or higher above the Curie temperature to 1220 ° C. or lower. Since the Curie temperature changes by 40 ° C. or more per 1% of change in crystal composition, it is necessary to set the heat treatment temperature according to each crystal composition in order to obtain good heat treatment results. In addition, even if the raw material composition is the same, the out-diffusion rate of lithium oxide in lithium niobate differs depending on the growth conditions and the slow cooling environment, and the composition of the crystals changes, so heat treatment under the same composition and the same growth conditions It is necessary to determine the temperature.
【0011】よく知られているように、キュリー温度は
強誘電体の常誘電体への転移温度のことであり、これを
精度よく測定することによって例えばニオブ酸リチウム
のような酸化物圧電材料の組成、物性を高精度に知るこ
とができる。その場合キュリー温度は結晶を構成するL
iとNbの比によって変化し、Li量が多いとキュリー
温度が高くなる。キュリー温度は通常、示差熱分析(D
TA)又は示差走査熱量測定(DSC)等の熱分析の方
法又は装置を用いて測定される。ニオブ酸リチウムのキ
ュリー温度の測定は特開平6−201618号公報又は
特開平6−265495号公報に詳しく述べられている
が、簡単に言えば、一方の容器にα−アルミナの如き基
準物質を入れ、もう一方の容器にニオブ酸リチウムの試
料を入れて炉内で加熱し、徐々に温度を上げ両者間の温
度上昇の違いを測定する。そして試料の温度がある温度
でキュリー温度を越えるとき吸熱反応を示すのでその吸
熱のピークの位置をキュリー温度とする。その際、たと
えば粉末試料の粒度又はその分布を調整することによっ
て測定精度を上げることができる。As is well known, the Curie temperature is a transition temperature of a ferroelectric substance to a paraelectric substance, and by accurately measuring this, a Curie temperature of an oxide piezoelectric material such as lithium niobate can be measured. It is possible to know the composition and physical properties with high accuracy. In that case, the Curie temperature is L which constitutes the crystal.
It changes depending on the ratio of i and Nb, and if the amount of Li is large, the Curie temperature becomes high. Curie temperature is usually measured by differential thermal analysis (D
TA) or differential scanning calorimetry (DSC). The measurement of the Curie temperature of lithium niobate is described in detail in JP-A-6-201618 or JP-A-6-265495, but simply speaking, a reference substance such as α-alumina is put in one container. , Put a sample of lithium niobate in the other container and heat in a furnace, gradually raise the temperature and measure the difference in temperature rise between the two. When the temperature of the sample exceeds a Curie temperature at a certain temperature, an endothermic reaction is exhibited, so the position of the endothermic peak is defined as the Curie temperature. At that time, the measurement accuracy can be improved by adjusting, for example, the particle size of the powder sample or the distribution thereof.
【0012】またこれまでは育成された結晶の融液組成
とキュリー温度を対比させていたが、組成によっては融
液の組成と結晶の組成が一致しなかったので、キュリー
温度から結晶組成を知るためにニオブ酸リチウムの組成
とキュリー温度の関係を正しく求める必要があり、その
ためのニオブ酸リチウム標準サンプルのつくり方が特開
平7−97252号公報又は特開平7−53253号公
報に記載されている。たとえば原料をプレスして、収容
した容器を密封した状態で焼成することによって精度を
上げることができる。Further, until now, the melt composition of the grown crystal and the Curie temperature were compared, but the composition of the melt and the composition of the crystal did not match depending on the composition, so the crystal composition can be known from the Curie temperature. Therefore, it is necessary to correctly obtain the relationship between the composition of lithium niobate and the Curie temperature, and a method of preparing a lithium niobate standard sample for that purpose is described in JP-A-7-97252 or JP-A-7-53253. . For example, the accuracy can be improved by pressing the raw material and firing the container in a sealed state.
【0013】本発明ではこのようにして求められたニオ
ブ酸リチウム結晶のキュリー温度から熱処理温度を決定
するものであり、その温度で熱処理することにより、従
来はよくなしえなかったX軸育成ニオブ酸リチウム単結
晶の加工時の割れを十分に防ぐことができるようになっ
たものである。In the present invention, the heat treatment temperature is determined from the Curie temperature of the lithium niobate crystal thus obtained, and by performing the heat treatment at that temperature, the X-axis grown niobate which could not be conventionally achieved. It is possible to sufficiently prevent cracking during processing of a lithium single crystal.
【0014】上述のように本発明における熱処理温度は
キュリー温度を少なくとも10℃上回る温度以上、融点
(1260℃)以下の温度であり、キュリー温度プラス
40℃以上、1240℃以下が好ましく、上限は122
0℃以下とするのが、更に好ましい。この熱処理の後、
常法に従って切断加工、スライシング加工、研磨加工等
各種の加工が実施されるが、その時の割れは十分防ぐこ
とができる。As described above, the heat treatment temperature in the present invention is a temperature of at least 10 ° C. higher than the Curie temperature and not higher than the melting point (1260 ° C.), preferably the Curie temperature plus 40 ° C. or higher and 1240 ° C. or lower, and the upper limit is 122.
It is more preferable that the temperature is 0 ° C. or lower. After this heat treatment,
Various processes such as cutting process, slicing process, and polishing process are performed according to a conventional method, and cracks at that time can be sufficiently prevented.
【0015】この熱処理は従来行われている1000℃
前後でのアニールと独立して、もしくは兼ねて行うこと
ができる。独立して行なうときは、本発明の熱処理の前
にアニールを行なうのが好ましい。上述のようにアニー
ルにより熱歪みを低減することができるがそれのみでは
加工時の割れを十分抑えることはできない。This heat treatment is conventionally performed at 1000 ° C.
It can be performed independently of or combined with the annealing before and after. When independently performed, it is preferable to perform annealing before the heat treatment of the present invention. As described above, the thermal strain can be reduced by annealing, but it cannot sufficiently suppress cracks during processing.
【0016】[0016]
【実施例】以下に実施例と比較例をあげる。 (実施例1)ニオブ酸リチウム単結晶はCZ(チョコラ
ルスキー)法の育成炉で育成された。直径125ミリ、
深さ125ミリの白金ルツボに約6.2キロのニオブ酸
リチウム原料(48.5Li2 O%)を溶かし、そこに
ニオブ酸リチウムの種結晶を融液に浸しこの種結晶を毎
分15〜24回転で回転させながら、1時間当たり2ミ
リの引き上げ速度で育成した。育成方位は引き上げ方向
がX軸になるようにし、直径80ミリ、長さ100ミリ
のニオブ酸リチウム単結晶を得た。このニオブ酸リチウ
ム単結晶はこの育成条件では結晶の上部(育成初期)及
び下部(育成末期)でどちらも1142℃のキュリー温
度を持ち、育成炉から取り出したニオブ酸リチウム単結
晶をキュリー温度プラス58℃即ち1200℃で20時
間の熱処理を行った。昇温及び冷却時間はそれぞれ20
時間とした。次に、結晶の肩部と底部をスライシングマ
シーンで切り落とした。また、結晶の分極構造を調べる
ため、結晶の一部をZ面が出るよう切り出して分極方位
を調べたところ多分極構造であることが確認された。EXAMPLES Examples and comparative examples will be given below. (Example 1) A lithium niobate single crystal was grown in a growth furnace of the CZ (Czochralski) method. 125 mm in diameter,
About 6.2 kg of lithium niobate raw material (48.5 Li2 O%) was dissolved in a platinum crucible having a depth of 125 mm, and a seed crystal of lithium niobate was immersed in the melt and the seed crystal was fed at a rate of 15 to 24 per minute. It was grown at a pulling rate of 2 mm per hour while being rotated. The growing direction was such that the pulling direction was the X axis, and a lithium niobate single crystal having a diameter of 80 mm and a length of 100 mm was obtained. Under this growth condition, this lithium niobate single crystal has a Curie temperature of 1142 ° C. both at the upper part (early growth stage) and at the lower part (end stage of growth) of the crystal, and the lithium niobate single crystal taken out from the growth furnace has a Curie temperature plus 58. The heat treatment was performed at 20 ° C., that is, 1200 ° C. for 20 hours. 20 minutes for heating and 20 hours for cooling
Time. Next, the shoulder and bottom of the crystal were cut off with a slicing machine. Further, in order to examine the polarization structure of the crystal, a part of the crystal was cut out so that the Z plane was exposed and the polarization orientation was examined, and it was confirmed that the crystal had a multi-polarization structure.
【0017】その後、結晶の分極方向を揃えるために、
単分域化処理(ボーリング)を1160℃、6時間、結
晶に1.5V/cmの電界をかけて行った。この結晶を
3インチ(76.2ミリ)の径に丸め、結晶の方位の目
印となるオリエンテーションフラットを研磨によりつ
け、これをワイヤーソーで厚さ1ミリのウェハーにし
た。ここまでの加工で、育成した3本のニオブ酸リチウ
ム単結晶に割れは発生しなかった。 (実施例2)育成後の熱処理温度をキュリー温度プラス
38℃即ち1180℃としたこと以外実施例1と同じに
行ったところ、育成した3本のニオブ酸リチウム単結晶
に割れは発生しなかった。また、結晶の分極構造を調べ
るため、熱処理後の結晶の一部をZ面が出るよう切り出
して分極方位を調べたところ多分極構造であることが確
認された。 (比較例)育成後の熱処理温度をキュリー温度プラス8
℃即ち1150℃としたこと以外実施例1と同じに行っ
たところ、17本の結晶すべてに放電による割れが主に
スライシングの際に発生した。また、結晶の分極構造を
調べるため、熱処理後の結晶の一部をZ面がでるよう切
り出して分極方位を調べたところ二分割分極構造である
ことが確認された。After that, in order to align the polarization directions of the crystals,
Single-domain processing (boring) was performed at 1160 ° C. for 6 hours by applying an electric field of 1.5 V / cm to the crystal. This crystal was rounded to a diameter of 3 inches (76.2 mm), an orientation flat serving as a mark of the crystal orientation was attached by polishing, and this was made into a wafer having a thickness of 1 mm with a wire saw. By the processing up to this point, no cracks occurred in the grown three lithium niobate single crystals. (Example 2) The same procedure as in Example 1 was carried out except that the heat treatment temperature after the growth was set to the Curie temperature plus 38 ° C, that is, 1180 ° C, but no crack was generated in the three grown lithium niobate single crystals. . Further, in order to investigate the polarization structure of the crystal, a part of the crystal after the heat treatment was cut out so that the Z plane was exposed and the polarization orientation was examined, and it was confirmed that the crystal had a multi-polarization structure. (Comparative example) Curing temperature plus 8 after heat treatment
When the same procedure as in Example 1 was carried out except that the temperature was set to 1 ° C, that is, 1150 ° C, cracks due to discharge occurred in all 17 crystals mainly during slicing. In addition, in order to investigate the polarization structure of the crystal, a part of the crystal after the heat treatment was cut out so that the Z plane was exposed and the polarization orientation was examined, and it was confirmed that the crystal had a two-divided polarization structure.
【0018】[0018]
【発明の効果】本発明によりニオブ酸リチウムの加工の
際の割れの原因となる二分割構造が解消でき、これによ
り割れが低減でき、ニオブ酸リチウム基板を効率良く製
造することができる。According to the present invention, the two-divided structure that causes cracking during processing of lithium niobate can be eliminated, whereby cracking can be reduced, and a lithium niobate substrate can be efficiently manufactured.
【図1】ニオブ酸リチウム単結晶の多分極構造を示すた
めの説明図。FIG. 1 is an explanatory view showing a multi-polarized structure of a lithium niobate single crystal.
【図2】上記結晶の擬単分極構造を示すための説明図。FIG. 2 is an explanatory view showing a pseudo monopolar structure of the above crystal.
【図3】上記結晶の二分割分極構造を示すための説明
図。FIG. 3 is an explanatory diagram showing a two-divided polarization structure of the above crystal.
Claims (3)
るニオブ酸リチウム単結晶を該ニオブ酸リチウムのキュ
リー温度を少なくとも10℃上回る温度以上、融点以下
の温度にて熱処理をした後加工を行うことを特徴とする
ニオブ酸リチウム単結晶の加工方法。1. After heat treatment of a lithium niobate single crystal grown by a pulling method and having a growth orientation on the X axis, at a temperature of at least 10 ° C. above the Curie temperature of the lithium niobate and below its melting point. A method of processing a lithium niobate single crystal, which comprises processing.
のキュリー温度を少なくとも40℃上回る温度以上12
40℃以下であることを特徴とする請求項1記載のニオ
ブ酸リチウム単結晶の加工方法。2. The heat treatment temperature is higher than the Curie temperature of the lithium niobate single crystal by at least 40 ° C. or more.
The method for processing a lithium niobate single crystal according to claim 1, which is 40 ° C. or lower.
チウム単結晶の分極構造を二分割構造から多分極構造か
擬単分極構造にすることを特徴とする請求項1記載のニ
オブ酸リチウム単結晶の加工方法。3. The lithium niobate single crystal according to claim 1, wherein the polarization structure of the lithium niobate single crystal grown on the X axis by the heat treatment is changed from a bipartite structure to a multipolarization structure or a pseudo-monopolarization structure. Crystal processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP399096A JPH09188596A (en) | 1996-01-12 | 1996-01-12 | Processing of lithium niobate single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP399096A JPH09188596A (en) | 1996-01-12 | 1996-01-12 | Processing of lithium niobate single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09188596A true JPH09188596A (en) | 1997-07-22 |
Family
ID=11572467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP399096A Pending JPH09188596A (en) | 1996-01-12 | 1996-01-12 | Processing of lithium niobate single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09188596A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006108940A (en) * | 2004-10-01 | 2006-04-20 | Tohoku Univ | Raw material composition determining method for manufacture of ferrodielectric single crystal, chemical composition ratio comparing method of ferrodielectric single crystal, and design parameter determining method of surface acoustic wave device |
CN116200828A (en) * | 2023-05-06 | 2023-06-02 | 天通控股股份有限公司 | Preparation method of large-size lithium niobate crystal |
-
1996
- 1996-01-12 JP JP399096A patent/JPH09188596A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006108940A (en) * | 2004-10-01 | 2006-04-20 | Tohoku Univ | Raw material composition determining method for manufacture of ferrodielectric single crystal, chemical composition ratio comparing method of ferrodielectric single crystal, and design parameter determining method of surface acoustic wave device |
JP4590549B2 (en) * | 2004-10-01 | 2010-12-01 | 国立大学法人東北大学 | Raw material composition determination method for manufacturing ferroelectric single crystal, acoustic related physical constant calibration method of ferroelectric single crystal, and design parameter determination method of surface acoustic wave device |
CN116200828A (en) * | 2023-05-06 | 2023-06-02 | 天通控股股份有限公司 | Preparation method of large-size lithium niobate crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Neurgaonkar et al. | Czochralski single crystal growth of Sr. 61Ba. 39Nb2O6 for surface acoustic wave applications | |
US7544248B2 (en) | Lithium tantalate substrate and method of manufacturing same | |
JP2002226295A (en) | Control method for manufacturing process of silicon single crystal by czochralski method, manufacturing method for high resistance-silicon single crystal by czochralski method, and silicon single crystal | |
US3998687A (en) | Technique for growth of thin film lithium niobate by liquid phase epitaxy | |
Pernice et al. | Crystallization behavior of potassium niobium silicate glasses | |
JP4508725B2 (en) | Piezoelectric single crystal element and manufacturing method thereof | |
Ainger et al. | Ferroelectrics in the lithium potassium niobate system | |
JPH09188596A (en) | Processing of lithium niobate single crystal | |
Garrett et al. | A method for poling barium titanate, BaTiO3 | |
JP2019127411A (en) | Method for making single domain of lithium niobate monocrystal | |
Fujino et al. | Electrooptic and ferroelectric properties of lithium tantalate single crystals as a function of melt composition | |
JPH0274595A (en) | Production of lithium niobate crystal | |
JP4148451B2 (en) | Single domain method for ferroelectric single crystals | |
JP2010280525A (en) | Lithium tantalate substrate and method for producing lithium tantalate single crystal | |
JP2861640B2 (en) | Beta barium borate single crystal growth method | |
Kawakami et al. | Some properties and crystal growth of Zn-substituted LiNbO3 solid solutions | |
Grabmaier et al. | Growth of LiNbO [sub] 3 [/sub] Single Crystals For Optical Applications | |
JP3289904B2 (en) | Method for producing single crystal of MTiOAsO4, composition comprising single-domain crystal of MTIOAsO4 and crystalline MTiOAsO4 | |
JP2738641B2 (en) | Method for producing X-axis oriented lithium niobate single crystal | |
JP2915292B2 (en) | Method for producing lithium niobate substrate | |
JPS62138396A (en) | Magnetic garnet material for magneto-optical element | |
JPS63185900A (en) | Heat-treating method of single crystal of composite oxide ferroelectrics | |
Ruiping et al. | Growth and properties of tungsten bronze-type second harmonic generation crystal LiBa2Nb5O15 | |
CN114645315A (en) | KTP crystal for PPKTP of quasi-phase matching device and preparation method thereof | |
JP3968934B2 (en) | Method for manufacturing substrate for piezoelectric device |