JP4590549B2 - Raw material composition determination method for manufacturing ferroelectric single crystal, acoustic related physical constant calibration method of ferroelectric single crystal, and design parameter determination method of surface acoustic wave device - Google Patents
Raw material composition determination method for manufacturing ferroelectric single crystal, acoustic related physical constant calibration method of ferroelectric single crystal, and design parameter determination method of surface acoustic wave device Download PDFInfo
- Publication number
- JP4590549B2 JP4590549B2 JP2004290711A JP2004290711A JP4590549B2 JP 4590549 B2 JP4590549 B2 JP 4590549B2 JP 2004290711 A JP2004290711 A JP 2004290711A JP 2004290711 A JP2004290711 A JP 2004290711A JP 4590549 B2 JP4590549 B2 JP 4590549B2
- Authority
- JP
- Japan
- Prior art keywords
- acoustic wave
- surface acoustic
- ferroelectric single
- single crystal
- wave velocity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 195
- 239000013078 crystal Substances 0.000 title claims description 182
- 238000010897 surface acoustic wave method Methods 0.000 title claims description 102
- 238000000034 method Methods 0.000 title claims description 60
- 239000002994 raw material Substances 0.000 title claims description 34
- 238000013461 design Methods 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000126 substance Substances 0.000 claims description 97
- 239000000758 substrate Substances 0.000 claims description 82
- 229910013641 LiNbO 3 Inorganic materials 0.000 claims description 37
- 230000008859 change Effects 0.000 claims description 35
- 238000009826 distribution Methods 0.000 claims description 26
- 238000005259 measurement Methods 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 4
- 229910018068 Li 2 O Inorganic materials 0.000 description 24
- 238000011156 evaluation Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 229910012463 LiTaO3 Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004455 differential thermal analysis Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
本発明は、LiNbO3やLiTaO3のような強誘電体単結晶を製造するための原料組成を決定す
る方法、及びその強誘電体単結晶の音響関連物理定数を校正する方法、及び弾性表面波デバイスの高精度な設計パラメータの決定方法に関する。
The present invention relates to a method for determining a raw material composition for producing a ferroelectric single crystal such as LiNbO3 or LiTaO3, a method for calibrating acoustic-related physical constants of the ferroelectric single crystal, and a surface acoustic wave device. The present invention relates to a method for determining design parameters with high accuracy.
強誘電体LiNbO3、LiTaO3単結晶は、圧電効果だけでなく、電気光学効果や非線形光学効果など光学特性に関する優れた特性を有することから、弾性表面波(SAW)デバイスだけでなく光エレクトロニクスデバイスへの応用が盛んである。デバイスの性能は、究極的には単結晶基板の品質に依存する。そのため、デバイスの高性能化には、単結晶基板の均質性の向上(主に化学組成比の均一化)は欠かせない要素である。しかし、化学組成評価のために従来から広く利用されているキュリー温度TCの測定値は、各結晶製造業者の測定条件や測定装置に依存して異なり、また、その測定再現性も十分ではないため、信頼性のある結晶評価が行えなかった([非特許文献1]、[非特許文献2])。 Ferroelectric LiNbO 3 and LiTaO 3 single crystals have not only piezoelectric effects but also excellent optical properties such as electro-optic effects and nonlinear optical effects, so not only surface acoustic wave (SAW) devices but also optoelectronic devices Applications are thriving. The device performance ultimately depends on the quality of the single crystal substrate. Therefore, improvement of the homogeneity of the single crystal substrate (mainly uniform chemical composition ratio) is an indispensable element for improving the performance of the device. However, measurement of the Curie temperature T C which has been widely used conventionally for chemical composition evaluation differs depending on the measurement conditions and apparatus of each crystal manufacturer, also not sufficient even measurement reproducibility Therefore, reliable crystal evaluation could not be performed ([Non-Patent Document 1], [Non-Patent Document 2]).
それに対し、信頼性の高い評価技術として、直線集束ビーム(LFB) 超音波材料特性解析装置([非特許文献3]、[非特許文献4])が提案されている。本装置は、水と試料基板の境界を伝搬する音波である漏洩弾性表面波(LSAW)の位相速度VLSAWを高精度に測定することができる。結晶の均一性を左右する主要因である化学組成比の変化をVLSAWの変化として捉えることにより評価が行われる。[特許文献1]において、量産される結晶内、結晶間の化学組成分布を許容範囲に抑えるために、LiTaO3単結晶に対する真のコングルエント組成(原料融液と育成結晶の組成が一致する組成)および原料融液組成ずれの許容幅を与えている。 On the other hand, as a highly reliable evaluation technique, a linearly focused beam (LFB) ultrasonic material characteristic analyzer ([Non-Patent Document 3], [Non-Patent Document 4]) has been proposed. This apparatus can measure the phase velocity V LSAW of a leaky surface acoustic wave (LSAW), which is a sound wave propagating through the boundary between water and the sample substrate, with high accuracy. Evaluation is performed by grasping the change in chemical composition ratio, which is the main factor affecting the uniformity of crystals, as the change in V LSAW . In [Patent Document 1], in order to keep the chemical composition distribution in mass-produced crystals and between crystals within an allowable range, a true congruent composition for LiTaO 3 single crystal (a composition in which the composition of the raw material melt and the grown crystal coincides) In addition, an allowable range of deviation of the raw material melt composition is given.
しかし、LiNbO3単結晶に対するそれらの値は求められていない。また、前述のように信頼性の低いTCの測定値から化学組成比を推定していたため、従来求められているLiNbO3、LiTaO3単結晶に対する化学組成比と音響関連物理定数(弾性定数、圧電定数、誘電率、密度)の間の関係も信頼性が低い[非特許文献5]。さらに、信頼性の低い各パラメータ(化学組成比、音響関連物理定数)を元にSAWデバイス等の設計を行えば、デバイス性能の低下、歩留まりの低下を招く。
強誘電体単結晶の評価のために従来から用いられているキュリー温度TCの測定値は、測定条件や装置間でばらついており、また、その測定再現性も十分ではないため、均質な結晶育成が行える真のコングルエント組成を求めることが困難であった。 For strength measurement of the Curie temperature T C which are conventionally used for the evaluation of the single-crystal dielectric is varied between measurement conditions and apparatus, also the measurement reproducibility is also not sufficient, homogeneous crystals It was difficult to obtain a true congruent composition that can be grown.
また、信頼性の低いTC測定値から推定された化学組成比を関数として求められた音響関連物理定数を用いてSAWデバイス等の設計を行う場合、高性能なデバイス設計に支障を来す。 In addition, when designing a SAW device or the like using acoustic-related physical constants obtained as a function of the chemical composition ratio estimated from a low-reliable TC measurement value, it impedes high-performance device design.
そこで、本発明は、均一な強誘電体単結晶を育成するため、LFB超音波材料特性解析装置を用いて、結晶内の化学組成が均一になる真のコングルエント組成を決定する方法を提供する。 Therefore, the present invention provides a method for determining a true congruent composition in which a chemical composition in a crystal becomes uniform using an LFB ultrasonic material characteristic analyzer in order to grow a uniform ferroelectric single crystal.
また、従来、キュリー温度から見積もられていた化学組成比を、より信頼性の高いVLSAWにより校正する方法を提供する。さらに、高精度なSAWデバイス設計のための方法を提供する。 Further, the present invention provides a method for calibrating a chemical composition ratio that has been estimated from the Curie temperature with a more reliable V LSAW . In addition, a method for high precision SAW device design is provided.
第1の発明による強誘電体単結晶製造のための原料組成決定方法は、
(a) コングルエント組成の近傍で異なる化学組成のn個の単結晶を作製する工程と、nは2以上の整数であり、
(b) 各単結晶において、互いに異なるカット面の基板を複数切り出し、その各基板面内において漏洩弾性表面波の伝搬方向を変えながら漏洩弾性表面波速度を測定する工程と、
(c) 工程(b)で得られた結果をもとに、化学組成比変化に対して漏洩弾性表面波速度の変化率が大きいカット面の漏洩弾性表面波伝搬方向を少なくとも1つ選択する工程と、
(d) 工程(c)で選択したカット面の伝搬方向において、各単結晶の上部及び下部の漏洩弾性表面波速度を測定する工程と、単結晶の上部及び下部とは、結晶育成時の種結晶側が上部、その反対側が下部であり、
(e) 工程(d) で得られた上記上部及び下部の漏洩弾性表面波速度と仕込み時の原料組成との間の関係から、結晶の上部と下部で漏洩弾性表面波速度が一致する原料組成を真のコングルエント組成CCとする工程と、
(f) 上記漏洩弾性表面波速度、漏洩弾性表面波速度勾配、原料組成、結晶組成、密度の関係から、上記コングルエント組成からのずれの許容幅±ΔCCを求め、強誘電体単結晶製造のための原料組成を決める工程、
とを含む。
The raw material composition determination method for manufacturing a ferroelectric single crystal according to the first invention is:
(a) producing n single crystals having different chemical compositions in the vicinity of the congruent composition, and n is an integer of 2 or more,
(b) in each single crystal, cutting a plurality of substrates having different cut surfaces, measuring the leaky surface acoustic wave velocity while changing the propagation direction of the leaky surface acoustic wave within each substrate surface;
(c) Based on the result obtained in the step (b), a step of selecting at least one leakage surface acoustic wave propagation direction of the cut surface having a large rate of change of the leakage surface acoustic wave velocity with respect to the chemical composition ratio change. When,
(d) In the propagation direction of the cut surface selected in step (c), the step of measuring the leaky surface acoustic wave velocity at the top and bottom of each single crystal and the top and bottom of the single crystal are the seeds at the time of crystal growth. The crystal side is the top, the opposite side is the bottom,
(e) From the relationship between the upper and lower leaky surface acoustic wave velocities obtained in step (d) and the raw material composition at the time of charging, the raw material composition in which the leaky surface acoustic wave velocities match at the upper and lower parts of the crystal. With a true congruent composition C C ,
(f) From the relationship between the leaky surface acoustic wave velocity, the leaky surface acoustic wave velocity gradient, the raw material composition, the crystal composition, and the density, an allowable width ± ΔC C of deviation from the congruent composition was obtained, and a ferroelectric single crystal was manufactured. Determining the raw material composition for
Including.
第2の発明による組成決定方法は、上記第1の発明による原料組成決定方法において、上記許容幅±ΔCCは±0.017 Li2O-mol%であることを特徴とする原料組成決定方法。 A composition determination method according to a second invention is the material composition determination method according to the first invention, wherein the allowable range ± ΔC C is ± 0.017 Li 2 O-mol%.
第3の発明による組成決定方法は、上記第1又は第2の発明による組成決定方法において、上記強誘電体単結晶はLiNbO3であり、上記コングルエント組成は48.481-Li2Omol%である。 A composition determining method according to a third invention is the composition determining method according to the first or second invention, wherein the ferroelectric single crystal is LiNbO 3 and the congruent composition is 48.481-Li 2 Omol%.
第4の発明は、強誘電体単結晶の音響関連物理定数の校正方法であり、
(a) 化学組成比の異なる複数の試料に対し漏洩弾性表面波速度VLSAWを測定する工程と、
(b) 上記試料に対しするキュリー温度等の測定値から、既知のキュリー温度と化学組成比の関係を用いて化学組成比を求める工程と、
(c) 上記工程(a) で得られた測定速度VLSAWと、上記工程(b)で得られた化学組成比の関係(近似直線)を、上記第1の発明の(c)および(d)の工程で得られたコングルエントにおける化学組成比およびVLSAWの値に合致するように化学組成比を校正して、両者の関係(校正された近似直線)を得る工程、
(d) 第1の発明の工程(a)のn個の強誘電体単結晶に対するそれぞれの音響関連物理定数(弾性定数、圧電定数、誘電率、密度)を用いて計算される漏洩弾性表面波速度と、上記工程(c)で得られた校正された近似直線とを用いて、上記n個の各結晶の化学組成比を求め、化学組成比に関する音響関連物理定数を求める工程、
とを含むことを特徴とする音響関連物理定数の校正方法。
A fourth invention is a method for calibrating acoustic-related physical constants of a ferroelectric single crystal,
(a) measuring a leaky surface acoustic wave velocity V LSAW for a plurality of samples having different chemical composition ratios;
(b) from a measured value such as a Curie temperature for the sample, a step of obtaining a chemical composition ratio using a relationship between the known Curie temperature and the chemical composition ratio;
(c) The relationship between the measurement rate V LSAW obtained in the step (a) and the chemical composition ratio obtained in the step (b) (approximate straight line) is shown in (c) and (d) of the first invention. ) The chemical composition ratio in the congruent obtained in the process of step) and the chemical composition ratio are calibrated to match the value of V LSAW , and the relationship between the two (calibrated approximate straight line) is obtained,
(d) Leaky surface acoustic wave calculated using the acoustic-related physical constants (elastic constant, piezoelectric constant, dielectric constant, density) for the n ferroelectric single crystals in step (a) of the first invention. Using the velocity and the calibrated approximate straight line obtained in step (c) to determine the chemical composition ratio of each of the n crystals, and determining an acoustic related physical constant related to the chemical composition ratio;
A method for calibrating acoustic-related physical constants , comprising:
第5の発明は、弾性表面波デバイスの設計パラメータ決定方法であり、
(1) 育成結晶に対する漏洩弾性表面波速度を測定し、第4の発明の工程(c)において得られた関係を用いて、育成結晶の化学組成比を求める工程と、
(2) 上記工程(1)で得られた化学組成比と、第4の発明の工程(d)で得られた化学組成比に関する音響関連物理定数を使って、上記工程(1)の育成結晶に対する音響関連物理定数を求める工程と、
(3) 上記工程(2)で求めた音響関連物理定数を用いて、弾性表面波デバイスとして用いるカット面の伝搬方向に対する弾性表面波速度を計算する工程と、
(4) 上記工程(3)で得られた弾性表面波速度を用いて、弾性表面波デバイス設計のための設計パラメータ(電極周期、電極幅、電極厚さ)を決定する工程、
とを含むことを特徴とする弾性表面波デバイスの設計パラメータ決定方法。
5th invention is the design parameter determination method of a surface acoustic wave device,
( 1 ) measuring a leaky surface acoustic wave velocity with respect to the grown crystal, and using the relationship obtained in step (c) of the fourth invention to determine the chemical composition ratio of the grown crystal;
( 2 ) Using the chemical composition ratio obtained in the step ( 1 ) and the acoustic-related physical constant relating to the chemical composition ratio obtained in the step (d) of the fourth invention, the grown crystal of the step ( 1 ) Obtaining acoustic related physical constants for
( 3 ) Using the acoustic-related physical constant obtained in the above step ( 2 ), calculating a surface acoustic wave velocity with respect to the propagation direction of the cut surface used as the surface acoustic wave device;
( 4 ) determining the design parameters (electrode period, electrode width, electrode thickness) for the surface acoustic wave device design using the surface acoustic wave velocity obtained in the above step ( 3 ),
A method for determining a design parameter of a surface acoustic wave device, comprising:
本発明は、均一な結晶育成を行うための真のコングルエント組成を決定することができる。従って、このような組成の強誘電体結晶を使用すれば、特性のばらつきの少ないデバイスを製造することができる。また、量産される単結晶に対し、VLSAW測定を用いた信頼性の高い化学組成評価が可能になる。さらに、これまで不明確であった育成結晶の化学組成比の絶対値が明らかになるため、化学組成比と音響関連物理定数やその他の化学的・物理的諸特性(VLSAW、VSAW、TC、格子定数など)の間の正しい関係を得ることができ、様々な化学的・物理的特性による絶対的な結晶評価および、高精度なデバイス設計が可能になる。 The present invention can determine a true congruent composition for uniform crystal growth. Therefore, if a ferroelectric crystal having such a composition is used, a device with little variation in characteristics can be manufactured. In addition, highly reliable chemical composition evaluation using VLSAW measurement is possible for single crystals that are mass-produced. Furthermore, since the absolute value of the chemical composition ratio of the grown crystal, which has been unclear until now, becomes clear, the chemical composition ratio, acoustic-related physical constants, and other chemical and physical properties (V LSAW , V SAW , T C , lattice constant, etc.) can be obtained, and absolute crystal evaluation by various chemical and physical characteristics and high-accuracy device design are possible.
コングルエント組成の決定方法および化学組成比の校正方法について図1のフロー図を用いて説明する。 The congruent composition determination method and the chemical composition ratio calibration method will be described with reference to the flowchart of FIG.
ステップS1:コングルエント組成近傍で異なる化学組成の結晶インゴットをn個(nは2以上の整数)準備する。
ステップS2:化学組成比の変化に対する感度の高いLSAWの伝搬方向を調べるために、ステップS1の各結晶インゴットから、数種類のカット面の基板試料を切り出す(図2参照)。ただし、結晶の育成軸方向の分布も調べられるように、育成軸に平行な基板面を準備するか、育成軸に垂直な基板面の場合は育成軸方向から2個以上の基板を準備する([参考文献1]参照)。
ステップS3:各結晶インゴットに対するキュリー温度を測定し、化学組成比とキュリー温度の既知の関係を用いて、各結晶インゴットの化学組成比を求める。
ステップS4:ステップS2で切り出した各結晶インゴットの各基板試料に対し、図3の×で示された位置でLSAW速度の伝搬方向依存性を測定する。
ステップS5:ステップS3とステップS4で得られた結果から、各基板面における各伝搬方向のLSAW速度の化学組成比依存性を求め、化学組成比変化に対する感度が高いLSAW伝搬方向を決定する。
ステップS6:ステップS5で決定した伝搬方向で、各結晶インゴットの育成軸方向のLSAW速度分布を測定する。
ステップS7:各結晶インゴットの仕込み原料組成と育成軸方向のLSAW速度分布の関係から、育成軸方向のLSAW速度分布が0になる組成を真のコングルエント組成と定め、そのときのLSAW速度を求める。
ステップS8:ステップS5で得られた化学組成比とLSAW速度の関係を、ステップS7で得られた真のコングルエント組成における化学組成比とLSAW速度の関係に合致するよう化学組成比を校正し、化学組成比とLSAW速度の間の正しい関係を得る。
ステップS9-1:[特許文献1]の手順に従って、コングルエント組成とみなせる原料融液組成の許容幅(真のコングルエント組成からのずれ)±ΔCCを求める。
ステップS9-2:ステップS8で得られた化学組成比とLSAW速度の関係から、化学組成比と音響関連物理定数の間の正しい関係を求める。
ステップS10-2:育成結晶に対して測定されたLSAW速度あるいはキュリー温度からステップS8で得られた関係を用いて化学組成比を求め、この化学組成比に対応する音響関連物理定数をステップS9-2で得られた関係から求め、この音響関連物理定数を用いて、この育成結晶に最適なSAWデバイスの設計パラメータ(電極幅、電極厚さ、電極間隔等)を求め、SAWデバイスを作製する。
Step S1: Prepare n crystal ingots (n is an integer of 2 or more) having different chemical compositions near the congruent composition.
Step S2: In order to investigate the LSAW propagation direction with high sensitivity to changes in the chemical composition ratio, substrate samples of several types of cut surfaces are cut out from each crystal ingot in Step S1 (see FIG. 2). However, a substrate surface parallel to the growth axis is prepared so that the distribution in the growth axis direction of the crystal can be examined, or in the case of a substrate surface perpendicular to the growth axis, two or more substrates are prepared from the growth axis direction ( [See Reference 1]).
Step S3: The Curie temperature for each crystal ingot is measured, and the chemical composition ratio of each crystal ingot is obtained using the known relationship between the chemical composition ratio and the Curie temperature.
Step S4: For each substrate sample of each crystal ingot cut out in step S2, the propagation direction dependence of the LSAW velocity is measured at the position indicated by x in FIG.
Step S5: From the results obtained in steps S3 and S4, the chemical composition ratio dependence of the LSAW velocity in each propagation direction on each substrate surface is obtained, and the LSAW propagation direction having high sensitivity to the chemical composition ratio change is determined.
Step S6: The LSAW velocity distribution in the growth axis direction of each crystal ingot is measured in the propagation direction determined in step S5.
Step S7: From the relationship between the charged raw material composition of each crystal ingot and the LSAW velocity distribution in the growth axis direction, the composition at which the LSAW velocity distribution in the growth axis direction becomes 0 is determined as the true congruent composition, and the LSAW velocity at that time is obtained.
Step S8: The chemical composition ratio is calibrated so that the relationship between the chemical composition ratio obtained in step S5 and the LSAW velocity matches the relationship between the chemical composition ratio in the true congruent composition obtained in step S7 and the LSAW velocity. Get the correct relationship between composition ratio and LSAW speed.
Step S9-1: According to the procedure of [Patent Document 1], an allowable width (deviation from the true congruent composition) ± ΔC C of the raw material melt composition that can be regarded as a congruent composition is obtained.
Step S9-2: The correct relationship between the chemical composition ratio and the acoustic related physical constant is obtained from the relationship between the chemical composition ratio obtained in step S8 and the LSAW speed.
Step S10-2: A chemical composition ratio is obtained from the LSAW velocity or Curie temperature measured for the grown crystal using the relationship obtained in Step S8, and an acoustic related physical constant corresponding to this chemical composition ratio is obtained in Step S9-. The SAW device design parameters (electrode width, electrode thickness, electrode spacing, etc.) optimum for the grown crystal are obtained using the acoustic-related physical constants, and the SAW device is produced.
原料仕込み時における化学組成比を48.0、48.5、49.0 Li2O-mol%として育成したLiNbO3単結晶を用意した。各結晶の育成条件およびサイズを図4に示す。いずれも、チョクラルスキー法によりZ軸方向に育成されている。各結晶の育成軸方向および直径方向の均質性を評価するために、図2に示すように、X-、Y-cut基板各1枚およびZ-cut基板3枚を切り出し、両面光学研磨して試料とした。各基板の形状およびLSAW速度の測定位置は図3の×および破線で示す。 LiNbO 3 single crystals grown at a chemical composition ratio of 48.0, 48.5, 49.0 Li 2 O-mol% at the time of raw material preparation were prepared. The growth conditions and size of each crystal are shown in FIG. Both are grown in the Z-axis direction by the Czochralski method. In order to evaluate the homogeneity of each crystal in the growth axis direction and the diameter direction, as shown in FIG. 2, one X- and Y-cut substrate and three Z-cut substrates were cut and double-sided optically polished. A sample was used. The shape of each substrate and the measurement position of the LSAW speed are indicated by crosses and broken lines in FIG.
各結晶の化学組成を調べるために、図2に示したZ2基板と隣り合う別のZ-cut基板に対し、示差熱分析(DTA)法によりキュリー温度を測定した。結果を図5に示す。さらに、[参考文献2]に示されるキュリー温度と化学組成比の関係を用いて、各結晶の実際のLi2O濃度を求めた結果も図5に“分析Li2O濃度”として示す。 In order to investigate the chemical composition of each crystal, the Curie temperature was measured by a differential thermal analysis (DTA) method on another Z-cut substrate adjacent to the Z2 substrate shown in FIG. The results are shown in FIG. Furthermore, the result of obtaining the actual Li 2 O concentration of each crystal using the relationship between the Curie temperature and the chemical composition ratio shown in [Reference 2] is also shown as “analyzed Li 2 O concentration” in FIG.
密度は、Z2基板に対してアルキメデスの原理に基づいて測定した。また、格子定数aおよびcは、それぞれX-cutおよびZ2試料に対し、図3の×に示す位置でBond法を用いたX線回折法により測定した。それぞれの結果を図5に示す。Li2O濃度が増大するにつれ、キュリー温度は単調に増大し、密度および格子定数は減少する。図5の結果に対する直線近似から、その変化率は、43.9℃/mol%、-5.93
(kg/m3)/mol%、-1.3×10-4nm/mol%(a軸)、-5.7×10-4nm/mol%(c軸)である。
The density was measured on the Z2 substrate based on Archimedes' principle. In addition, the lattice constants a and c were measured by X-ray diffraction using the Bond method at the positions indicated by x in FIG. 3 for the X-cut and Z2 samples, respectively. Each result is shown in FIG. As the Li 2 O concentration increases, the Curie temperature increases monotonically and the density and lattice constant decrease. From the linear approximation to the result of FIG. 5, the rate of change is 43.9 ° C / mol%, -5.93
(kg / m 3 ) / mol%, −1.3 × 10 −4 nm / mol% (a axis), and −5.7 × 10 −4 nm / mol% (c axis).
音響特性の化学組成比依存性を調べるために、225 MHzにおいて結晶1、2、3のX、Y、Z2基板(図3の×の位置)に対して、LSAW速度の伝搬方向依存性を測定した。結果を図6に示す。各結晶面において、LSAW速度は結晶の対称性を反映して変化している。Z-cut基板では、全伝搬方向においてLi2Oの増加とともにLSAW速度が上昇しているが、X-cutの70°〜160°の間や、Y-cutの40°〜140°の間の伝搬方向では逆転している。
In order to investigate the dependence of acoustic characteristics on the chemical composition ratio, the propagation direction dependence of the LSAW velocity was measured for the X, Y, and Z2 substrates of
図7に各基板間で化学組成比の変化(差分)に対する速度変化(差分)の比(即ち差分比)が最大となる伝搬方向および基本軸の伝搬方向に対するLSAW速度と分析Li2O濃度の関係を示す。最小二乗法による直線近似により求めた速度変化率は伝搬方向に依存して異なっているが、コングルエント組成近傍で化学組成比と各LSAW速度との間にはほぼ線形な関係があることがわかる。各基板面における速度変化率の最大値は、X-cut面に対しては123.4°Y軸方向で-24.9 (m/s)/Li2O-mol%、Y-cut面に対してはX軸方向で+21.5(m/s)/Li2O-mol%、Z-cut面に対してはY軸方向で+39.4(m/s)/Li2O-mol%である。 FIG. 7 shows the LSAW velocity and the analysis Li 2 O concentration with respect to the propagation direction in which the ratio of the speed change (difference) to the change (difference) in chemical composition ratio (difference) between the substrates is maximum and the propagation direction of the basic axis. Show the relationship. The rate of velocity change obtained by linear approximation using the least squares method varies depending on the propagation direction, but it can be seen that there is a substantially linear relationship between the chemical composition ratio and each LSAW velocity near the congruent composition. The maximum rate of velocity change on each substrate surface is -24.9 (m / s) / Li 2 O-mol% in the 123.4 ° Y-axis direction for the X-cut surface, and X for the Y-cut surface. It is +21.5 (m / s) / Li 2 O-mol% in the axial direction, and +39.4 (m / s) / Li 2 O-mol% in the Y-axis direction with respect to the Z-cut plane.
結晶評価において、LSAWの伝搬方向は基本軸あるいはパワーフローアングルが0となる方向を選ぶべきである。また、選択した伝搬方向において化学組成比に対する感度が高くなければならない。これらの観点から、Z-cut面のY軸方向伝搬が最適であると考えられる。しかし、化学組成比の分布が大きく現れると考えられる育成軸方向(Z軸)の詳細な分布を調べるには、図2からわかるようにZ-cut基板よりもY-cut基板の方が有利である。そこで、ここではZ-cut面のY軸方向伝搬とともに、Y-cut基板のX軸方向伝搬のLSAWをとりあげて結晶内のLSAW速度分布測定を行う。 In crystal evaluation, the direction of LSAW propagation should be chosen so that the basic axis or power flow angle is zero. Also, the sensitivity to the chemical composition ratio must be high in the selected propagation direction. From these viewpoints, the propagation in the Y-axis direction of the Z-cut plane is considered optimal. However, in order to investigate the detailed distribution in the growth axis direction (Z-axis), where the chemical composition ratio distribution appears to appear greatly, the Y-cut substrate is more advantageous than the Z-cut substrate, as can be seen from FIG. is there. Therefore, the LSAW velocity distribution in the crystal is measured here by taking the LSAW of the Y-cut substrate along with the X-axis propagation along with the Y-axis propagation of the Z-cut plane.
図8に、化学的・物理的諸特性に対する本評価法(ZY-LiNbO3およびYX-LiNbO3のLSAW速度)の感度および測定分解能を示す。測定分解能は、LSAW速度の測定再現性±0.0013%(3800 m/s近傍で±0.05 m/sに相当)として計算している。本超音波法は、キュリー温度の分解能(約±1℃)に比べ非常に分解能が高く、また局所的な組成の分布を評価する上で非常に有利である。また、Z-cut Y軸伝搬のLSAW速度を用いる場合の方が、Y-cut X軸伝搬のLSAW速度を用いる場合よりも、およそ2倍分解能が高い。 FIG. 8 shows the sensitivity and measurement resolution of this evaluation method (LSY speed of ZY-LiNbO 3 and YX-LiNbO 3 ) for various chemical and physical properties. The measurement resolution is calculated as the measurement reproducibility of LSAW speed ± 0.0013% (equivalent to ± 0.05 m / s near 3800 m / s). This ultrasonic method has a very high resolution compared to the resolution of the Curie temperature (about ± 1 ° C.), and is very advantageous in evaluating the local composition distribution. In addition, when using the LSAW speed of Z-cut Y-axis propagation, the resolution is about twice as high as when using the LSAW speed of Y-cut X-axis propagation.
次に、各結晶インゴット内のLSAW速度分布を測定した結果を示す。まず、結晶1、2、3から切り出したZ-cut基板(上部Z1、中部Z2、下部Z3)の径方向(図3の点線)において、Y軸伝搬のLSAW速度を1 mm毎に測定した結果を図9に示す。結晶上部の径方向で、周辺部において0.5〜0.8 m/s程度の速度低下が見られる。
Next, the result of measuring the LSAW velocity distribution in each crystal ingot is shown. First, as a result of measuring the LSAW velocity of Y-axis propagation every 1 mm in the radial direction (dotted line in Fig. 3) of the Z-cut substrate (upper Z1, middle Z2, lower Z3) cut from
仕込み原料組成の変化に対しては、径方向に比べ育成軸方向の分布の変化が大きい。各Z-cut基板の中心(図3の×で示した位置)のLSAW速度測定値と結晶上部からの距離との関係から、育成軸方向の分布を求めた結果を図10に示す。各結晶において、結晶上部から下部にかけてほぼ線形にLSAW速度が変化している。 The change in the distribution in the growth axis direction is larger than that in the radial direction with respect to the change in the raw material composition. FIG. 10 shows the result of obtaining the growth axis direction distribution from the relationship between the measured LSAW velocity at the center of each Z-cut substrate (position indicated by x in FIG. 3) and the distance from the top of the crystal. In each crystal, the LSAW speed changes almost linearly from the top to the bottom of the crystal.
図10の実線は最小二乗法による近似直線である。その勾配は、結晶1に対しては-0.037 (m/s)/mm、結晶2に対しては-0.001 (m/s)/mm、結晶3に対しては+0.042 (m/s)/mmである。これらは、図7の関係を用いてLi2O濃度の変化率に換算すると、結晶1に対しては-0.00093
mol%/mm、結晶2に対しては-0.00002 mol%/mm、結晶3に対しては+0.00107 mol%/mmである。
The solid line in FIG. 10 is an approximate straight line by the least square method. The gradient is -0.037 (m / s) / mm for
mol% / mm, -0.00002 mol% / mm for
同様にして、結晶1、2、3から切り出したY-cut基板の径方向(図3の点線T, M, B)において、X軸伝搬のLSAW速度を1 mm毎に測定した結果を図11に示す。図9の場合と同様に、結晶上部の径方向(Tのライン)で、周辺部が0.3〜0.6 m/s程度、速度低下する傾向が見られるが、いずれの結晶においても、育成軸方向に比べ径方向の分布は小さい。
Similarly, in the radial direction of the Y-cut substrate cut from the
次に、Y-cut基板の育成軸方向(図3の点線P)において、X軸伝搬のLSAW速度を1 mm毎に測定した結果を図12に実線で示す。各結晶において、結晶上部から下部にかけてほぼ線形にLSAW速度が変化しているが、結晶3の上部近傍では、その線形的な変化から逸脱した特異な変化が見られる。
Next, the result of measuring the LSAW speed of the X-axis propagation at every 1 mm in the growth axis direction of the Y-cut substrate (dotted line P in FIG. 3) is shown by a solid line in FIG. In each crystal, the LSAW speed changes almost linearly from the upper part of the crystal to the lower part. However, in the vicinity of the upper part of the
結晶3の結晶上部では気泡が観察されたことから、育成条件と関連した問題を検出しているものと考えられる。これは、Z-cut基板では捉えにくい変化であり、Y-cut基板を用いた場合の利点であると言える。図12の点線は最小二乗法による近似直線である。その勾配は、結晶1に対しては-0.022 (m/s)/mm、結晶2に対しては+0.001 (m/s)/mm、結晶3に対しては+0.024 (m/s)/mmである。
Since bubbles were observed in the upper part of the
これらは、図7の関係を用いてLi2O濃度の変化率に換算すると、結晶1に対しては-0.00102 mol%/mm、結晶2に対しては+0.00006 mol%/mm、結晶3に対しては+0.00112 mol%/mmである。いずれの結晶においても、育成軸方向のLi2O濃度勾配は、ZY-LiNbO3に対する測定結果から求めたものとほぼ一致している。
These are converted to the rate of change of Li 2 O concentration using the relationship shown in FIG. 7, -0.00102 mol% / mm for
より均質な結晶を育成するために、得られた結果からコングルエント組成を求めてみる。図13は、図10および図12の近似直線から求めた各結晶の上部(0 mm)と下部(80 mm)の位置でのLSAW速度と、各結晶の仕込み時のLi2O濃度との関係を求めた結果を示している。 In order to grow more homogeneous crystals, the congruent composition is determined from the obtained results. FIG. 13 shows the relationship between the LSAW velocity at the upper (0 mm) and lower (80 mm) positions of each crystal determined from the approximate straight lines in FIGS. 10 and 12, and the Li 2 O concentration at the time of charging each crystal. The result of having been obtained is shown.
図中の実線は、最小二乗法による近似直線である。図13において、2つの実線の交点が、育成軸方向のLSAW速度分布が0になるコングルエント組成と考える。交点を求めると、コングルエント組成はZY-LiNbO3の結果から求めた場合48.481 Li2O-mol%、YX-LiNbO3の結果から求めた場合48.477 Li2O-mol%であり、そのときのLSAW速度はそれぞれ、3875.0 m/s(ZY-LiNbO3)、3711.6 m/s(YX-LiNbO3)と見積もられた。分解能が最も高いZY-LiNbO3の結果から求めた組成が、コングルエント組成として最も信頼性が高いと考えられる。しかし、YX-LiNbO3の結果から求めた場合でも、測定分解能と同程度のわずかな差(0.004 Li2O-mol%)しか生じていない。 The solid line in the figure is an approximate straight line by the least square method. In FIG. 13, the intersection of two solid lines is considered to be a congruent composition in which the LSAW velocity distribution in the growth axis direction is zero. When obtaining an intersection, congruent composition is 48.477 Li 2 O-mol% when calculated from 48.481 Li 2 O-mol%, the result of YX-LiNbO 3 when determined from the results of ZY-LiNbO 3, LSAW at that time The velocities were estimated to be 3875.0 m / s (ZY-LiNbO 3 ) and 3711.6 m / s (YX-LiNbO 3 ), respectively. The composition obtained from the result of ZY-LiNbO 3 having the highest resolution is considered to have the highest reliability as the congruent composition. However, even when obtained from the result of YX-LiNbO 3 , only a slight difference (0.004 Li 2 O-mol%) as high as the measurement resolution occurs.
図5および図7の分析Li2O濃度はキュリー温度の測定値から換算された値である。我々のこれまでの検討([非特許文献1]、[非特許文献2])からキュリー温度の測定値は測定条件や装置により異なる値が得られるため、図5および図7に示した分析Li2O濃度の絶対値の信頼性は低い。 The analytical Li 2 O concentration in FIGS. 5 and 7 is a value converted from the measured value of the Curie temperature. From our previous studies ([Non-Patent Document 1], [Non-Patent Document 2]), the measured value of the Curie temperature varies depending on the measurement conditions and equipment, so the analysis Li shown in FIGS. The reliability of the absolute value of 2 O concentration is low.
そこで、図7においてLSAW速度を基準にして、図13で求めた真のコングルエント組成におけるLi2O濃度とLSAW速度に合致するよう分析Li2O濃度を校正する。ZY-LiNbO3とYX-LiNbO3の結果を図14に示す。図14A、図14Bの結果において、分析Li2O濃度の校正量は、それぞれ0.057 Li2O-mol%、0.056 Li2O-molであり、ほぼ等しい校正量である。これはキュリー温度に換算すると約2.5℃の校正量に相当する。図14Aの校正後の結果は次式のように表される。
C(Li2O) = 0.0254×(VLSAW - 3875.0)
+ 48.481 (1)
ここで、C(Li2O)は分析Li2O濃度、VLSAWはZY-LiNbO3に対するLSAW速度を表す。式(1)から、結晶1、2、3に対する分析Li2O濃度を求めると、順に、48.324、48.489、48.641
Li2O-mol%となる。したがって、結晶2はコングルエント組成に非常に近い組成(±0.01 Li2O-mol%以内)であったことがわかる。
Therefore, with reference to the LSAW speed in FIG. 7, the analytical Li 2 O concentration is calibrated so as to match the Li 2 O concentration and the LSAW speed in the true congruent composition obtained in FIG. The results for ZY-LiNbO 3 and YX-LiNbO 3 are shown in FIG. 14A and 14B, the calibration amounts of the analytical Li 2 O concentration are 0.057 Li 2 O-mol% and 0.056 Li 2 O-mol, respectively, which are almost equal calibration amounts. This corresponds to a calibration amount of about 2.5 ° C. when converted to the Curie temperature. The result after calibration in FIG. 14A is expressed as follows.
C (Li 2 O) = 0.0254 × (V LSAW -3875.0)
+ 48.481 (1)
Here, C (Li 2 O) represents the analytical Li 2 O concentration, and V LSAW represents the LSAW rate for ZY-LiNbO 3 . From the formula (1), the analytical Li 2 O concentration for the
Li 2 O-mol%. Therefore, it can be seen that the
式(1)の関係を用いることで、[非特許文献5]で報告されていた音響関連物理定数(弾性定数、圧電定数、誘電率、密度)と化学組成比の正しい関係が得られる。[非特許文献5]では、図4に示した結晶1、2、3に対してそれぞれ音響関連物理定数が決定されている。各定数を用いてZY-LiNbO3に対するLSAW速度を計算し[参考文献3]、それを
式(1)にそれぞれ代入することにより各定数に対応した化学組成比が与えられる。結果を図15に示す。
By using the relationship of Formula (1), the correct relationship between the acoustic-related physical constants (elastic constant, piezoelectric constant, dielectric constant, density) reported in [Non-Patent Document 5] and the chemical composition ratio can be obtained. In [Non-Patent Document 5], acoustic-related physical constants are determined for the
また、各定数の化学組成比に対する勾配と、図13Aで見積もったコングルエント組成48.481 Li2O-mol%に対応する定数も図15に示した。式(1)に示されたLSAW速度は、ZY-LiNbO3に対するものであるが、図15の定数を用いた計算により、所望のカット面、伝搬方向に対するLSAW速度に換算することができる。LiTaO3単結晶に対しても、[特許文献1]で得られた結果を元に同様な手順で図16のように音響関連物理定数と化学組成比の正しい関係が得られる。 FIG. 15 also shows the gradient of each constant with respect to the chemical composition ratio and the constant corresponding to the congruent composition 48.481 Li 2 O-mol% estimated in FIG. 13A. The LSAW speed shown in the equation (1) is for ZY-LiNbO 3 , but can be converted to the LSAW speed for the desired cut surface and propagation direction by calculation using the constants of FIG. Also for LiTaO 3 single crystal, the correct relationship between the acoustic-related physical constants and the chemical composition ratio can be obtained by the same procedure based on the result obtained in [Patent Document 1] as shown in FIG.
図15に示した化学組成比と音響関連物理定数の関係を用いることによって、高精度なSAWデバイス設計パラメータを得ることができる。まず、育成結晶の上部および下部からZ-cut基板を切出しY軸方向伝搬のLSAW速度をそれぞれ測定する。 By using the relationship between the chemical composition ratio and the acoustic-related physical constants shown in FIG. 15, highly accurate SAW device design parameters can be obtained. First, a Z-cut substrate is cut from the top and bottom of the grown crystal, and the LSAW velocity of propagation in the Y-axis direction is measured.
(1)式の関係を用いて、測定したLSAW速度から育成結晶上部および下部の化学組成比を求める。得られた化学組成比を用いて、直線近似により結晶上部からの距離の関数として化学組成比を求める。育成結晶から切り出す基板がZ-cut以外の場合は、 [特許文献1]に示された方法にしたがって、図15の音響関連物理定数を用いた計算により、ZY-LiNbO3に対するLSAW速度に換算してから(1)式に代入する。得られた化学組成比に対応する音響関連物理定数を、図15のデータより求める。得られた音響関連物理定数を用いて、SAWデバイスとして使用する所望の基板面の伝搬方向に対するSAW速度を数値計算する。 Using the relationship of equation (1), the chemical composition ratio of the upper and lower grown crystals is determined from the measured LSAW rate. Using the obtained chemical composition ratio, the chemical composition ratio is obtained as a function of the distance from the upper part of the crystal by linear approximation. When the substrate to be cut out from the grown crystal is other than Z-cut, it is converted into the LSAW velocity for ZY-LiNbO 3 by the calculation using the acoustic related physical constants of FIG. 15 according to the method shown in [Patent Document 1]. After that, substitute it into equation (1). An acoustic related physical constant corresponding to the obtained chemical composition ratio is obtained from the data of FIG. Using the obtained acoustic-related physical constants, the SAW velocity with respect to the propagation direction of the desired substrate surface used as the SAW device is numerically calculated.
得られたSAW速度から、直線近似により結晶上部からの距離の関数としてSAW速度を求める。SAWデバイス用基板の切出し位置に対応したSAW速度を用いて、SAWデバイスの設計パラメータ(電極幅、電極厚さ、電極周期等)を決定する。結晶上部と下部の化学組成比の差が許容範囲内の場合は、結晶上部と下部の化学組成比の中間値を育成結晶の化学組成比として上記計算を行えばより簡便である。 From the obtained SAW velocity, the SAW velocity is obtained as a function of the distance from the top of the crystal by linear approximation. The SAW device design parameters (electrode width, electrode thickness, electrode cycle, etc.) are determined using the SAW speed corresponding to the cut-out position of the SAW device substrate. When the difference in the chemical composition ratio between the upper part and the lower part of the crystal is within an allowable range, it is easier to perform the above calculation using the intermediate value of the chemical composition ratio between the upper part and the lower part of the crystal as the chemical composition ratio of the grown crystal.
上記の育成結晶の化学組成比を求める工程において、[特許文献1]に示される手法で、LiNbO3に対するTCとLSAW速度の正しい関係を予め求めておくことで、上記の結晶の化学組成比をLSAW速度から求める代わりにTCから求めることも可能である。また、音響関連物理定数の代わりに、光学的諸特性(屈折率、非線形光学定数等)と化学組成比の正しい関係を予め求めておけば、光エレクトロニクスデバイス設計における高精度化を同様に実現できる。上記の例は、LiTaO3に対しても同様に適用できる。 In the step of determining the chemical composition ratio of the grown crystal, the chemical composition ratio of the crystal is obtained by obtaining in advance a correct relationship between the TC and the LSAW speed with respect to LiNbO 3 by the method shown in [Patent Document 1]. Can be obtained from T C instead of LSAW speed. In addition, if the correct relationship between optical characteristics (refractive index, nonlinear optical constant, etc.) and chemical composition ratio is obtained in advance instead of acoustic related physical constants, high accuracy in optoelectronic device design can be achieved in the same way. . The above example can be similarly applied to LiTaO 3 .
図13で決定した真のコングルエント組成からどれだけの組成変化までを許容できるかを見積もるために、[特許文献1]の手順にしたがってチャージ回数100回の繰返し結晶育成を行なった場合をシミュレーションし、SAWデバイス用基板に対するSAW速度(VSAW)分布の許容幅と融液組成変動の許容幅の関係を求めた。 In order to estimate how much composition change is allowed from the true congruent composition determined in FIG. 13, a simulation was performed in the case where repeated crystal growth was performed 100 times in accordance with the procedure of [Patent Document 1] The relationship between the allowable width of SAW velocity (V SAW ) distribution for the substrate for SAW devices and the allowable width of melt composition fluctuation was obtained.
シミュレーションでは、チャージ原料(融液)の総重量を5000 g、結晶固化率50%(2500 g)、直径77 mmの円柱状結晶を育成する場合を仮定し、チャージ用の原料組成のずれを真のコングルエント組成48.481 Li2O-mol%に対し、0〜±1 Li2O-mol%としている。 In the simulation, assuming that the total weight of the charge material (melt) is 5000 g, the crystal solidification rate is 50% (2500 g), and a columnar crystal with a diameter of 77 mm is grown, the deviation of the charge material composition is true. The congruent composition of 48.481 Li 2 O-mol% is 0 to ± 1 Li 2 O-mol%.
また、SAWデバイス用基板として127.86°Y-cutX軸伝搬LiNbO3を仮定し、VSAWの許容幅が±0.1%、±0.05%、±0.02%、±0.01%、±0.005%、±0.002%に対応する、VLSAW、結晶組成、チャージ原料組成、TCの各変動を求めている。結果を図17に示す。 Assuming 127.86 ° Y-cut X-axis propagation LiNbO 3 as the substrate for SAW devices, the allowable width of V SAW is ± 0.1%, ± 0.05%, ± 0.02%, ± 0.01%, ± 0.005%, ± 0.002% corresponding, V LSAW, the crystal composition, the charge material composition, seeking the variation of T C. The results are shown in FIG.
要求されるVSAW分布の許容幅を±0.02%[参考文献4]とすれば、量産用コングルエント組成として見なせる原料組成の範囲は、48.481±0.017 Li2O-mol%と考えることができる。この場合、現状におけるSAWデバイス用ウェハの規格として定められているTCの許容幅±3℃[参考文献5]に対し、±1.0℃のわずかな分布しか生じない結晶量産が行なえる。 If the allowable width of the required V SAW distribution is ± 0.02% [Reference 4], the range of the raw material composition that can be regarded as a confluent composition for mass production can be considered as 48.481 ± 0.017 Li 2 O-mol%. In this case, the allowable range ± 3 ° C. from T C which is defined as a standard wafer for SAW devices in current with respect to [Reference 5], the crystal mass is performed which produces only a slight distribution of ± 1.0 ° C..
以上のように、本発明によれば、真のコングルエント組成を与えることにより、量産される結晶内、結晶間の分布を極めて小さくできる。また、化学組成評価法の観点では、従来の結晶評価の指標であるTCよりも、絶対精度を保証できるVLSAWによる評価が可能になる。さらに、コングルエント組成結晶においては、これまで不明確であった育成結晶の化学組成比の絶対値が明らかになるため、化学組成比と音響関連物理定数やその他の化学的・物理的諸特性(VLSAW、VSAW、TC、格子定数など)の間の絶対的な関係を得ることができ、様々な化学的・物理的特性による絶対的な結晶評価が可能になる。 As described above, according to the present invention, by providing a true congruent composition, the distribution within and between crystals to be mass-produced can be made extremely small. Further, in view of the chemical composition evaluation method, than T C is indicative of the conventional crystal evaluation allows evaluation by V LSAW can guarantee absolute accuracy. Furthermore, in congruent composition crystals, the absolute value of the chemical composition ratio of the grown crystal, which has been unclear until now, becomes clear, so the chemical composition ratio and acoustic-related physical constants and other chemical and physical properties (V LSAW , V SAW , T C , lattice constant, etc.) can be obtained, and absolute crystal evaluation based on various chemical and physical characteristics can be performed.
この発明は、例えば移動通信機などにフィルタとして使用されるSAWデバイスあるいは光変調器や周波数逓倍器などの光エレクトロニクスデバイスを製造するための強誘電体単結晶を量産する場合の原料組成の決定、単結晶の評価、及び高精度なデバイス設計に利用できる。
[参考文献]
[参考文献1] 特願2001-069181号
[参考文献2] K. Yamada, H. Takemura,
Y. Inoue, T. Omi, and, S. Matsumura, “Effect of Li/Nb ratio on the SAW velocity of 128°Y-X LiNbO3 wafers,” Jpn. J. Appl.
Phys., vol. 26, Suppl. 26-2, pp. 219-222, 1987.
[参考文献3] J. J. Campbell and W. R. Jones,
"Propagation of surface waves at the boundary between a piezoelectric
crystal and a fluid medium," IEEE Trans. Sonics Ultrason.,
vol. SU-17, pp. 71-76, Apr. 1970.
[参考文献4] M. Sato, A. Iwama, J.
Yamada, M. Hikita, and Y. Furukawa, "SAW
velocity variation LiTaO3 substrates," Jpn.
J. Appl. Phys., vol. 28, Suppl.
28-1, pp. 111-113, 1989.
[参考文献5] IEC-PAS, "Single crystal wafers applied
for surface acoustic wave device
- Specification and Measuring Method -," IEICE/Std-0002, April 17, 2001.
This invention, for example, the determination of the raw material composition when mass-producing ferroelectric single crystals for producing SAW devices used as filters in mobile communication devices and the like, or optoelectronic devices such as optical modulators and frequency multipliers, It can be used for single crystal evaluation and highly accurate device design.
[References]
[Reference 1] Japanese Patent Application No. 2001-069181
[Reference 2] K. Yamada, H. Takemura,
Y. Inoue, T. Omi, and, S. Matsumura, “Effect of Li / Nb ratio on the SAW velocity of 128 ° YX LiNbO 3 wafers,” Jpn. J. Appl.
Phys., Vol. 26, Suppl. 26-2, pp. 219-222, 1987.
[Reference 3] JJ Campbell and WR Jones,
"Propagation of surface waves at the boundary between a piezoelectric
crystal and a fluid medium, "IEEE Trans. Sonics Ultrason.,
vol. SU-17, pp. 71-76, Apr. 1970.
[Reference 4] M. Sato, A. Iwama, J.
Yamada, M. Hikita, and Y. Furukawa, "SAW
velocity variation LiTaO 3 substrates, "Jpn.
J. Appl. Phys., Vol. 28, Suppl.
28-1, pp. 111-113, 1989.
[Reference 5] IEC-PAS, "Single crystal wafers applied
for surface acoustic wave device
-Specification and Measuring Method-, "IEICE / Std-0002, April 17, 2001.
Claims (11)
(a)強誘電体単結晶において、コングルエント組成の近傍で互いに異なる化学組成をもつn個(nは2以上の整数)の強誘電体単結晶を作製する工程と、
(b)各前記強誘電体単結晶より、カット面を異ならせた基板を複数切り出す工程と、
(c)前記基板の各々において、基板面内の第1の漏洩弾性表面波速度VLSAWを、伝搬方向を変えながら測定する工程と、
(d)各前記基板のキュリー温度より、化学組成比とキュリー温度の既知の関係を用いて、各前記強誘電体単結晶の化学組成比を求める工程と、
(e)上記強誘電体単結晶より同一のカット面で切り出された前記基板を1対選び出す工程と、
(f)前記1対の基板において、前記工程(d)で求めた各化学組成比の差分を、化学組成比変化として求める工程と、
(g)前記工程(f)で定めた1対の基板において前記工程(c)で求めた第1の漏洩弾性表面波速度の内、同一伝搬方向の速度の差分である漏洩弾性表面波速度変化を求める工程と、
(h)前記工程(g)で求めた漏洩弾性表面波速度変化の前記工程(f)で求めた化学組成変化に対する変化率である漏洩弾性表面波速度変化/化学組成比変化の値を求める工程と、
(i)上記強誘電体単結晶より切り出された前記基板の各組み合わせに対して、前記工程(f)、(g)、(h)を実施する工程と、
(j)前記工程(i)で求めた漏洩弾性表面波速度変化/化学組成比変化の値の大きい方から1つ選び、該値を示すカット面と漏洩弾性表面波伝搬方向を特定する工程と、
(k)前記強誘電体単結晶の上部及び下部を、結晶育成時の種結晶側を上部、その反対側を下部とし、前記工程(e)〜(j)の測定を行った強誘電体単結晶より前記上部及び下部からの基板を得る工程と、
(l)前記工程(k)で求めた上部基板及び下部基板において前記工程(j)で特定した漏洩弾性表面波伝搬方向にて、第2の漏洩弾性表面波速度を測定する工程と、
(m)前記工程(e)〜(l)を、前記工程(a)で作製したn個の強誘電体単結晶に実施する工程と、
(n)前記工程(m)の測定を行った強誘電体単結晶の各原料組成値と、前記工程(m)で得られた前記工程(l)による各強誘電体単結晶上部基板及び下部基板の第2の漏洩弾性表面波速度とから結晶育成軸方向の漏洩弾性表面波速度の分布が0となる真のコングルエント組成Cc及び、対応する第3の漏洩弾性表面波速度VLSAW(Cc)を求める工程と、
(p)前記工程(a)で作製したn個の強誘電体単結晶の、漏洩弾性表面波速度、漏洩弾性表面波速度勾配、原料組成、結晶組成、密度のいずれかの許容幅を用いて、前記真のコングルエント組成Ccのずれの許容幅±△Ccを求める工程と、
(q)前記真のコングルエント組成Ccと、前記許容幅±△Ccとから、強誘電体単結晶製造のための強誘電体単結晶原料組成を決める工程、
とを含む事を特徴とする原料組成決定方法。 A raw material composition determination method for manufacturing a ferroelectric single crystal,
(A) In a ferroelectric single crystal, a step of producing n (n is an integer of 2 or more) ferroelectric single crystals having different chemical compositions in the vicinity of the congruent composition;
(B) a step of cutting a plurality of substrates with different cut surfaces from each of the ferroelectric single crystals;
(C) in each of the substrates, measuring a first leaky surface acoustic wave velocity V LSAW in the substrate plane while changing the propagation direction;
(D) obtaining a chemical composition ratio of each ferroelectric single crystal from the Curie temperature of each substrate using a known relationship between the chemical composition ratio and the Curie temperature;
(E) selecting a pair of the substrates cut out from the ferroelectric single crystal at the same cut surface;
(F) In the pair of substrates, a step of obtaining a difference in each chemical composition ratio obtained in the step (d) as a chemical composition ratio change;
(G) Leaky surface acoustic wave velocity change, which is a difference in velocity in the same propagation direction, among the first leaky surface acoustic wave velocities obtained in step (c) on the pair of substrates determined in step (f). The process of seeking
(H) A step of obtaining a value of change in leakage surface acoustic wave velocity / chemical composition ratio, which is a rate of change of the change in leakage surface acoustic wave velocity obtained in step (g) with respect to the change in chemical composition obtained in step (f). When,
(I) performing the steps (f), (g), and (h) for each combination of the substrates cut out from the ferroelectric single crystal;
(J) selecting one of the values of the leaky surface acoustic wave velocity change / chemical composition ratio change obtained in the step (i) and specifying the cut surface indicating the value and the leaky surface acoustic wave propagation direction; ,
(K) The ferroelectric single crystal in which the above steps (e) to (j) were measured with the upper and lower portions of the ferroelectric single crystal being the upper portion on the seed crystal side during crystal growth and the opposite side being the lower portion. Obtaining a substrate from the top and bottom from the crystal;
(L) measuring a second leaky surface acoustic wave velocity in the leaky surface acoustic wave propagation direction specified in step (j) on the upper substrate and the lower substrate obtained in step (k);
(M) performing the steps (e) to (l) on n ferroelectric single crystals produced in the step (a);
(N) Each raw material composition value of the ferroelectric single crystal measured in the step (m), and each ferroelectric single crystal upper substrate and lower portion obtained in the step (l) obtained in the step (m) The true congruent composition Cc in which the distribution of the leaky surface acoustic wave velocity in the crystal growth axis direction is zero from the second leaky surface acoustic wave velocity of the substrate, and the corresponding third leaky surface acoustic wave velocity V LSAW (Cc) The process of seeking
(P) Using the allowable width of any one of the leaky surface acoustic wave velocity, the leaky surface acoustic wave velocity gradient, the raw material composition, the crystal composition, and the density of the n ferroelectric single crystals produced in the step (a). Obtaining a tolerance ±± Cc of deviation of the true congruent composition Cc;
(Q) determining a ferroelectric single crystal raw material composition for manufacturing a ferroelectric single crystal from the true congruent composition Cc and the allowable width ± ΔCc;
The raw material composition determination method characterized by including these.
(a)強誘電体単結晶において、コングルエント組成の近傍で互いに異なる化学組成をもつn個(nは2以上の整数)の強誘電体単結晶を作製する工程と、
(b)各前記強誘電体単結晶より、カット面を異ならせた基板を複数切り出す工程と、
(c)前記基板の各々において、基板面内の第1の漏洩弾性表面波速度VLSAWを、伝搬方向を変えながら測定する工程と、
(d)各前記基板のキュリー温度より、化学組成比とキュリー温度の既知の関係を用いて、各前記強誘電体単結晶の第1の化学組成比を求める工程と、
(e)上記強誘電体単結晶より同一のカット面で切り出された前記基板を1対選び出す工程と、
(f)前記1対の基板において、前記工程(d)で求めた各第1の化学組成比の差分を、化学組成比変化として求める工程と、
(g)前記工程(f)で定めた1対の基板において前記工程(c)で求めた第1の漏洩弾性表面波速度の内、同一伝搬方向の速度の差分である漏洩弾性表面波速度変化を求める工程と、
(h)前記工程(g)で求めた漏洩弾性表面波速度変化の前記工程(f)で求めた化学組成変化に対する変化率である漏洩弾性表面波速度変化/化学組成比変化の値を求める工程と、
(i)上記強誘電体単結晶より切り出された前記基板の各組み合わせに対して、前記工程(f)、(g)、(h)を実施する工程と、
(j)前記工程(i)で求めた漏洩弾性表面波速度変化/化学組成比変化の値の大きい方から1つ選び、該値を示すカット面と漏洩弾性表面波伝搬方向を特定する工程と、
(k)前記強誘電体単結晶の上部及び下部を、結晶育成時の種結晶側を上部、その反対側を下部とし、前記工程(e)〜(j)の測定を行った強誘電体単結晶より前記上部及び下部からの基板を得る工程と、
(l)前記工程(k)で求めた上部基板及び下部基板において前記工程(j)で特定した漏洩弾性表面波伝搬方向にて、第2の漏洩弾性表面波速度を測定する工程と、
(m)前記工程(e)〜(l)を、前記工程(a)で作製したn個の強誘電体単結晶に実施する工程と、
(n)前記工程(m)の測定を行った強誘電体単結晶の各原料組成値と、前記工程(m)で得られた前記工程(l)による各強誘電体単結晶上部基板及び下部基板の第2の漏洩弾性表面波速度とから結晶育成軸方向の漏洩弾性表面波速度の分布が0となる真のコングルエント組成Cc及び、対応する第3の漏洩弾性表面波速度VLSAW(Cc)を求める工程と、
(o)前記工程(c)で得られた第1の漏洩弾性表面波速度VLSAWと前記工程(d)で得られた第1の化学組成比の関係を近似直線であらわし、該近似直線を、前記工程(n)で得られた真のコングルエント組成Ccおよび第3の漏洩弾性表面波速度VLSAW(Cc)の値に合致するように第1の化学組成比を校正して、両者の関係を表す校正された近似直線を得る工程と、
(p)前記工程の(a)のn個の強誘電体単結晶の弾性定数、圧電定数、誘電率、密度のいずれかの音響関連物理定数を用いて計算される第4の漏洩弾性表面波速度と、上記工程(o)で得られた校正された近似直線とを用いて、上記n個の強誘電体単結晶の校正された第2の化学組成比を求め、該校正された第2の化学組成比における前記音響関連物理定数を求める工程、
とを含むことを特徴とする音響関連物理定数の校正方法。 It is a calibration method for acoustic-related physical constants of ferroelectric single crystals,
(A) in a ferroelectric single crystal, producing n (n is an integer of 2 or more) ferroelectric single crystals having different chemical compositions in the vicinity of the congruent composition;
(B) a step of cutting a plurality of substrates with different cut surfaces from each of the ferroelectric single crystals;
(C) in each of the substrates, measuring a first leaky surface acoustic wave velocity V LSAW in the substrate plane while changing the propagation direction;
(D) obtaining a first chemical composition ratio of each ferroelectric single crystal from a Curie temperature of each substrate using a known relationship between the chemical composition ratio and the Curie temperature;
(E) selecting a pair of the substrates cut out from the ferroelectric single crystal at the same cut surface;
(F) In the pair of substrates, a step of obtaining a difference between the first chemical composition ratios obtained in the step (d) as a chemical composition ratio change;
(G) Leaky surface acoustic wave velocity change, which is a difference in velocity in the same propagation direction, among the first leaky surface acoustic wave velocities obtained in step (c) on the pair of substrates determined in step (f). The process of seeking
(H) A step of obtaining a value of a change in the leaky surface acoustic wave velocity / chemical composition ratio, which is a rate of change of the change in the leaky surface acoustic wave velocity obtained in the step (g) with respect to the chemical composition change obtained in the step (f). When,
(I) performing the steps (f), (g), and (h) for each combination of the substrates cut out from the ferroelectric single crystal;
(J) selecting one of the values of the leaky surface acoustic wave velocity change / chemical composition ratio change obtained in the step (i) and specifying the cut surface indicating the value and the leaky surface acoustic wave propagation direction; ,
(K) The ferroelectric single crystal in which the above steps (e) to (j) were measured with the upper and lower portions of the ferroelectric single crystal being the upper portion on the seed crystal side during crystal growth and the opposite side being the lower portion. Obtaining a substrate from the top and bottom from the crystal;
(L) measuring a second leaky surface acoustic wave velocity in the leaky surface acoustic wave propagation direction specified in step (j) on the upper substrate and the lower substrate obtained in step (k);
(M) performing the steps (e) to (l) on n ferroelectric single crystals produced in the step (a);
(N) Each raw material composition value of the ferroelectric single crystal measured in the step (m), and each ferroelectric single crystal upper substrate and lower portion obtained in the step (l) obtained in the step (m) The true congruent composition Cc in which the distribution of the leaky surface acoustic wave velocity in the crystal growth axis direction is zero from the second leaky surface acoustic wave velocity of the substrate, and the corresponding third leaky surface acoustic wave velocity V LSAW (Cc) The process of seeking
(O) The relationship between the first leaky surface acoustic wave velocity V LSAW obtained in the step (c) and the first chemical composition ratio obtained in the step (d) is represented by an approximate line, and the approximate line is represented by The first chemical composition ratio is calibrated to match the values of the true congruent composition Cc and the third leaky surface acoustic wave velocity V LSAW (Cc) obtained in the step (n), and the relationship between the two Obtaining a calibrated approximate straight line representing
(P) Fourth leaky surface acoustic wave calculated by using any acoustic-related physical constant of elastic constant, piezoelectric constant, dielectric constant, or density of the n ferroelectric single crystals of (a) in the step Using the velocity and the calibrated approximate straight line obtained in the step (o), the calibrated second chemical composition ratio of the n ferroelectric single crystals is obtained, and the calibrated second Obtaining the acoustic-related physical constant in the chemical composition ratio of
And a method for calibrating acoustic-related physical constants.
(1)育成結晶に対する漏洩弾性表面波速度を測定し、前記工程(o)において得られた校正された近似直線を用いて、前記育成結晶の第2の化学組成比を求める工程と、
(2)前記工程(1)で得られた第2の化学組成比と、前記工程(p)で得られた校正された第2の化学組成比における前記音響関連物理定数とを使って、前記工程(1)の育成結晶の前記音響関連物理定数を求める工程と、
(3)前記工程(2)で求めた前記音響関連物理定数を用いて、弾性表面波デバイスとして切り出すためのカット面における伝搬方向での弾性表面波速度VSAWを計算する工程と、(4)前記工程(3)で得られた弾性表面波速度VSAWを用いて、弾性表面波デバイス設計のための設計パラメータ(電極周期、電極幅、電極厚さ)を決定する工程、
とを含むことを特徴とする弾性表面波デバイスの設計パラメータ決定方法。 A method for determining design parameters of a surface acoustic wave device using the calibration method for acoustic-related physical constants of claim 10 ,
(1) measuring a leaky surface acoustic wave velocity with respect to the grown crystal and determining a second chemical composition ratio of the grown crystal using the calibrated approximate straight line obtained in the step (o);
(2) Using the second chemical composition ratio obtained in the step (1) and the acoustic related physical constant in the calibrated second chemical composition ratio obtained in the step (p), Obtaining the acoustic related physical constant of the grown crystal in step (1);
(3) calculating the surface acoustic wave velocity V SAW in the propagation direction on the cut surface for cutting out as a surface acoustic wave device using the acoustic-related physical constant obtained in the step (2); and (4) Determining design parameters (electrode period, electrode width, electrode thickness) for surface acoustic wave device design using the surface acoustic wave velocity V SAW obtained in the step (3);
A method for determining a design parameter of a surface acoustic wave device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004290711A JP4590549B2 (en) | 2004-10-01 | 2004-10-01 | Raw material composition determination method for manufacturing ferroelectric single crystal, acoustic related physical constant calibration method of ferroelectric single crystal, and design parameter determination method of surface acoustic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004290711A JP4590549B2 (en) | 2004-10-01 | 2004-10-01 | Raw material composition determination method for manufacturing ferroelectric single crystal, acoustic related physical constant calibration method of ferroelectric single crystal, and design parameter determination method of surface acoustic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006108940A JP2006108940A (en) | 2006-04-20 |
JP4590549B2 true JP4590549B2 (en) | 2010-12-01 |
Family
ID=36378167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004290711A Expired - Lifetime JP4590549B2 (en) | 2004-10-01 | 2004-10-01 | Raw material composition determination method for manufacturing ferroelectric single crystal, acoustic related physical constant calibration method of ferroelectric single crystal, and design parameter determination method of surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4590549B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09188596A (en) * | 1996-01-12 | 1997-07-22 | Nippon Mektron Ltd | Processing of lithium niobate single crystal |
JP2002131295A (en) * | 2000-10-20 | 2002-05-09 | Junichi Kushibiki | Lsaw propagation characteristics measurement method and device |
JP2002267640A (en) * | 2001-03-12 | 2002-09-18 | Junichi Kushibiki | Method of evaluating material by ultrasonic measurement |
JP2003267798A (en) * | 1999-11-09 | 2003-09-25 | National Institute For Materials Science | Lithium niobate single crystal, optical element using the same, and method for producing the same |
-
2004
- 2004-10-01 JP JP2004290711A patent/JP4590549B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09188596A (en) * | 1996-01-12 | 1997-07-22 | Nippon Mektron Ltd | Processing of lithium niobate single crystal |
JP2003267798A (en) * | 1999-11-09 | 2003-09-25 | National Institute For Materials Science | Lithium niobate single crystal, optical element using the same, and method for producing the same |
JP2002131295A (en) * | 2000-10-20 | 2002-05-09 | Junichi Kushibiki | Lsaw propagation characteristics measurement method and device |
JP2002267640A (en) * | 2001-03-12 | 2002-09-18 | Junichi Kushibiki | Method of evaluating material by ultrasonic measurement |
Also Published As
Publication number | Publication date |
---|---|
JP2006108940A (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kushibiki et al. | Material characterization by line-focus-beam acoustic microscope | |
Smith et al. | Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate | |
Kushibiki et al. | Accurate measurements of the acoustical physical constants of LiNbO/sub 3/and LiTaO/sub 3/single crystals | |
Kushibiki et al. | Accurate measurements of the acoustical physical constants of synthetic/spl alpha/-quartz for SAW devices | |
Armstrong et al. | Elastic constants of thorium single crystals in the range 77–400 K | |
Kushibiki et al. | High-accuracy standard specimens for the line-focus-beam ultrasonic material characterization system | |
Kushibiki et al. | Chemical composition dependences of the acoustical physical constants of LiNbO 3 and LiTaO 3 single crystals | |
Anikiev et al. | Quasi-elastic light scattering in congruent lithium niobate crystals | |
JP4590549B2 (en) | Raw material composition determination method for manufacturing ferroelectric single crystal, acoustic related physical constant calibration method of ferroelectric single crystal, and design parameter determination method of surface acoustic wave device | |
JP3719653B2 (en) | Material evaluation method by sound velocity measurement | |
Knapp et al. | Accurate characterization of SiO 2 thin films using surface acoustic waves | |
Kushibiki et al. | Surface-acoustic-wave properties of MgO-doped LiNbO 3 single crystals measured by line-focus-beam acoustic microscopy | |
Fattinger et al. | Laser measurements and simulations of FBAR dispersion relation | |
Takanaga et al. | A method of determining acoustical physical constants for piezoelectric materials by line-focus-beam acoustic microscopy | |
Spassov | Piezoelectric quartz resonators as highly sensitive temperature sensors | |
Biryukov et al. | CTGS material parameters obtained by versatile SAW measurements | |
JP6278455B2 (en) | Method for determining acoustic-related physical constant of piezoelectric single crystal / ceramic material, method for determining temperature coefficient of acoustic-related physical constant using the method, and method for determining optimum crystal orientation and propagation direction using the method for determining temperature coefficient | |
Kushibiki et al. | Comparison of acoustic properties between natural and synthetic α-quartz crystals | |
Kushibiki et al. | Evaluation and improvement of optical-grade LiTaO/sub 3/single crystals by the LFB ultrasonic material characterization system | |
Kushibiki et al. | Calibration of Curie temperatures for LiTaO/sub 3/single crystals by the LFB ultrasonic material characterization system | |
Kushibiki et al. | Homogeneity evaluation of SAW device wafers by the LFB ultrasonic material characterization system | |
JP3934624B2 (en) | Raw material composition determination method for ferroelectric single crystal manufacturing and Curie temperature calibration method of ferroelectric single crystal | |
Wang et al. | Characterization of homogeneity of langasite wafers using bulk-wave measurement | |
Ohashi et al. | Evaluation of acoustic properties for Ca 3 Nb (Ga 0.75 Al 0.25) 3 Si 2 O 14 single crystal using the ultrasonic microspectroscopy system | |
Takanaga et al. | Elastic constants of multidomain LiTaO 3 crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100324 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100514 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100521 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100514 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100817 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |