JPH09187280A - Use of dna having gene information on pyruvate oxidase - Google Patents

Use of dna having gene information on pyruvate oxidase

Info

Publication number
JPH09187280A
JPH09187280A JP7004738A JP473895A JPH09187280A JP H09187280 A JPH09187280 A JP H09187280A JP 7004738 A JP7004738 A JP 7004738A JP 473895 A JP473895 A JP 473895A JP H09187280 A JPH09187280 A JP H09187280A
Authority
JP
Japan
Prior art keywords
ala
val
ile
glu
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7004738A
Other languages
Japanese (ja)
Other versions
JP2706223B2 (en
Inventor
Hitoshi Sagai
均 嵯峨井
Keiko Nogata
恵子 野方
Eiji Matsumura
英二 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7004738A priority Critical patent/JP2706223B2/en
Publication of JPH09187280A publication Critical patent/JPH09187280A/en
Application granted granted Critical
Publication of JP2706223B2 publication Critical patent/JP2706223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE: To obtain a pyruvate oxidase for research and diagnosis by incorporating a pyruvate oxidase gene coding a specific amino acid sequence into an expression vector and transfecting a host microorganism with the expression vector to give a transformant and expressing this gene information. CONSTITUTION: A polydeoxyribonucleic acid as a pyruvate oxidase gene coding an amino acid sequence from the N-terminus of the formula (A is an amino acid residue, H, acetyl; B is an amino acid residue, OH, NH2 ) or a polydeoxyribonucleic acid containing this gene as a constitution component is incorporated into an expression vector and a host microorganism is transfected with the recombinant DNA. Then, the transformant is cultured to express the gene information of this polydeoxyribonucleic acid, and a polypeptide as a pyruvate oxidase or a polypeptide including the pyruvate oxidase as a constitution component is collected whereby the objective pyruvate oxidase is efficiently obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規ピルビン酸オキシ
ダーゼの遺伝情報を有するポリデオキシリボ核酸を保持
してなる形質転換体により該ポリデオキシリボ核酸の遺
伝情報を発現せしめて得られるピルビン酸オキシダーゼ
およびその製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a pyruvate oxidase obtained by expressing the genetic information of polydeoxyribonucleic acid by a transformant carrying a polydeoxyribonucleic acid having the genetic information of the novel pyruvate oxidase. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】ピルビン酸オキシダーゼは、ピルビン
酸,燐酸および酸素からアセチルリン酸,二酸化炭素お
よび過酸化水素を生ずる反応を触媒するものであって、
ラクトバチルス・デルブリゥキィ(Lactobacillus delb
rucki ) 〔Williams,F.R. & Hager,L.P.(1966) Arch.
Biochem.Biophys. 116 168-176 〕ペディオコッカス
(Pediococcus )、ストレプトコッカス(Streptococcu
s )、アエロッコカス・ビリダンス(Aerococcus virid
ans )〔特公昭58−40465号公報〕に属する細菌
に存在することが報告されている。
Pyruvate oxidase catalyzes the reaction of pyruvate, phosphate and oxygen to produce acetyl phosphate, carbon dioxide and hydrogen peroxide.
Lactobacillus delb
rucki) [Williams, FR & Hager, LP (1966) Arch.
Biochem.Biophys. 116 168-176] Pediococcus, Streptococcu
s), Aerococcus virid
ans) [Japanese Patent Publication No. 58-40465].

【0003】また、ピルビン酸オキシダーゼは、ピルビ
ン酸を基質とする酸化酵素であるため、血清などの体液
中に存在するピルビン酸の定量に使用されるだけでな
く、グルタミン酸−オキザロ酢酸トランスアミナーゼ、
グルタミン酸−ピルビン酸トランスアミナーゼ,ラクテ
ートデヒドロゲナーゼ、ノイラミニダーゼ−Nアセチル
ノイラミン酸アルドラーゼなどのピルビン酸生成系にお
いて生じたピルビン酸量を測定することによりピルビン
酸生成系に関与した酵素の基質である種々の物質の定量
またはピルビン酸生成系に関与した各酵素活性の測定な
ど、研究用試薬、臨床診断用試薬として極めて有用であ
る。
Further, since pyruvate oxidase is an oxidase using pyruvate as a substrate, it is not only used for the quantification of pyruvate present in body fluids such as serum, but also glutamic acid-oxaloacetate transaminase,
By measuring the amount of pyruvate produced in the pyruvate production system such as glutamate-pyruvate transaminase, lactate dehydrogenase, neuraminidase-N acetylneuraminate aldolase, various substances that are substrates of enzymes involved in the pyruvate production system It is extremely useful as a reagent for research and a reagent for clinical diagnosis such as quantification or measurement of each enzyme activity involved in the pyruvate generation system.

【0004】[0004]

【発明が解決しようとする課題】従来より報告されてい
るピルビン酸オキシダーゼ生産菌は、ピルビン酸オキシ
ダーゼの生産性が低く製造コスト的に高価になるという
難点があるだけでなく、共存する他種酵素等の除去が非
常に困難で、純度の高い良質なピルビン酸オキシダーゼ
を得るために精製コストが非常に高いものとなり、研究
用試薬、臨床診断用試薬として安易に広く用いるには必
ずしも満足のいくものではなかった。
The pyruvate oxidase-producing bacterium that has been reported hitherto has not only the disadvantage that the productivity of pyruvate oxidase is low and the manufacturing cost is high, but also the coexisting enzyme of other species. Is very difficult to remove, and the purification cost is very high in order to obtain high-purity, high-quality pyruvate oxidase, and it is not always satisfactory to be widely used as a research reagent or clinical diagnostic reagent. Was not.

【0005】また、従来より報告されているピルビン
酸、燐酸および酸素からアセチルリン酸、二酸化炭素お
よび過酸化水素を生ずる反応を触媒するピルビン酸オキ
シダーゼの詳細な化学構造は報告されていない。
Further, the detailed chemical structure of pyruvate oxidase, which catalyzes the previously reported reaction of producing acetyl phosphate, carbon dioxide and hydrogen peroxide from pyruvic acid, phosphoric acid and oxygen, has not been reported.

【課題を解決するための手段】本発明者らは、該ピルビ
ン酸オキシダーゼの生産性向上を計るべく鋭意検討を試
みたところ、該ピルビン酸オキシダーゼ遺伝子の採取な
らびに一次構造解析に成功すると共に遺伝子工学的手法
を応用することによって、以下に述べる如く、高生産性
である製造法を確立した。
[Means for Solving the Problems] The inventors of the present invention have made diligent studies in order to improve the productivity of the pyruvate oxidase, and succeeded in collecting the pyruvate oxidase gene and analyzing the primary structure of the gene. As described below, a manufacturing method with high productivity was established by applying the dynamic method.

【0006】すなわち、本発明は、下記のN末端側より
のアミノ酸配列をコードするピルビン酸オキシダーゼ遺
伝子であるポリデオキシリボ核酸または該遺伝子が構成
成分であるポリデオキシリボ核酸を発現ベクターに組み
入れた組換えDNAを宿主微生物に移入して形質転換体
を得、該形質転換体を培養して該ポリデオキシリボ核酸
の遺伝情報を発現させ、次いでピルビン酸オキシダーゼ
であるポリペプチドまたは該ピルビン酸オキシダーゼが
構成成分であるポリペプチドを採取してなるピルビン酸
オキシダーゼの製造法である。 A−Ser Asp Asn Lys Ile Asn Ile Gly Leu Ala Val Met Lys Ile Leu Glu Ser Trp Gly Ala Asp Thr Ile Tyr Gly Ile Pro Ser Gly Thr Leu Ser Ser Leu Met Asp Ala Met Gly Glu Glu Glu Asn Asn Val Lys Phe Leu Gln Val Lys His Glu Glu Val Gly Ala Met Ala Ala Val Met Gln Ser Lys Phe Gly Gly Asn Leu Gly Val Thr Val Gly Ser Gly Gly Pro Gly Ala Ser His Leu Ile Asn Gly Leu Tyr Asp Ala Ala Met Asp Asn Ile Pro Val Val Ala Ile Leu Gly Ser Arg Pro Gln Arg Glu Leu Asn Met Asp Ala Phe Gln Glu Leu Asn Gln Asn Pro Met Tyr Asp His Ile Ala Val Tyr Asn Arg Arg Val Ala Tyr Ala Glu Gln Leu Pro Lys Leu Val Asp Glu Ala Ala Arg Met Ala Ile Ala Lys Arg Gly Val Ala Val Leu Glu Val Pro Gly Asp Phe Ala Lys Val Glu Ile Asp Asn Asp Gln Trp Tyr Ser Ser Ala Asn Ser Leu Arg Lys Tyr Ala Pro Ile Ala Pro Ala Ala Gln Asp Ile Asp Ala Ala Val Glu Leu Leu Asn Asn Ser Lys Arg Pro Val Ile Tyr Ala Gly Ile Gly Thr Met Gly His Gly Pro Ala Val Gln Glu Leu Ala Arg Lys Ile Lys Ala Pro Val Ile Thr Thr Gly Lys Asn Phe Glu Thr Phe Glu Trp Asp Phe Glu Ala Leu Thr Gly Ser Thr Tyr Arg Val Gly Trp Lys Pro Ala Asn Glu Thr Ile Leu Glu Ala Asp Thr Val Leu Phe Ala Gly Ser Asn Phe Pro Phe Ser Glu Val Glu Gly Thr Phe Arg Asn Val Asp Asn Phe Ile Gln Ile Asp Ile Asp Pro Ala Met Leu Gly Lys Arg His His Ala Asp Val Ala Ile Leu Gly Asp Ala Gly Leu Ala Ile Asp Glu Ile Leu Asn Lys Val Asp Ala Val Glu Glu Ser Ala Trp Trp Thr Ala Asn Leu Lys Asn Ile Ala Asn Trp Arg Glu Tyr Ile Asn Met Leu Glu Thr Lys Glu Glu Gly Asp Leu Gln Phe Tyr Gln Val Tyr Asn Ala Ile Asn Asn His Ala Asp Glu Asp Ala Ile Tyr Ser Ile Asp Val Gly Asn Ser Thr Gln Thr Ser Ile Arg His Leu His Met Thr Pro Lys Asn Met Trp Arg Thr Ser Pro Leu Phe Ala Thr Met Gly Ile Ala Ile Pro Gly Gly Leu Gly Ala Lys Asn Thr Tyr Pro Asp Arg Gln Val Trp Asn Ile Ile Gly Asp Gly Ala Phe Ser Met Thr Tyr Pro Asp Val Val Thr Asn Val Arg Tyr Asn Met Pro Val Ile Asn Val Val Phe Ser Asn Thr Glu Tyr Ala Phe Ile Lys Asn Lys Tyr Glu Asp Thr Asn Lys Asn Leu Phe Gly Val Asp Phe Thr Asp Val Asp Tyr Ala Lys Ile Ala Glu Ala Gln Gly Ala Lys Gly Phe Thr Val Ser Arg Ile Glu Asp Met Asp Arg Val Met Ala Glu Ala Val Ala Ala Asn Lys Ala Gly His Thr Val Val Ile Asp Cys Lys Ile Thr Gln Asp Arg Pro Ile Pro Val Glu Thr Leu Lys Leu Asp Ser Lys Leu Tyr Ser Glu Asp Glu Ile Lys Ala Tyr Lys Glu Arg Tyr Glu Ala Ala Asn Leu Val Pro Phe Arg Glu Tyr Leu Glu Ala Glu Gly Leu Glu Ser Lys Tyr Ile Lys −B (I) 〔式中、Aはアミノ酸残基、水素原子またはアセチル基
を示し、Bはアミノ酸残基、−OHまたは−NH2 を示
す〕に関するものである。
[0006] That is, the present invention provides a polydeoxyribonucleic acid, which is a pyruvate oxidase gene encoding the following amino acid sequence from the N-terminal side, or a recombinant DNA in which an expression vector is incorporated with polydeoxyribonucleic acid having the gene as a constituent. To a host microorganism to obtain a transformant, the transformant is cultured to express the genetic information of the polydeoxyribonucleic acid, and then the polypeptide which is pyruvate oxidase or the pyruvate oxidase is a constituent component. This is a method for producing pyruvate oxidase by collecting a polypeptide. A-Ser Asp Asn Lys Ile Asn Ile Gly Leu Ala Val Met Lys Ile Leu Glu Ser Trp Gly Ala Asp Thr Ile Tyr Gly Ile Pro Ser Gly Thr Leu Ser Ser Leu Met Asp Ala Met Gly Glu Glu Glu Aslu Asn Val Lys Phe Leu Gln Val Lys His Glu Glu Val Gly Ala Met Ala Ala Val Met Gln Ser Lys Phe Gly Gly Asn Leu Gly Val Thr Val Gly Ser Gly Gly Pro Gly Ala Ser His Leu Ile Asn Gly Leu Tyr Asp Ala Ala Met Asp Asn Ile Pro Val Val Ala Ile Leu Gly Ser Arg Pro Gln Arg Glu Leu Asn Met Asp Ala Phe Gln Glu Leu Asn Gln Asn Pro Met Tyr Asp His Ile Ala Val Tyr Asn Arg Arg Val Ala Tyr Ala Glu Gln Leu Pro Lys Leu Val Asp Glu Ala Ala Arg Met Ala Ile Ala Lys Arg Gly Val Ala Val Leu Glu Val Pro Gly Asp Phe Ala Lys Val Glu Ile Asp Asn Asp Gln Trp Tyr Ser Ser Ala Asn Ser Leu Arg Lys Tyr Ala Pro Ile Ala Pro Ala Ala Gln Asp Ile Asp Ala Ala Val Glu Leu Leu Asn Asn Ser Lys Arg Pro Val Ile Tyr Ala Gly Ile Gly Thr Met Gly His Gly Pro Ala Val Gln Glu Leu Ala Arg Lys Ile Lys Ala Pro Val Ile Thr Thr Gly Lys Asn Phe Glu Thr Phe Glu Trp Asp Ph e Glu Ala Leu Thr Gly Ser Thr Tyr Arg Val Gly Trp Lys Pro Ala Asn Glu Thr Ile Leu Glu Ala Asp Thr Val Leu Phe Ala Gly Ser Asn Phe Pro Phe Ser Glu Val Glu Gly Thr Phe Arg Asn Val Asp Asn Phe Ile Gln Ile Asp Ile Asp Pro Ala Met Leu Gly Lys Arg His His Ala Asp Val Ala Ile Leu Gly Asp Ala Gly Leu Ala Ile Asp Glu Ile Leu Asn Lys Val Asp Ala Val Glu Glu Ser Ala Trp Trp Thr Ala Asn Leu Lys Asn Ile Ala Asn Trp Arg Glu Tyr Ile Asn Met Leu Glu Thr Lys Glu Glu Gly Asp Leu Gln Phe Tyr Gln Val Tyr Asn Ala Ile Asn Asn His Ala Asp Glu Asp Ala Ile Tyr Ser Ile Asp Val Gly Asn Ser Thr Gln Thr Ser Ile Arg His Leu His Met Thr Pro Lys Asn Met Trp Arg Thr Ser Pro Leu Phe Ala Thr Met Gly Ile Ala Ile Pro Gly Gly Leu Gly Ala Lys Asn Thr Tyr Pro Asp Arg Gln Val Trp Asn Ile Ile Gly Asp Gly Ala Phe Ser Met Thr Tyr Pro Asp Val Val Thr Asn Val Arg Tyr Asn Met Pro Val Ile Asn Val Val Phe Ser Asn Thr Glu Tyr Ala Phe Ile Lys Asn Lys Tyr Glu Asp Thr Asn Lys Asn Leu Phe Gly Val Asp Phe Thr Asp Val Asp Tyr Ala Lys Ile Al a Glu Ala Gln Gly Ala Lys Gly Phe Thr Val Ser Arg Ile Glu Asp Met Asp Arg Val Met Ala Glu Ala Val Ala Ala Asn Lys Ala Gly His Thr Val Val Ile Asp Cys Lys Ile Thr Gln Asp Arg Pro Ile Pro Val Glu Thr Leu Lys Leu Asp Ser Lys Leu Tyr Ser Glu Asp Glu Ile Lys Ala Tyr Lys Glu Arg Tyr Glu Ala Ala Asn Leu Val Pro Phe Arg Glu Tyr Leu Glu Ala Glu Gly Leu Glu Ser Lys Tyr Ile Lys −B (I) in, a is an amino acid residue, a hydrogen atom or an acetyl group, B is related amino acid residue, to an -OH or -NH 2].

【0007】上記ポリペプチド(I)に関し、Aで示さ
れるアミノ酸残基としては、一個または複数個のアミノ
酸残基よりなり、Aとしては、好ましくは、水素原子若
しくはMet またはシグナルペプチドが挙げられる。Bで
示されるものとしては、酸アミドであってもよく、また
一個以上のアミノ酸残基であってもよい。ピルビン酸、
燐酸および酸素からアセチルリン酸、二酸化炭素および
過酸化水素を生ずる反応を触媒するピルビン酸オキシダ
ーゼ遺伝子であるポリデオキシリボ核酸または該遺伝子
が構成成分であるポリデオキシリボ核酸としては、少な
くともピルビン酸、燐酸および酸素からアセチルリン
酸、二酸化炭素および過酸化水素を生ずる反応を触媒す
るピルビン酸オキシダーゼ遺伝子それ自体を含むポリデ
オキシリボ核酸であればよく、例えば該ピルビン酸オキ
シダーゼ遺伝子それ自体としてはN末端側より式 で表されるピルビン酸、燐酸および酸素からアセチルリ
ン酸、二酸化炭素および過酸化水素を生ずる反応を触媒
するピルビン酸オキシダーゼからなるポリペプチドのア
ミノ酸配列をコードする塩基配列であるポリデオキシリ
ボ核酸を挙げることが出来る。
In the above polypeptide (I), the amino acid residue represented by A is composed of one or a plurality of amino acid residues, and A is preferably a hydrogen atom, Met or a signal peptide. The compound represented by B may be an acid amide or one or more amino acid residues. Pyruvate,
The polydeoxyribonucleic acid that is a pyruvate oxidase gene that catalyzes the reaction that produces acetyl phosphate, carbon dioxide, and hydrogen peroxide from phosphate and oxygen, or the polydeoxyribonucleic acid that is a component of the gene, is at least pyruvic acid, phosphate, and oxygen. Any polydeoxyribonucleic acid containing the pyruvate oxidase gene itself which catalyzes the reaction that produces acetyl phosphate, carbon dioxide and hydrogen peroxide from A polydeoxyribonucleic acid, which is a base sequence encoding the amino acid sequence of a polypeptide consisting of pyruvate oxidase that catalyzes the reaction of producing pyruvic acid, phosphoric acid and oxygen from acetyl phosphate, carbon dioxide and hydrogen peroxide Can be done.

【0008】また式(II)で表されるピルビン酸オキ
シダーゼであるポリペプチドのアミノ酸配列において、
各アミノ酸に対応する一連のコドンのうちのいずれか1
個のコドンからなるポリデオキシリボ核酸であればよ
く、さらに該ポリデオキシリボ核酸の5’末端に1個以
上のナンセンスコドン以外のコドンおよび/または3’
末端に1個以上のコドンを有するポリデオキシリボ核酸
であってもよい。例えば、その代表例として5’末端側
より式 〔式中、XはTAA,TAG およびTGA 以外のコドンまたは水
素原子を示し、Yはコドンまたは水素原子を示す〕で表
される塩基配列を有するポリデオキシリボ核酸を挙げる
ことができる。
Further, in the amino acid sequence of the polypeptide which is pyruvate oxidase represented by the formula (II),
Any one of a series of codons corresponding to each amino acid
The polydeoxyribonucleic acid may be any polydeoxyribonucleic acid, and at the 5'end of the polydeoxyribonucleic acid one or more codons other than the nonsense codon and / or 3 '
It may be a polydeoxyribonucleic acid having at least one codon at the end. For example, as a typical example, the formula from the 5 ′ end side [In the formula, X represents a codon or hydrogen atom other than TAA, TAG and TGA, and Y represents a codon or hydrogen atom].

【0009】式(III)で表される塩基配列に関し、
Xで示されるコドンは、アミノ酸をコードするコドンで
あればいずれでもよく、更に、その5’末端側にアミノ
酸をコードするコドンを1個以上有してもよいが、好ま
しくはATG またはシグナルペプチドに対応するポリデオ
キシリボ核酸を挙げることができる。Yで示されるコド
ンは、翻訳終止コドンまたはアミノ酸をコードするコド
ンであればいずれでもよく、更に、その3’末端側にア
ミノ酸をコードするコドンを1個以上有していてもよい
が、その場合には、この複数個のコドンの3’末端に翻
訳終止コドンを有することが好ましい。
With respect to the base sequence represented by the formula (III),
The codon represented by X may be any codon that encodes an amino acid, and may further have one or more codons that encode an amino acid at the 5′-terminal side thereof, but preferably in the ATG or signal peptide. Mention may be made of the corresponding polydeoxyribonucleic acids. The codon represented by Y may be any translation termination codon or a codon that encodes an amino acid, and may further have one or more codons that encode an amino acid at the 3'-terminal side. It is preferable to have a translation stop codon at the 3'end of the plurality of codons.

【0010】ピルビン酸オキシダーゼ遺伝子を構成成分
としてなるポリデオキシリボ核酸または、式(II)で
表されるアミノ酸配列をコードする塩基配列からなる遺
伝子であるポリデオキシリボ核酸または、式(III)
で表されるポリデオキシリボ核酸は、例えばピルビン酸
オキシダーゼを生産するピルビン酸オキシダーゼ遺伝子
の供与体である微生物より該微生物のDNAを分離精製
した後、超音波、制限酵素などを用いてDNAと切断し
たリニヤーな発現ベクターとを両DNAの平滑または接
着末端部においてDNAリガーゼなどにより結合閉環さ
せ、かくして得られた組換えDNAベクターを複製可能
な宿主微生物に移入した後、ベクターのマーカーとピル
ビン酸オキシダーゼの活性とを指標としてスクリーニン
グして取得した該組換えDNAベクターを保持する微生
物を培養し、該培養菌体から該組換えDNAベクターを
分離精製し、次いで該組換えDNAベクターからピルビ
ン酸オキシダーゼ遺伝子であるポリデオキシリボ核酸を
採取すればよい。
Polydeoxyribonucleic acid having a pyruvate oxidase gene as a constituent, or polydeoxyribonucleic acid having a nucleotide sequence encoding the amino acid sequence represented by formula (II) or formula (III)
The polydeoxyribonucleic acid represented by, for example, is obtained by isolating and purifying the DNA of a microorganism that is a donor of the pyruvate oxidase gene that produces pyruvate oxidase, and then cleaving it with DNA using ultrasonic waves, restriction enzymes, etc. A linear expression vector is ligated and ligated at the blunt or sticky ends of both DNAs with DNA ligase or the like, and the recombinant DNA vector thus obtained is transferred to a replicable host microorganism. Then, the vector marker and pyruvate oxidase Microorganisms retaining the recombinant DNA vector obtained by screening with activity as an index are cultured, the recombinant DNA vector is separated and purified from the cultured cells, and then the recombinant DNA vector is treated with a pyruvate oxidase gene. It is sufficient to collect a certain polydeoxyribonucleic acid.

【0011】ピルビン酸オキシダーゼ遺伝子の供与体で
ある微生物としては、ピルビン酸オキシダーゼ産生能を
有する微生物であればよく、例えば、特開昭54−12
6791号公報、特開昭59−159777号公報、特
開昭59−162877号公報、 Arch.Biochem.Biophy
s. 116 168-176 (1966)などに示されているラクトバチ
ルス・デルブリゥキィ(Lactobacillus delbrucki ) 、
ペディオコッカス・エスピー(Pediococcus sp)、スト
レプトコッカス・エスピー(Streptococcus sp)、アエ
ロコッカス・ビリダンス(Aerococcus viridans )、ラ
クトバチルス・プランタルム(Lactobacillus Plantaru
m )、ラクトバチルス・サリバリウス(Lactobacillus
Salivarius)、ロイコノストック・メセンテロイデス
(Leuconostoc Mesenteroides )等のラクトバシラセア
科またはストレプトコッカセア科などの微生物が適宜選
ばれる。
The pyruvate oxidase gene donor may be any microorganism capable of producing pyruvate oxidase, for example, Japanese Patent Laid-Open No. 54-12.
6791, JP-A-59-159777, JP-A-59-162877, Arch.Biochem.Biophy
s. 116 168-176 (1966), Lactobacillus delbrucki,
Pediococcus sp, Streptococcus sp, Aerococcus viridans, Lactobacillus Plantaru
m), Lactobacillus
Microorganisms such as Lactobacillusaceae or Streptococcusaceae such as Salivarius) and Leuconostoc Mesenteroides are appropriately selected.

【0012】また、遺伝子組換え技術を駆使して、ピル
ビン酸オキシダーゼ産生能を付与せしめた形質転換微生
物をピルビン酸オキシダーゼ遺伝子の供与体として利用
してもよい。遺伝子の供与体である微生物から由来する
DNAは次の如くにして採取される。即ち、供与微生物
である上述した細菌のいずれかを、例えば、液体培地で
約1〜3日間通気撹拌培養し、得られる培養物を遠心分
離して集菌し、次いでこれを溶菌させることによってピ
ルビン酸オキシダーゼ遺伝子の含有溶菌物を調製するこ
とができる。溶菌方法としては、例えばリゾチームやβ
ーグルカナーゼなどの細胞壁溶解酵素による処理が施さ
れ、必要によりプロテアーゼなどの他の酵素やラウリル
硫酸ナトリウムなどの界面活性剤が併用され、さらに細
胞壁の物理的破壊法である凍結融解やフレンチプレス処
理を上述の溶菌法との組み合せで行ってもよい。
[0012] Further, a transgenic microorganism having a pyruvate oxidase-producing ability imparted by making full use of gene recombination technology may be used as a donor of the pyruvate oxidase gene. DNA derived from a microorganism that is a gene donor is collected as follows. That is, any of the above-mentioned bacteria as a donor microorganism is cultured in a liquid medium for about 1 to 3 days under aeration and agitation, and the resulting culture is collected by centrifugation and then lysed. A lysate containing the acid oxidase gene can be prepared. Lysis methods include lysozyme and β
-Glucanase and other cell wall lysing enzymes are used, and if necessary, other enzymes such as protease and surfactants such as sodium lauryl sulfate are used together. You may perform it in combination with the lysis method of.

【0013】このようにして得られた溶菌物からDNA
を分離、精製するには、常法に従って、例えばフェノー
ル抽出による除蛋白処理、プロテアーゼ処理、リボヌク
レアーゼ処理、アルコール沈澱、遠心分離などの方法を
適宜組み合わせることにより行うことができる。分離精
製された微生物DNAを切断する方法は、例えば、超音
波処理、制限酵素処理などにより行うことができるが、
得られるDNA断片とベクターとの結合を容易ならしめ
るため、制限酵素、とりわけ特定ヌクレオチド配列に作
用する、例えば、EcoRI、HindIII、Bam
HIなどのII型制限酵素が適している。
From the lysate thus obtained, DNA
Can be isolated and purified by a conventional method, for example, by appropriately combining methods such as deproteinization treatment by phenol extraction, protease treatment, ribonuclease treatment, alcohol precipitation and centrifugation. The method of cleaving the separated and purified microbial DNA can be carried out, for example, by ultrasonic treatment or restriction enzyme treatment.
In order to facilitate the ligation of the resulting DNA fragment with the vector, it acts on a restriction enzyme, especially a specific nucleotide sequence, for example, EcoRI, HindIII, Bam.
Type II restriction enzymes such as HI are suitable.

【0014】ベクターとしては、宿主微生物で自律的に
増殖しうるファージまたはプラスミドから遺伝子組換え
用として構築されたものが適している。ファージとして
は、例えば、エシェリヒア・コリ(Escherichia coli)
を宿主微生物とする場合には、λgt・λC、λgt・λB
などが使用できる。また、プラスミドとしては、例え
ば、エシェリヒア・コリを宿主微生物とする場合にはp
BR322、pBR325、pACYC184、pUC
12、pUC13、pUC18、pUC19などが、バ
チルス・ズブチルス(Bacillus subtillis)を宿主微生
物とする場合には pUB110 、pC194 などが使用でき、さ
らに、エシェリヒア・コリおよびサッカロマイセス・セ
レビシアなどのグラム陰・陽両性にまたがる二種以上の
宿主微生物で自律的に増殖可能なシャトルベクターを利
用することもできる。このようなベクターを、先に述べ
たピルビン酸オキシダーゼ遺伝子供与体である微生物D
NAの切断に使用した制限酵素と同じ制限酵素で切断し
て、ベクター断片を得ることが好ましい。
Suitable vectors are those constructed for gene recombination from phages or plasmids capable of autonomous growth in host microorganisms. Examples of phages include Escherichia coli
Λgt · λC, λgt · λB
Etc. can be used. The plasmid may be, for example, p when Escherichia coli is used as the host microorganism.
BR322, pBR325, pACYC184, pUC
12, pUC13, pUC18, pUC19, etc. can use pUB110, pC194, etc. when Bacillus subtillis is used as the host microorganism, and further, for Escherichia coli and Saccharomyces cerevisiae etc. It is also possible to use a shuttle vector capable of autonomously growing in two or more host microorganisms spread over it. Such a vector is prepared by using the above-mentioned microorganism D which is a pyruvate oxidase gene donor.
It is preferable to obtain a vector fragment by cleaving with the same restriction enzyme as that used for cleaving NA.

【0015】微生物DNA断片とベクター断片とを結合
させる方法は、公知のDNAリガーゼを用いる方法であ
ればよく、例えば、微生物DNA断片の接着末端とベク
ター断片の接着末端とのアニーリングの後、適当なDN
Aリガーゼの作用により微生物DNA断片とベクター断
片との組換えDNAを作成する。必要ならば、アニーリ
ングの後、宿主微生物に移入して、生体内のDNAリガ
ーゼを利用し組換えDNAを作成することもできる。
The method of ligating the microbial DNA fragment and the vector fragment may be a method using a known DNA ligase, for example, after annealing the cohesive ends of the microbial DNA fragment and the cohesive end of the vector fragment, a suitable method is used. DN
By the action of A ligase, a recombinant DNA of a microbial DNA fragment and a vector fragment is prepared. If necessary, it is also possible to transfer to a host microorganism after annealing and use an in vivo DNA ligase to prepare a recombinant DNA.

【0016】宿主微生物としては、組換えDNAが安定
かつ自律的に増殖可能で、且つ外来性DNAの形質が発
現のできるものであればよく、例えば、宿主微生物がエ
シェリヒア・コリの場合、エシェリヒア・コリDH1、
エシェリヒア・コリHB101、エシェリヒア・コリW
3110、エシェリヒア・コリC600等が利用出来
る。
[0016] The host microorganism may be any as long as the recombinant DNA can be stably and autonomously propagated and the trait of the foreign DNA can be expressed. For example, when the host microorganism is Escherichia coli, Escherichia coli Stiffness DH1,
Escherichia coli HB101, Escherichia coli W
3110, Escherichia coli C600, etc. can be used.

【0017】宿主微生物に組換えDNAを移入する方法
としては、例えば、宿主微生物がエシェリヒア属に属す
る微生物の場合には、カルシュウムイオンの存在下で組
換えDNAの移入を行い、またバチルス属に属する微生
物の場合には、コンピテントセル法またはプロトプラス
ト法などを採用することができ、さらにマイクロインジ
ェクション法を用いてもよい。かくして得られた形質転
換体である微生物は、栄養培地に培養されることにより
多量のピルビン酸オキシダーゼを安定して産生し得るこ
とを見出した。
As a method for transferring the recombinant DNA into the host microorganism, for example, when the host microorganism is a microorganism belonging to the genus Escherichia, the recombinant DNA is transferred in the presence of calcium ion and belongs to the genus Bacillus. In the case of microorganisms, the competent cell method or the protoplast method can be adopted, and the microinjection method may be used. It was found that the thus obtained transformant microorganism can stably produce a large amount of pyruvate oxidase by culturing in a nutrient medium.

【0018】宿主微生物への目的組換えDNA移入の有
無についての選択は、目的組換えDNAを保持するベク
ターの薬剤耐性マーカーとピルビン酸オキシダーゼとを
同時に発現し得る微生物を検索すればよく、例えば、薬
剤耐性マーカーに基づく選択培地で生育し、かつピルビ
ン酸オキシダーゼを生成する微生物を選択すればよいこ
のようにして一度選択されたピルビン酸オキシダーゼ遺
伝子を保有する組換えDNAは、形質転換微生物から取
り出され、他の宿主微生物に移入することも容易に実施
できる。また、ピルビン酸オキシダーゼ遺伝子を保持す
る組換えDNAから制限酵素などにより切断してピルビ
ン酸オキシダーゼ遺伝子であるDNAを切り出し、これ
と同様な方法により切断して得られるベクター断片とを
結合させて、宿主微生物に移入することも容易に実施で
きる。
The selection of the presence or absence of transfer of the target recombinant DNA into the host microorganism may be carried out by searching for a microorganism capable of simultaneously expressing the drug resistance marker of the vector carrying the target recombinant DNA and pyruvate oxidase. A microorganism that grows in a selection medium based on a drug resistance marker and that produces pyruvate oxidase may be selected. Recombinant DNA carrying the pyruvate oxidase gene once selected in this manner is removed from the transformed microorganism. Also, it can be easily carried out by transferring to another host microorganism. Further, the recombinant DNA having the pyruvate oxidase gene is cleaved with a restriction enzyme or the like to excise the DNA which is the pyruvate oxidase gene, and the vector fragment obtained by the cleavage in the same manner as this is ligated to the host. Transfer to microorganisms is also easy.

【0019】また本質的にピルビン酸オキシダーゼ活性
であるピルビン酸オキシダーゼムテインのDNAは、本
発明のピルビン酸オキシダーゼ遺伝子から遺伝子工学的
手法により作製される人工変異遺伝子であり、この人工
変異遺伝子は上述の種々なる方法を使用して増幅され、
最終的には、この変異遺伝子をベクターに挿入せしめて
組換えDNAを作成し、これを宿主微生物に移入させる
ことによって、ピルビン酸オキシダーゼムテインの製造
が可能である。
The DNA of pyruvate oxidase mutein, which is essentially pyruvate oxidase activity, is an artificial mutant gene prepared from the pyruvate oxidase gene of the present invention by a genetic engineering method. Amplified using various methods,
Finally, a pyruvate oxidase mutein can be produced by inserting this mutant gene into a vector to prepare a recombinant DNA and transferring it into a host microorganism.

【0020】さらに上述の方法により得られたピルビン
酸オキシダーゼ遺伝子の塩基配列は、Science 214 12
05〜1210 (1981年) に示されているジデオキシ法で解読
し、またピルビン酸オキシダーゼのアミノ酸配列は、塩
基配列より決定した。一方、ピルビン酸オキシダーゼで
あるペプチドのN末端部を構成する部分アミノ酸配列
は、以下の如くにして決定した。即ち、ピルビン酸オキ
シダーゼ産生能を有するピルビン酸オキシダーゼ遺伝子
供与微生物を栄養培地で培養して菌体内にピルビン酸オ
キシダーゼを産生蓄積せしめ、培養終了後、得られた培
養物を濾過または遠心分離などの手段により菌体を採取
し、次いでこの菌体を機械的方法またはリゾチームなど
の酵素的方法で破壊し、また必要に応じてEDTAおよ
び/または適当な界面活性剤等を添加してピルビン酸オ
キシダーゼが可溶化され、水溶液として分離採取され
る。この様にして得られたピルビン酸オキシダーゼの水
溶液を濃縮するか、または濃縮することなく硫安分画、
ゲル濾過、吸着クロマトグラフィー、イオン交換クロマ
トグラフィーにより処理して、高純度ピルビン酸オキシ
ダーゼが得られ、高純度ピルビン酸オキシダーゼを用い
て液相プロテイン シーケンサー(ベックマン社製:B
ECKMAN System 890ME)によりピル
ビン酸オキシダーゼであるペプチドのN末端部を構成す
る部分アミノ酸配列が決定され、少なくとも、該部分ア
ミノ酸配列は、遺伝子操作によって得られたピルビン酸
オキシダーゼのN末端部分アミノ酸配列と一致するもの
であることを確認した。
Further, the base sequence of the pyruvate oxidase gene obtained by the above method is Science 214 12
It was decoded by the dideoxy method shown in 05-1210 (1981), and the amino acid sequence of pyruvate oxidase was determined from the nucleotide sequence. On the other hand, the partial amino acid sequence constituting the N-terminal part of the peptide which is pyruvate oxidase was determined as follows. That is, a pyruvate oxidase gene-donating microorganism capable of producing pyruvate oxidase is cultured in a nutrient medium to produce and accumulate pyruvate oxidase in the cells, and after the culture is completed, the resulting culture is filtered or centrifuged. Then, the bacterial cells are collected by means of a mechanical method or an enzymatic method such as lysozyme, and if necessary, EDTA and / or a suitable surfactant is added to prepare pyruvate oxidase. It is solubilized and separated and collected as an aqueous solution. The aqueous solution of pyruvate oxidase thus obtained is concentrated, or the ammonium sulfate fractionation without concentration,
High-purity pyruvate oxidase is obtained by treatment with gel filtration, adsorption chromatography, and ion exchange chromatography, and a liquid-phase protein sequencer (Beckman: B
ECKMAN System 890ME) was used to determine the partial amino acid sequence constituting the N-terminal part of the peptide that is pyruvate oxidase, and at least the partial amino acid sequence was identical to the N-terminal partial amino acid sequence of pyruvate oxidase obtained by genetic engineering. I confirmed that it is something to do.

【0021】形質転換体である宿主微生物の培養形態は
宿主の栄養生理的性質を考慮して培養条件を選択すれば
良く、通常多くの場合は、液体培養で行うか、工業的に
は深部通気撹拌培養を行うのが有利である。 培地の栄
養源としては、微生物の培養に通常用いられるものが広
く使用され得る。炭素源としては、資化可能な炭素化合
物であればよく、例えばグルコース、シュクロース、ラ
クトース、マルトース、フラクトース、糖蜜、ピルビン
酸などが使用される。窒素源としては利用可能な窒素化
合物であればよく、例えばペプトン、肉エキス、酵母エ
キス、カゼイン加水分解物などが使用される。その他、
リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウ
ム、カリウム、鉄、マンガン、亜鉛などの塩類、特定の
アミノ酸、特定のビタミンなどが必要に応じて使用され
る。
The culture form of the host microorganism that is a transformant may be selected by considering culture conditions in consideration of the nutritional physiological properties of the host. Usually, in most cases, liquid culture is used, or industrially deep aeration. It is advantageous to carry out agitation culture. As the nutrient source of the medium, those commonly used for culturing microorganisms can be widely used. The carbon source may be any assimilable carbon compound, and for example, glucose, sucrose, lactose, maltose, fructose, molasses, pyruvic acid, etc. are used. Any available nitrogen compound may be used as the nitrogen source. For example, peptone, meat extract, yeast extract, casein hydrolyzate and the like are used. Other,
Phosphates, carbonates, sulfates, salts such as magnesium, calcium, potassium, iron, manganese, and zinc, specific amino acids, specific vitamins, etc. are used as necessary.

【0022】培養温度は菌が発育し、ピルビン酸オキシ
ダーゼを生産する範囲で適宜変更し得るが、エシェリヒ
ア・コリの場合、好ましくは20〜42℃程度である。
培養時間は、条件によって多少異なるが、ピルビン酸オ
キシダーゼが最高収量に達する時期を見計らって適当な
時期に培養を終了すればよく、通常は12〜48時間程
度である。培地pHは菌が発育し、ピルビン酸オキシダ
ーゼを生産する範囲で適宜変更し得るが、特に好ましく
はpH6.0〜8.0程度である。
The culture temperature can be appropriately changed within the range in which the bacteria grow and produce pyruvate oxidase, but in the case of Escherichia coli, it is preferably about 20 to 42 ° C.
Although the culturing time varies depending on the conditions, it may be completed at a suitable time in consideration of the time when the maximum yield of pyruvate oxidase is reached, and it is usually about 12 to 48 hours. The pH of the medium can be appropriately changed within the range in which the bacteria grow and produce pyruvate oxidase, but the pH is preferably about 6.0 to 8.0.

【0023】培養物中のピルビン酸オキシダーゼは、菌
体を含む培養液そのままを採取し、利用することもでき
るが、一般には常法に従って、ピルビン酸オキシダーゼ
が培養液中に存在する場合には、濾過、遠心分離などに
よりピルビン酸オキシダーゼ含有溶液と微生物菌体とを
分離した後に利用される。ピルビン酸オキシダーゼが菌
体内に存在する場合には、得られた培養物を濾過または
遠心分離などの手段により、菌体を採取し、次いでこの
菌体を機械的方法またはリゾチームなどの酵素的方法で
破壊し、また必要に応じてEDTA等のキレート剤およ
び/または界面活性剤を添加してピルビン酸オキシダー
ゼを可溶化し水溶液として分離採取する。
The pyruvate oxidase in the culture can be used as it is by collecting the culture medium containing the bacterial cells as it is. However, in general, when the pyruvate oxidase is present in the culture medium, the It is used after separating the pyruvate oxidase-containing solution and the microbial cells by filtration, centrifugation or the like. When pyruvate oxidase is present in the microbial cells, the obtained culture is collected by a means such as filtration or centrifugation, and then the microbial cells are collected by a mechanical method or an enzymatic method such as lysozyme. It is destroyed, and if necessary, a chelating agent such as EDTA and / or a surfactant is added to solubilize the pyruvate oxidase, and separated and collected as an aqueous solution.

【0024】この様にして得られたピルビン酸オキシダ
ーゼ含有溶液を、例えば、減圧濃縮、膜濃縮、更に、硫
安、硫酸ナトリウムなどの塩析処理、あるいは親水性有
機溶媒、例えばメタノール、エタノール、アセトンなど
による分別沈澱法により沈澱せしめればよい。次いでこ
の沈澱物を、水に溶解し、半透膜にて透析せしめて、よ
り低分子量の不純物を除去することができる。また吸着
剤あるいはゲル濾過剤などによるゲル濾過、吸着クロマ
トグラフィー、イオン交換クロマトグラフィーにより精
製し、これらの手段を用いて得られるピルビン酸オキシ
ダーゼ含有溶液は、減圧濃縮凍結乾燥等の処理にてより
精製されたピルビン酸オキシダーゼを得る。
The pyruvate oxidase-containing solution thus obtained is subjected to, for example, vacuum concentration, membrane concentration, salting out with ammonium sulfate, sodium sulfate or the like, or a hydrophilic organic solvent such as methanol, ethanol or acetone. It may be precipitated by the fractional precipitation method according to. The precipitate can then be dissolved in water and dialyzed through a semi-permeable membrane to remove lower molecular weight impurities. Further, the solution containing pyruvate oxidase, which is purified by gel filtration using an adsorbent or a gel filtration agent, adsorption chromatography, ion exchange chromatography, and obtained by using these means, is further purified by treatment such as vacuum concentration freeze-drying. To obtain the purified pyruvate oxidase.

【0025】本明細書に記載のアミノ酸、ペプチド、核
酸、核酸関連物質、その他に関する略号は、それらの当
該分野における慣用略号に基づくもので、それらの例を
以下に列記する。またすべてのアミノ酸はL体を示すも
のとする。 DNA : デオキシリボ核酸 RNA : リボ核酸 A : アデニン T : チミン G : グアニン C : シトシン Ala : アラニン Arg : アルギニン Asn : アスパラギン Asp : アスパラギン酸 Cys : システイン Gln : グルタミン Glu : グルタミン酸 Gly : グリシン His : ヒスチジン Ile : イソロイシン Leu : ロイシン Lys : リジン Met : メチオニン Phe : フェニルアラニン Pro : プロリン Ser : セリン Thr : スレオニン Trp : トリプトファン Tyr : チロシン Val : バリン
The abbreviations for amino acids, peptides, nucleic acids, nucleic acid-related substances, etc. described in the present specification are based on their conventional abbreviations in the art, and examples thereof are listed below. In addition, all amino acids show L-form. DNA: Deoxyribonucleic acid RNA: Ribonucleic acid A: Adenine T: Thymine G: Guanine C: Cytosine Ala: Alanine Arg: Arginine Asn: Asparagine Asp: Aspartic acid Cys: Cysteine Gln: Glutine: Glutamine: Glutamine: Glutamine: Glutamine: Glutamine: Glutamine: Glutamine: Glutamine: Glutamine: Glutamine: Isoleucine Leu: Leucine Lys: Lysine Met: Methionine Phe: Phenylalanine Pro: Proline Ser: Serine Thr: Threonine Trp: Tryptophan Tyr: Tyrosine Val: Valine

【0026】[0026]

【実施例】以下、実施例で本発明を詳細に説明する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0027】[0027]

【実施例1】 〔染色体DNAの分離〕Aerococcus viridans (IFO
012219)の染色体DNAを次の方法で分離した同
菌株を150mlの普通ブイヨン培地(0.5%チオ硫
酸ソーダ含有)で37℃一晩震盪培養後遠心(3,00
0回転10分)により集菌した。10%サッカロース、
50mMトリス塩酸(pH8.0)50mMのEDTA
を含んだ溶液5mlに懸濁させ、1mlのリゾチーム溶
液(10mg/ml)を加えて37°C、15分間保温
し、次いで1mlの10%SDS(ドデシル硫酸ナトリ
ウム)溶液を加えた、この懸濁液に等量のクロロホルム
−フェノール混液(1:1)を加え、攪拌混合し、1
0,000rpm3分の遠心で水層と溶媒層に分け、水
層を合取した。
Example 1 [Separation of chromosomal DNA] Aerococcus viridans (IFO
The chromosomal DNA of 012219) was isolated by the following method, and the strain was shake-cultured in 150 ml of a normal broth medium (containing 0.5% sodium thiosulfate) at 37 ° C. overnight, followed by centrifugation (3,000).
(0 rotations for 10 minutes). 10% sucrose,
50 mM Tris-HCl (pH 8.0) 50 mM EDTA
Suspended in 5 ml of a solution containing 1 ml of lysozyme solution (10 mg / ml) and incubated at 37 ° C for 15 minutes, and then 1 ml of 10% SDS (sodium dodecyl sulfate) solution was added. Add an equal volume of chloroform-phenol mixture (1: 1) to the solution, stir and mix,
The aqueous layer and the solvent layer were separated by centrifugation at 30,000 rpm for 3 minutes, and the aqueous layers were combined.

【0028】この水層に2倍量のエタノールを静かに重
層し、ガラス棒でゆっくり攪拌しながらDNAをガラス
棒にまきつかせて分離した。これを10mlの10mM
トリス塩酸(pH8.0)、1mMのEDTAを含んだ
溶液(以下TEと略す)で溶解した。これを等量のクロ
ロホルム−フェノール混液で処理後、遠心により水層を
分取し、2倍量のエタノールを加えて上記の方法でもう
一度DNAを分離し、2mlのTEで溶解した。
The aqueous layer was gently overlaid with 2 volumes of ethanol, and the DNA was sprinkled on the glass rod while gently stirring with the glass rod to separate the DNA. Add 10 ml of 10 mM
It was dissolved in a solution containing Tris-HCl (pH 8.0) and 1 mM EDTA (hereinafter abbreviated as TE). After treating this with an equal volume of a chloroform-phenol mixed solution, the aqueous layer was separated by centrifugation, 2 volumes of ethanol was added, the DNA was separated again by the above method, and dissolved with 2 ml of TE.

【0029】[0029]

【実施例2】 〔pACYC/84プラスミドDNAの分離〕pACY
C/84を保有するエシェリヒア・コリpM191(J.
Bacteriol134,1141(1981);ATCC3
7033)を1lのBHI培地(Difco社製)で震
盪培養した。濁度がOD660 =1.0に増殖したとき、
スペクチノマイシン(最終濃度300μg/ml、プラ
スミドの耐性マーカーとしてクロラムフェニコールが含
まれているとき)を加え、さらに37℃で16時間以上
震盪を続けた。3000rpm10分間の遠心により集
菌し、リゾチーム−SDS法とセシウムクロライド−エ
チジウムプロマイド法(Maniortis ら:Molecular Clon
ing pp86〜94Cold Spring Harbor(1982))に
従いプラスミドDNAを調製した。
Example 2 [Separation of pACYC / 84 plasmid DNA] pACY
Escherichia coli pM191 possessing C / 84 (J.
Bacteriol 134 , 1141 (1981); ATCC3
7033) was shake-cultured in 1 L of BHI medium (manufactured by Difco). When the turbidity grew to OD 660 = 1.0,
Spectinomycin (final concentration 300 μg / ml, when chloramphenicol was included as a plasmid resistance marker) was added and shaking was continued at 37 ° C. for 16 hours or more. The cells were collected by centrifugation at 3000 rpm for 10 minutes, and lysozyme-SDS method and cesium chloride-ethidium bromide method (Maniortis et al .: Molecular Clon).
Plasmid DNA was prepared according to ing pp 86-94 Cold Spring Harbor (1982).

【0030】[0030]

【実施例3】 〔ピルビン酸オキシダーゼ(POP)遺伝子を有するプ
ラスミドpOXI3の作成〕 (i) 実施例1で調製したA. viridans の染色体DNA2
μl(約0.5μg)と10倍濃度のEcoRI切断用
バッファー(500mMトリス塩酸(pH7.5)、7
0mMMgCl2 、1MNaCl、70mMメルカプト
エタノール)1μl,EcoRI(宝酒造製 1.0unit
/ μl)1μl、水6μlを混合し、37℃1時間切断し
た。別に調製したプラスミドpACYC184DNA約
0.3μgを同様の方法を用いてEcoRIで切断し、
さらにアルカリ性フォスファターゼ(以下BAPと略す
ことがある。宝酒造製)0.6unitを加え、65℃1時
間処理した。これらのEcoRIで切断した2種のDN
A溶液を混合し、その1/10量の3M酢酸ナトリウム
を加え、さらに全体量と等量のクロロホルム−フェノー
ル混液で処理し、遠心分離により水層を分取した。
Example 3 [Preparation of plasmid pOXI3 having pyruvate oxidase (POP) gene] (i) Chromosomal DNA 2 of A. viridans prepared in Example 1
μl (about 0.5 μg) and 10 times concentration of EcoRI cleavage buffer (500 mM Tris-HCl (pH 7.5), 7
0 mM MgCl 2 , 1 M NaCl, 70 mM mercaptoethanol 1 μl, EcoRI (Takara Shuzo 1.0 unit)
/ μl) 1 μl and water 6 μl were mixed and cut at 37 ° C. for 1 hour. About 0.3 μg of the separately prepared plasmid pACYC184 DNA was digested with EcoRI using the same method,
Further, 0.6 unit of alkaline phosphatase (hereinafter sometimes abbreviated as BAP; manufactured by Takara Shuzo) was added and treated at 65 ° C. for 1 hour. These two DNAs cut with EcoRI
The solution A was mixed, 1/10 amount of 3M sodium acetate was added, the mixture was further treated with a chloroform-phenol mixed solution in an amount equal to the total amount, and the aqueous layer was separated by centrifugation.

【0031】この水層に2倍容のエタノールを加え、遠
心でDNAを沈殿させたのち減圧乾燥した。水89μl
で溶解後、10倍濃度のライゲーションバッファ(0.
5Mトリス塩酸(pH7.6)、0.1MMgCl2
0.1Mジチオスレイトール、10mMスペルミジン、
10mMATP)10μlとT4 DNAリガーゼ1μl
(宝酒造製175unit)を加え混合し4℃で一晩放置し
た。このDNA溶液をクロロホルム−フェノール処理
し、エタノール沈殿を集め減圧乾燥した後、10μlの
TEで溶解した。
To this aqueous layer was added 2 volumes of ethanol, the DNA was precipitated by centrifugation and then dried under reduced pressure. 89 μl of water
After lysis with, a 10-fold concentration of ligation buffer (0.
5M Tris-HCl (pH 7.6), 0.1M MgCl 2 ,
0.1 M dithiothreitol, 10 mM spermidine,
10 mM ATP) 10 μl and T 4 DNA ligase 1 μl
(Takara Shuzo 175 unit) was added and mixed, and the mixture was left at 4 ° C. overnight. This DNA solution was subjected to chloroform-phenol treatment, ethanol precipitates were collected, dried under reduced pressure, and then dissolved with 10 μl of TE.

【0032】(ii)100mlのBHI培地(Brain Hear
t Infusion, Difco社製)で培養した対数増殖期の
エシェリヒア・コリW3110株〔国立遺伝学研究所よ
り分与を受けた、ストック番号ME7778;ATCC
27325〕を遠心分離により集菌し(10,000r
pm.2分間)40mlの氷冷した30mM酢酸カリウ
ム、100mMRbCl、10mMCaCl2 、50m
MMnCl2 および15%グリセリンを含んだ溶液(p
H5.8)で懸濁した。0℃で5分間放置後、遠心し上
清をすて、さらに4mlの10mMMOPS緩衝液(ド
ータイト社製)、75mMCaCl2 、10mMRbC
lおよび15%グリセリンを含んだ溶液(pH6.5)
で懸濁し、0℃で15分間放置してコンピテント細胞と
した。
(Ii) 100 ml of BHI medium (Brain Hear
Escherichia coli W3110 strain in the logarithmic growth phase (stock number ME7778; ATCC, donated by the National Institute of Genetics) cultured in t Infusion, Difco)
27325] by centrifugation (10,000 r).
pm. 2 minutes) 40 ml ice-cold 30 mM potassium acetate, 100 mM RbCl, 10 mM CaCl 2 , 50 m
A solution containing MMnCl 2 and 15% glycerin (p
H5.8). After standing at 0 ° C. for 5 minutes, the mixture was centrifuged, the supernatant was removed, and further 4 ml of 10 mM MOPS buffer (manufactured by Dotite), 75 mM CaCl 2 , 10 mM RbC was added.
1 and a solution containing 15% glycerin (pH 6.5)
And suspended at 0 ° C. for 15 minutes to prepare competent cells.

【0033】(iii) この大腸菌懸濁液200μlに(i)
で調製したDNA溶液10μlを加え、30分間0°C
で放置した。BHI培地1mlを加え、37℃で90分
間保温後、この100μlをテトラサイクリン(15μ
g/ml)を含んだBHI寒天プレートにまき、37℃
で一晩培養し形質転換体を得た。この形質転換体をPO
P培地(組成はペプトン5g、肉エキス2g、イースト
エキス5g、NaCl1g、K2 HPO4 1g、MgS
4 0.5g、パーオキシダーゼ500IU、FAD
7.85mg、ジアニシジン0.1g、チアミンピロフ
ォスフェート424mg、ピルビン酸1ml、寒天15
g、蒸留水1l、pH7.0)のプレートにレプリカ
し、37℃でさらに一晩培養した。
(Iii) Add 200 μl of this E. coli suspension to (i)
Add 10 μl of the DNA solution prepared in
Left. After adding 1 ml of BHI medium and incubating at 37 ° C for 90 minutes, 100 μl of this was added to tetracycline (15 μm).
g / ml) and spread on a BHI agar plate containing
Overnight to obtain a transformant. This transformant is
P medium (composition: 5 g of peptone, 2 g of meat extract, 5 g of yeast extract, 1 g of NaCl, 1 g of K 2 HPO 4, 1 mg of MgS
O 4 0.5g, peroxidase 500IU, FAD
7.85 mg, dianisidine 0.1 g, thiamine pyrophosphate 424 mg, pyruvic acid 1 ml, agar 15
g, distilled water 1 liter, pH 7.0), and the plate was further replicated and cultured at 37 ° C. overnight.

【0034】約4500コロニーの形質転換を調べたと
ころ、コロニーの周辺が茶褐色に変色したもの1株を
得、この株をエシェリヒア・コリW3110・pOXI
3株「微生物受託番号 微工研菌寄第9071号、FE
RMP−No. 9071、微工研条寄第1565、FER
M BP−1565」と命名した。この菌を純粋分離後
BHI培地で37℃一晩培養し、ピルビン酸オキシダー
ゼの生産性を後述するピルビン酸オキシダーゼ活性測定
法により調べたところ、約3u/mlのピルビン酸オキ
シダーゼ活性を有していた。この菌株の保有していたプ
ラスミドを実施例2と同様にしてプラスミドを分離し、
ピルビン酸オキシダーゼ遺伝子を含み、pACYC18
4遺伝子を含むプラスミドをpOXI3と命名した。
When the transformation of about 4500 colonies was examined, one strain was obtained in which the periphery of the colonies was discolored to dark brown, and this strain was designated Escherichia coli W3110.pOXI.
3 strains "Microorganism Accession No.
RMP-No. 9071, Jiken Kenjo No. 1565, FER
MBP-1565 ". This bacterium was purely isolated and then cultured overnight in a BHI medium at 37 ° C., and when the productivity of pyruvate oxidase was examined by the pyruvate oxidase activity measurement method described later, it had a pyruvate oxidase activity of about 3 u / ml. . The plasmid possessed by this strain was isolated in the same manner as in Example 2,
Containing the pyruvate oxidase gene, pACYC18
The plasmid containing the four genes was named pOXI3.

【0035】ピルビン酸オキシダーゼ活性測定法 本発明のピルビン酸オキシダーゼの活性測定法は次の通
りである。 0.5Mピルビン酸カリウム 0.1ml 0.5Mリン酸塩緩衝液(pH7.0) 0.2ml 0.2%4−アミノアンチピリン 0.1ml 0.2%N,N−ジメチルアニリン 0.2ml 10mMMgCl2 50μl 10mMチアミノピロフォスフェート 20μl ペルオキシダーゼ(45U/ml) 0.1ml 1mMFAD 10μl 蒸留水 0.22ml 上記の組成の反応液1.0mlを試験管に分取し、37
℃、3分間予備加熱した後、酵素液20μlを加えて3
7℃、10分間反応を行い、反応後、0.3mlの0.
1MEDTA(pH7.5)を加えて反応を停止し、次
いでこれに蒸留水1.7mlを加えた後生じた紫色を5
65nmの波長にて比色定量する。1分間に1μmoleの
過酸化水素を生じる活性を1単位(U)とした。
Method for Measuring Pyruvate Oxidase Activity The method for measuring the activity of pyruvate oxidase of the present invention is as follows. 0.5 M potassium pyruvate 0.1 ml 0.5 M phosphate buffer (pH 7.0) 0.2 ml 0.2% 4-aminoantipyrine 0.1 ml 0.2% N, N-dimethylaniline 0.2 ml 10 mM MgCl 2 50 μl 10 mM thiaminopyrophosphate 20 μl peroxidase (45 U / ml) 0.1 ml 1 mM FAD 10 μl distilled water 0.22 ml 1.0 ml of the reaction solution having the above composition was collected in a test tube, and 37
After preheating at 3 ° C for 3 minutes, 20 µl of enzyme solution was added and
The reaction was carried out at 7 ° C. for 10 minutes.
The reaction was stopped by adding 1M EDTA (pH 7.5), and then 1.7 ml of distilled water was added thereto to give a purple color of 5
The colorimetry is performed at a wavelength of 65 nm. The activity to produce 1 μmole of hydrogen peroxide per minute was defined as 1 unit (U).

【0036】[0036]

【実施例4】 〔pOXI3のマッピングおよびPOP遺伝子の塩基配
列の決定〕エシェリヒア・コリW3110pOXI3株
からpACYC184と同様の方法でpOXI3プラス
ミドDNAを調製した。pOXI3DNAについて制限
酵素ClaI、EcoRV、HindIII、Sca
I、PstI、PvuII、XbaI(いずれも宝酒造
製)Hpal(東洋紡製)による切断地図を作成した。
その結果を図1に示した。ピルビン酸オキシダーゼ遺伝
子を含んだDNAの塩基配列をM13ファージを用いた
ジデオキシ法(Science 214 1205−1210
(1981))を用いて決定した。POPの構造遺伝子
の塩基配列並びにアミノ酸配列を図2および図3(図3
は図2の続きである)に示した。
Example 4 [Mapping of pOXI3 and Determination of Nucleotide Sequence of POP Gene] pOXI3 plasmid DNA was prepared from Escherichia coli W3110 pOXI3 strain by the same method as pACYC184. Restriction enzymes ClaI, EcoRV, HindIII, Sca for pOXI3DNA
A cut map with I, PstI, PvuII, and XbaI (all manufactured by Takara Shuzo) and Hpal (manufactured by Toyobo) was prepared.
The result is shown in FIG. The nucleotide sequence of DNA containing the pyruvate oxidase gene was determined by the dideoxy method using M13 phage (Science 214 1205-1210).
(1981)). The nucleotide sequence and amino acid sequence of the POP structural gene are shown in FIG. 2 and FIG.
Is a continuation of FIG. 2).

【0037】[0037]

【実施例5】 〔ピルビン酸オキシダーゼの製造〕エシェリヒア・コリ
W3110pOXI3株を20lのBHI培地(Dif
co社製)で37℃18時間ジャーファーメーターによ
り培養し、5,000rpm10分間の遠心で集菌し
た。生理食塩水2lで洗浄後、2lの10mMリン酸バ
ッファ(pH7.0)で懸濁した。リゾチームを1mg
/ml、EDTA−1Naを2mM、トリトンX−10
0を0.1%となるように加えて37℃30分間保温
し、5,000rpm10分の遠心より上清液を分離し
た。この上清液1.9lについて硫安塩析(40%〜6
6%)を行い、沈殿物を遠心(5,000rpm30
分)により集めた。この沈殿物を200mlの10mM
リン酸バッファ(pH7.0,10μMのFADを含
む)で溶解し、セファデックスG−25で脱塩処理をし
た。この後、DEAE−セファロースCL−6Bを用い
てイオン交換クロマトを行い活性画分を分取後脱塩し、
凍結乾燥により粉末標品を得た。この酵素標品前述のピ
ルビン酸オキシダーゼ活性測定法により測定した51u
/mgの比活性を有していた。
Example 5 [Production of pyruvate oxidase] Escherichia coli W3110pOXI3 strain was mixed with 20 l of BHI medium (Dif.
Co.) at 37 ° C. for 18 hours with a jar fermeter, and the cells were collected by centrifugation at 5,000 rpm for 10 minutes. After washing with 2 l of physiological saline, it was suspended with 2 l of 10 mM phosphate buffer (pH 7.0). 1mg lysozyme
/ Ml, 2 mM EDTA-1Na, Triton X-10
0 was added to 0.1% and kept at 37 ° C. for 30 minutes, and the supernatant was separated by centrifugation at 5,000 rpm for 10 minutes. 1.9 l of the supernatant was salted out with ammonium sulfate (40% to 6%).
6%), and the precipitate is centrifuged (5,000 rpm 30
Min). The precipitate is washed with 200 ml of 10 mM
It was dissolved in a phosphate buffer (pH 7.0, containing 10 μM FAD), and desalted with Sephadex G-25. After that, ion exchange chromatography was performed using DEAE-Sepharose CL-6B to fractionate the active fraction, followed by desalting.
A powder preparation was obtained by freeze-drying. This enzyme preparation 51u measured by the pyruvate oxidase activity measuring method described above.
/ Mg specific activity.

【0038】[0038]

【実施例6】 〔組換え体より分離精製したピルビン酸オキシダーゼの
アミノ末端部分のアミノ酸配列の決定〕実施例5で分離
精製したピルビン酸オキシダーゼについてベックマン社
のアミノ酸シークエンサー(Beckman System 980M
E)を用いてアミノ末端から10個のアミノ酸の配列を
調べた。
[Example 6] [Determination of amino acid sequence of amino-terminal portion of pyruvate oxidase separated and purified from recombinant] Regarding pyruvate oxidase separated and purified in Example 5, an amino acid sequencer (Beckman System 980M manufactured by Beckman) was used.
The sequence of 10 amino acids from the amino terminus was examined using E).

【0039】その結果、約80%のものにN末にMet が
存在しアミノ酸配列の1位からSerAsn Lys Ile Asn Ile
Gly Leu (Ala) の配列であることを確認した。
As a result, Met was present at the N-terminus in about 80% of the products, and SerAsn Lys Ile Asn Ile from the 1st position of the amino acid sequence.
It was confirmed that the sequence was Gly Leu (Ala).

【0040】[0040]

【発明の効果】本発明によって、ピルビン酸オキシダー
ゼ遺伝子および、ピルビン酸オキシダーゼのアミノ酸配
列が明らかになり、また、遺伝子工学手法による効率的
なピルビン酸オキシダーゼの製造方法を提供した。ま
た、本発明のピルビン酸オキシダーゼ遺伝子と種々の遺
伝子工学的手法とを用いることによって、より効率的な
ピルビン酸オキシダーゼの製造方法をもたらしめるもの
である。
INDUSTRIAL APPLICABILITY The present invention clarified the pyruvate oxidase gene and the amino acid sequence of pyruvate oxidase, and provided an efficient method for producing pyruvate oxidase by a genetic engineering technique. Further, by using the pyruvate oxidase gene of the present invention and various genetic engineering techniques, a more efficient method for producing pyruvate oxidase can be brought about.

【0041】[0041]

【配列表】[Sequence list]

配列番号:1 配列の長さ:591アミノ酸残基 配列の種類:ペプチド 配列の名称:ピルビン酸オキシダーゼのアミノ酸配列 配列 Ser Asp Asn Lys Ile Asn Ile Gly Leu Ala Val Met Lys Ile Leu 15 Glu Ser Trp Gly Ala Asp Thr Ile Tyr Gly Ile Pro Ser Gly Thr 30 Leu Ser Ser Leu Met Asp Ala Met Gly Glu Glu Glu Asn Asn Val 45 Lys Phe Leu Gln Val Lys His Glu Glu Val Gly Ala Met Ala Ala 60 Val Met Gln Ser Lys Phe Gly Gly Asn Leu Gly Val Thr Val Gly 75 Ser Gly Gly Pro Gly Ala Ser His Leu Ile Asn Gly Leu Tyr Asp 90 Ala Ala Met Asp Asn Ile Pro Val Val Ala Ile Leu Gly Ser Arg 105 Pro Gln Arg Glu Leu Asn Met Asp Ala Phe Gln Glu Leu Asn Gln 120 Asn Pro Met Tyr Asp His Ile Ala Val Tyr Asn Arg Arg Val Ala 135 Tyr Ala Glu Gln Leu Pro Lys Leu Val Asp Glu Ala Ala Arg Met 150 Ala Ile Ala Lys Arg Gly Val Ala Val Leu Glu Val Pro Gly Asp 165 Phe Ala Lys Val Glu Ile Asp Asn Asp Gln Trp Tyr Ser Ser Ala 180 Asn Ser Leu Arg Lys Tyr Ala Pro Ile Ala Pro Ala Ala Gln Asp 195 Ile Asp Ala Ala Val Glu Leu Leu Asn Asn Ser Lys Arg Pro Val 210 Ile Tyr Ala Gly Ile Gly Thr Met Gly His Gly Pro Ala Val Gln 225 Glu Leu Ala Arg Lys Ile Lys Ala Pro Val Ile Thr Thr Gly Lys 240 Asn Phe Glu Thr Phe Glu Trp Asp Phe Glu Ala Leu Thr Gly Ser 255 Thr Tyr Arg Val Gly Trp Lys Pro Ala Asn Glu Thr Ile Leu Glu 270 Ala Asp Thr Val Leu Phe Ala Gly Ser Asn Phe Pro Phe Ser Glu 285 Val Glu Gly Thr Phe Arg Asn Val Asp Asn Phe Ile Gln Ile Asp 300 Ile Asp Pro Ala Met Leu Gly Lys Arg His His Ala Asp Val Ala 315 Ile Leu Gly Asp Ala Gly Leu Ala Ile Asp Glu Ile Leu Asn Lys 330 Val Asp Ala Val Glu Glu Ser Ala Trp Trp Thr Ala Asn Leu Lys 345 Asn Ile Ala Asn Trp Arg Glu Tyr Ile Asn Met Leu Glu Thr Lys 360 Glu Glu Gly Asp Leu Gln Phe Tyr Gln Val Tyr Asn Ala Ile Asn 375 Asn His Ala Asp Glu Asp Ala Ile Tyr Ser Ile Asp Val Gly Asn 390 Ser Thr Gln Thr Ser Ile Arg His Leu His Met Thr Pro Lys Asn 405 Met Trp Arg Thr Ser Pro Leu Phe Ala Thr Met Gly Ile Ala Ile 420 Pro Gly Gly Leu Gly Ala Lys Asn Thr Tyr Pro Asp Arg Gln Val 435 Trp Asn Ile Ile Gly Asp Gly Ala Phe Ser Met Thr Tyr Pro Asp 450 Val Val Thr Asn Val Arg Tyr Asn Met Pro Val Ile Asn Val Val 465 Phe Ser Asn Thr Glu Tyr Ala Phe Ile Lys Asn Lys Tyr Glu Asp 480 Thr Asn Lys Asn Leu Phe Gly Val Asp Phe Thr Asp Val Asp Tyr 495 Ala Lys Ile Ala Glu Ala Gln Gly Ala Lys Gly Phe Thr Val Ser 510 Arg Ile Glu Asp Met Asp Arg Val Met Ala Glu Ala Val Ala Ala 525 Asn Lys Ala Gly His Thr Val Val Ile Asp Cys Lys Ile Thr Gln 540 Asp Arg Pro Ile Pro Val Glu Thr Leu Lys Leu Asp Ser Lys Leu 555 Tyr Ser Glu Asp Glu Ile Lys Ala Tyr Lys Glu Arg Tyr Glu Ala 570 Ala Asn Leu Val Pro Phe Arg Glu Tyr Leu Glu Ala Glu Gly Leu 585 Glu Ser Lys Tyr Ile Lys 591 SEQ ID NO: 1 Sequence length: 591 amino acid residues Sequence type: Peptide Sequence name: Pyruvate oxidase amino acid sequence Sequence Ser Asp Asn Lys Ile Asn Ile Gly Leu Ala Val Met Lys Ile Leu 15 Glu Ser Trp Gly Ala Asp Thr Ile Tyr Gly Ile Pro Ser Gly Thr 30 Leu Ser Ser Leu Met Asp Ala Met Gly Glu Glu Glu Asn Asn Val 45 Lys Phe Leu Gln Val Lys His Glu Glu Val Gly Ala Met Ala Ala 60 Val Met Gln Ser Lys Phe Gly Gly Asn Leu Gly Val Thr Val Gly 75 Ser Gly Gly Pro Gly Ala Ser His Leu Ile Asn Gly Leu Tyr Asp 90 Ala Ala Met Asp Asn Ile Pro Val Val Ala Ile Leu Gly Ser Arg 105 Pro Gln Arg Glu Leu Asn Met Asp Ala Phe Gln Glu Leu Asn Gln 120 Asn Pro Met Tyr Asp His Ile Ala Val Tyr Asn Arg Arg Val Ala 135 Tyr Ala Glu Gln Leu Pro Lys Leu Val Asp Glu Ala Ala Arg Met 150 Ala Ile Ala Lys Arg Gly Val Ala Val Leu Glu Val Pro Gly Asp 165 Phe Ala Lys Val Glu Ile Asp Asn Asp Gln Trp Tyr Ser Ser Ala 180 Asn Ser Leu Arg Lys Tyr Ala Pro Ile Ala Pro Ala Ala Gln Asp 19 5 Ile Asp Ala Ala Val Glu Leu Leu Asn Asn Ser Lys Arg Pro Val 210 Ile Tyr Ala Gly Ile Gly Thr Met Gly His Gly Pro Ala Val Gln 225 Glu Leu Ala Arg Lys Ile Lys Ala Pro Val Ile Thr Thr Gly Lys 240 Asn Phe Glu Thr Phe Glu Trp Asp Phe Glu Ala Leu Thr Gly Ser 255 Thr Tyr Arg Val Gly Trp Lys Pro Ala Asn Glu Thr Ile Leu Glu 270 Ala Asp Thr Val Leu Phe Ala Gly Ser Asn Phe Pro Phe Ser Glu 285 Val Glu Gly Thr Phe Arg Asn Val Asp Asn Phe Ile Gln Ile Asp 300 Ile Asp Pro Ala Met Leu Gly Lys Arg His His Ala Asp Val Ala 315 Ile Leu Gly Asp Ala Gly Leu Ala Ile Asp Glu Ile Leu Asn Lys 330 Val Asp Ala Val Glu Glu Ser Ala Trp Trp Thr Ala Asn Leu Lys 345 Asn Ile Ala Asn Trp Arg Glu Tyr Ile Asn Met Leu Glu Thr Lys 360 Glu Glu Gly Asp Leu Gln Phe Tyr Gln Val Tyr Asn Ala Ile Asn 375 Asn His Ala Asp Glu Asp Ala Ile Tyr Ser Ile Asp Val Gly Asn 390 Ser Thr Gln Thr Ser Ile Arg His Leu His Met Thr Pro Lys Asn 405 Met Trp Arg Thr Ser Pro Leu Phe Ala Thr Met Gly Ile Ala Ile 420 Pro Gly Gly Leu Gly Ala Lys Asn Thr Ty r Pro Asp Arg Gln Val 435 Trp Asn Ile Ile Gly Asp Gly Ala Phe Ser Met Thr Tyr Pro Asp 450 Val Val Thr Asn Val Arg Tyr Asn Met Pro Val Ile Asn Val Val 465 Phe Ser Asn Thr Glu Tyr Ala Phe Ile Lys Asn Lys Tyr Glu Asp 480 Thr Asn Lys Asn Leu Phe Gly Val Asp Phe Thr Asp Val Asp Tyr 495 Ala Lys Ile Ala Glu Ala Gln Gly Ala Lys Gly Phe Thr Val Ser 510 Arg Ile Glu Asp Met Asp Arg Val Met Ala Glu Ala Val Ala Ala 525 Asn Lys Ala Gly His Thr Val Val Ile Asp Cys Lys Ile Thr Gln 540 Asp Arg Pro Ile Pro Val Glu Thr Leu Lys Leu Asp Ser Lys Leu 555 Tyr Ser Glu Asp Glu Ile Lys Ala Tyr Lys Glu Arg Tyr Glu Ala 570 Ala Asn Leu Val Pro Phe Arg Glu Tyr Leu Glu Ala Glu Gly Leu 585 Glu Ser Lys Tyr Ile Lys 591

【0042】[0042]

【配列表】[Sequence list]

配列番号:2 配列の長さ:1773塩基対 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:genomic DNA 起源 生物名:アエロコッカス・ビリダンス 株名:IFO012219 配列の特徴:ピルビン酸オキシダーゼ遺伝子 配列 TCA GAT AAC AAA ATT AAC ATC GGT TTA GCA GTT ATG AAG ATT TTA 45 GAA TCT TGG GGA GCA GAT ACT ATT TAT GGT ATT CCT TCA GGT ACT 90 TTA AGC TCA TTA ATG GAT GCT ATG GGT GAA GAA GAA AAC AAC GTC 135 AAA TTC CTA CAA GTG AAA CAC GAA GAA GTA GGT GCA ATG GCT GCT 180 GTA ATG CAA AGC AAA TTC GGC GGT AAC TTA GGT GTT ACT GTA GGT 225 TCT GGT GGA CCA GGT GCA TCT CAC TTG ATC AAC GGT TTA TAC GAT 270 GCA GCA ATG GAT AAC ATT CCA GTA GTT GCG ATC TTA GGT TCT CGT 315 CCA CAA CGC GAA TTA AAC ATG GAC GCT TTC CAA GAA TTA AAC CAG 360 AAC CCA ATG TAC GAC CAT ATT GCA GTT TAC AAC CGT CGT GTA GCT 405 TAT GCT GAG CAA TTA CCA AAA TTA GTT GAC GAA GCA GCT CGT ATG 450 GCT ATC GCT AAA CGC GGT GTA GCA GTT CTA GAA GTA CCT GGT GAT 495 TTT GCT AAA GTT GAA ATC GAC AAC GAC CAA TGG TAT TCA TCT GCA 540 AAC AGC TTA CGT AAA TAT GCA CCA ATC GCT CCA GCA GCA CAA GAT 585 ATC GAC GCA GCA GTT GAA TTA TTA AAC AAC TCT AAA CGT CCA GTT 630 ATC TAC GCT GGT ATT GGT ACT ATG GGC CAC GGT CCT GCA GTT CAA 675 GAA TTA GCT CGT AAA ATC AAA GCG CCA GTT ATC ACT ACT GGT AAA 720 AAC TTT GAA ACT TTC GAG TGG GAT TTC GAA GCG TTA ACA GGT TCT 765 ACT TAT CGT GTA GGT TGG AAA CCA GCT AAC GAA ACA ATT TTA GAA 810 GCT GAC ACA GTA TTA TTT GCT GGT TCA AAC TTC CCA TTC TCA GAG 855 GTT GAA GGT ACT TTC CGT AAC GTG GAT AAC TTC ATC CAA ATC GAT 900 ATC GAC CCA GCT ATG TTA GGT AAA CGT CAC CAC GCT GAT GTT GCT 945 ATC TTA GGT GAT GCT GGT CTA GCA ATC GAC GAA ATC TTA AAC AAA 990 GTA GAT GCT GTT GAA GAG TCA GCA TGG TGG ACA GCT AAC TTG AAA 1035 AAC ATC GCT AAC TGG CGT GAA TAC ATC AAC ATG TTA GAA ACT AAA 1080 GAA GAA GGC GAC TTG CAA TTC TAC CAA GTG TAC AAT GCA ATC AAC 1125 AAC CAC GCC GAC GAA GAT GCA ATC TAC TCT ATT GAT GTT GGT AAC 1170 TCA ACT CAA ACT TCT ATC CGT CAT TTA CAT ATG ACA CCT AAA AAC 1215 ATG TGG AGA ACT TCT CCA TTA TTC GCG ACA ATG GGT ATC GCT ATC 1260 CCT GGT GGT TTA GGT GCT AAA AAC ACT TAC CCA GAT CGT CAA GTT 1305 TGG AAC ATC ATC GGT GAT GGT GCT TTC TCT ATG ACT TAC CCA GAT 1350 GTA GTA ACT AAC GTA CGT TAC AAC ATG CCT GTA ATC AAC GTT GTA 1395 TTC TCT AAC ACT GAA TAT GCC TTC ATC AAA AAC AAA TAT GAA GAC 1440 ACT AAC AAA AAC TTA TTC GGT GTA GAC TTT ACA GAT GTT GAT TAC 1485 GCT AAA ATC GCT GAA GCA CAA GGT GCT AAA GGA TTT ACT GTA AGC 1530 CGT ATC GAA GAT ATG GAC CGT GTA ATG GCT GAA GCT GTT GCA GCT 1575 AAT AAA GCA GGT CAC ACT GTC GTT ATC GAC TGT AAG ATT ACT CAA 1620 GAT CGT CCA ATC CCT GTA GAA ACA TTG AAA TTA GAT TCA AAA CTT 1665 TAC AGC GAA GAC GAA ATC AAA GCT TAC AAA GAA CGC TAC GAA GCT 1710 GCT AAC TTA GTA CCA TTC AGA GAG TAC TTA GAA GCT GAA GGC TTA 1755 GAA TCT AAA TAC ATC AAA 1773 SEQ ID NO: 2 Sequence length: 1773 base pairs Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: genomic DNA Origin of organism Name: Aerococcus viridans Strain name: IFO012219 Sequence characteristics : Pyruvate oxidase gene sequence TCA GAT AAC AAA ATT AAC ATC GGT TTA GCA GTT ATG AAG ATT TTA 45 GAA TCT TGG GGA GCA GAT ACT ATT TAT GGT ATT CCT TCA GGT ACT 90 TTA AGC TCA TTA ATG GAT GCT ATG GGT GAA GAA GAA AAC AAC GTC 135 AAA TTC CTA CAA GTG AAA CAC GAA GAA GTA GGT GCA ATG GCT GCT 180 GTA ATG CAA AGC AAA TTC GGC GGT AAC TTA GGT GTT ACT GTA GGT 225 TCT GGT GGA CCA GGT GCA TCT CAC TTG ATC AAC GGT TTA TAC GAT 270 GCA GCA ATG GAT AAC ATT CCA GTA GTT GCG ATC TTA GGT TCT CGT 315 CCA CAA CGC GAA TTA AAC ATG GAC GCT TTC CAA GAA TTA AAC CAG 360 AAC CCA ATG TAC GAC CAT ATT GCA GTT TAC AAC CGT CGT GTA GCT TAT GCT GAG CAA TTA CCA AAA TTA GTT GAC GAA GCA GCT CGT ATG 450 GCT ATC GCT AAA C GC GGT GTA GCA GTT CTA GAA GTA CCT GGT GAT 495 TTT GCT AAA GTT GAA ATC GAC AAC GAC CAA TGG TAT TCA TCT GCA 540 AAC AGC TTA CGT AAA TAT GCA CCA ATC GCT CCA GCA GCA CAA GAT 585 ATC GAC GCA GCA GTT GAA TTA TTA AAC AAC TCT AAA CGT CCA GTT 630 ATC TAC GCT GGT ATT GGT ACT ATG GGC CAC GGT CCT GCA GTT CAA 675 GAA TTA GCT CGT AAA ATC AAA GCG CCA GTT ATC ACT ACT GGT AAA 720 AAC TTT GAA ACT TTC GAG TGG GAT TTC GAA GCG TTA ACA GGT TCT 765 ACT TAT CGT GTA GGT TGG AAA CCA GCT AAC GAA ACA ATT TTA GAA 810 GCT GAC ACA GTA TTA TTT GCT GGT TCA AAC TTC CCA TTC TCA GAG 855 GTT GAA GGT ACT TTC CGT AAC GTG GAT GAT GAC TTC ATC CAA ATC GAT 900 ATC GAC CCA GCT ATG TTA GGT AAA CGT CAC CAC GCT GAT GTT GCT 945 ATC TTA GGT GAT GCT GGT CTA GCA ATC GAC GAA ATC TTA AAC AAA 990 GTA GAT GCT GTT GAA GAG TCA GCA TGG TGG ACA GCT AAC TTG AAA 1035 AAC ATC GCT AAC TGG CGT GAA TAC ATC AAC ATG TTA GAA ACT AAA 1080 GAA GAA GGC GAC TTG CAA TTC TAC CAA GTG TAC AAT GCA ATC AAC 1125 AAC CAC GCC GAC GAA GAT GCA ATC TAC TCT ATT GAT GTT GCA GT AAC 1170 TCA ACT CAA ACT TCT ATC CGT CAT TTA CAT ATG ACA CCT AAA AAC 1215 ATG TGG AGA ACT TCT CCA TTA TTC GCG ACA ATG GGT ATC GCT ATC 1260 CCT GGT GGT TTA GGT GCT AAA AAC ACT TAC CCA GAT CGT CAA GTT 1305 TGG AAC ATC ATC GGT GAT GGT GCT TTC TCT ATG ACT TAC CCA GAT 1350 GTA GTA ACT AAC GTA CGT TAC AAC ATG CCT GTA ATC AAC GTT GTA 1395 TTC TCT AAC ACT GAA TAT GCC TTC ATC AAA AAC AAA TAT GAA GAC 1440 AAC AAA AAC TTA TTC GGT GTA GAC TTT ACA GAT GTT GAT TAC 1485 GCT AAA ATC GCT GAA GCA CAA GGT GCT AAA GGA TTT ACT GTA AGC 1530 CGT ATC GAA GAT ATG GAC CGT GTA ATG GCT GAA GCT GTT GCA GCT 1575 AAT AAA GCA GGT CAC ACT GTC GTT ATC GAC TGT AAG ATT ACT CAA 1620 GAT CGT CCA ATC CCT GTA GAA ACA TTG AAA TTA GAT TCA AAA CTT 1665 TAC AGC GAA GAC GAA ATC AAA GCT TAC AAA GAA CGC TAC GAA GCT 1710 GCT AAC TTA GTA CCA TTC AGA GAG TAC TTA GAA GCT GAA GGC TTA 1755 GAA TCT AAA TAC ATC AAA 1773

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、pOXI3ベクターの構成を示す模式
図を示す。
FIG. 1 shows a schematic diagram showing the construction of the pOXI3 vector.

【図2】図2は、ピルビン酸オキシダーゼ遺伝子DNA
のコード鎖(5’→3’)および得られる翻訳生成物の
それぞれの配列を示す。
FIG. 2 is a pyruvate oxidase gene DNA.
The respective sequences of the coding strand (5 ′ → 3 ′) and the resulting translation product are shown.

【図3】図3は、図2に続くピルビン酸オキシダーゼ遺
伝子DNAのコード鎖(5’→3’)および得られる翻
訳生成物のそれぞれの配列を示す。
FIG. 3 shows the respective sequences of the coding strand of pyruvate oxidase gene DNA (5 ′ → 3 ′) and the resulting translation product following FIG. 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 15/09 ZNA C12R 1:01) (C12N 1/21 C12R 1:19) (C12N 9/02 C12R 1:19) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication (C12N 15/09 ZNA C12R 1:01) (C12N 1/21 C12R 1:19) (C12N 9 / 02 C12R 1:19)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記のN末端側よりのアミノ酸配列をコ
ードするピルビン酸オキシダーゼ遺伝子であるポリデオ
キシリボ核酸または該遺伝子が構成成分であるポリデオ
キシリボ核酸を発現ベクターに組み入れた組換えDNA
を宿主微生物に移入して形質転換体を得、該形質転換体
を培養して該ポリデオキシリボ核酸の遺伝情報を発現さ
せ、次いでピルビン酸オキシダーゼであるポリペプチド
または該ピルビン酸オキシダーゼが構成成分であるポリ
ペプチドを採取することを特徴とするピルビン酸オキシ
ダーゼの製造法。 A−Ser Asp Asn Lys Ile Asn Ile Gly Leu Ala Val Met Lys Ile Leu Glu Ser Trp Gly Ala Asp Thr Ile Tyr Gly Ile Pro Ser Gly Thr Leu Ser Ser Leu Met Asp Ala Met Gly Glu Glu Glu Asn Asn Val Lys Phe Leu Gln Val Lys His Glu Glu Val Gly Ala Met Ala Ala Val Met Gln Ser Lys Phe Gly Gly Asn Leu Gly Val Thr Val Gly Ser Gly Gly Pro Gly Ala Ser His Leu Ile Asn Gly Leu Tyr Asp Ala Ala Met Asp Asn Ile Pro Val Val Ala Ile Leu Gly Ser Arg Pro Gln Arg Glu Leu Asn Met Asp Ala Phe Gln Glu Leu Asn Gln Asn Pro Met Tyr Asp His Ile Ala Val Tyr Asn Arg Arg Val Ala Tyr Ala Glu Gln Leu Pro Lys Leu Val Asp Glu Ala Ala Arg Met Ala Ile Ala Lys Arg Gly Val Ala Val Leu Glu Val Pro Gly Asp Phe Ala Lys Val Glu Ile Asp Asn Asp Gln Trp Tyr Ser Ser Ala Asn Ser Leu Arg Lys Tyr Ala Pro Ile Ala Pro Ala Ala Gln Asp Ile Asp Ala Ala Val Glu Leu Leu Asn Asn Ser Lys Arg Pro Val Ile Tyr Ala Gly Ile Gly Thr Met Gly His Gly Pro Ala Val Gln Glu Leu Ala Arg Lys Ile Lys Ala Pro Val Ile Thr Thr Gly Lys Asn Phe Glu Thr Phe Glu Trp Asp Phe Glu Ala Leu Thr Gly Ser Thr Tyr Arg Val Gly Trp Lys Pro Ala Asn Glu Thr Ile Leu Glu Ala Asp Thr Val Leu Phe Ala Gly Ser Asn Phe Pro Phe Ser Glu Val Glu Gly Thr Phe Arg Asn Val Asp Asn Phe Ile Gln Ile Asp Ile Asp Pro Ala Met Leu Gly Lys Arg His His Ala Asp Val Ala Ile Leu Gly Asp Ala Gly Leu Ala Ile Asp Glu Ile Leu Asn Lys Val Asp Ala Val Glu Glu Ser Ala Trp Trp Thr Ala Asn Leu Lys Asn Ile Ala Asn Trp Arg Glu Tyr Ile Asn Met Leu Glu Thr Lys Glu Glu Gly Asp Leu Gln Phe Tyr Gln Val Tyr Asn Ala Ile Asn Asn His Ala Asp Glu Asp Ala Ile Tyr Ser Ile Asp Val Gly Asn Ser Thr Gln Thr Ser Ile Arg His Leu His Met Thr Pro Lys Asn Met Trp Arg Thr Ser Pro Leu Phe Ala Thr Met Gly Ile Ala Ile Pro Gly Gly Leu Gly Ala Lys Asn Thr Tyr Pro Asp Arg Gln Val Trp Asn Ile Ile Gly Asp Gly Ala Phe Ser Met Thr Tyr Pro Asp Val Val Thr Asn Val Arg Tyr Asn Met Pro Val Ile Asn Val Val Phe Ser Asn Thr Glu Tyr Ala Phe Ile Lys Asn Lys Tyr Glu Asp Thr Asn Lys Asn Leu Phe Gly Val Asp Phe Thr Asp Val Asp Tyr Ala Lys Ile Ala Glu Ala Gln Gly Ala Lys Gly Phe Thr Val Ser Arg Ile Glu Asp Met Asp Arg Val Met Ala Glu Ala Val Ala Ala Asn Lys Ala Gly His Thr Val Val Ile Asp Cys Lys Ile Thr Gln Asp Arg Pro Ile Pro Val Glu Thr Leu Lys Leu Asp Ser Lys Leu Tyr Ser Glu Asp Glu Ile Lys Ala Tyr Lys Glu Arg Tyr Glu Ala Ala Asn Leu Val Pro Phe Arg Glu Tyr Leu Glu Ala Glu Gly Leu Glu Ser Lys Tyr Ile Lys −B 〔式中、Aはアミノ酸残基、水素原子またはアセチル基
を示し、Bはアミノ酸残基、−OHまたは−NH2 を示
す〕。
1. A polydeoxyribonucleic acid that is a pyruvate oxidase gene encoding the following amino acid sequence from the N-terminal side, or a recombinant DNA in which an expression vector contains polydeoxyribonucleic acid that is a constituent component of the gene.
To a host microorganism to obtain a transformant, the transformant is cultured to express the genetic information of the polydeoxyribonucleic acid, and then the polypeptide which is pyruvate oxidase or the pyruvate oxidase is a constituent component. A method for producing pyruvate oxidase, which comprises collecting a polypeptide. A-Ser Asp Asn Lys Ile Asn Ile Gly Leu Ala Val Met Lys Ile Leu Glu Ser Trp Gly Ala Asp Thr Ile Tyr Gly Ile Pro Ser Gly Thr Leu Ser Ser Leu Met Asp Ala Met Gly Glu Glu Glu Aslu Asn Val Lys Phe Leu Gln Val Lys His Glu Glu Val Gly Ala Met Ala Ala Val Met Gln Ser Lys Phe Gly Gly Asn Leu Gly Val Thr Val Gly Ser Gly Gly Pro Gly Ala Ser His Leu Ile Asn Gly Leu Tyr Asp Ala Ala Met Asp Asn Ile Pro Val Val Ala Ile Leu Gly Ser Arg Pro Gln Arg Glu Leu Asn Met Asp Ala Phe Gln Glu Leu Asn Gln Asn Pro Met Tyr Asp His Ile Ala Val Tyr Asn Arg Arg Val Ala Tyr Ala Glu Gln Leu Pro Lys Leu Val Asp Glu Ala Ala Arg Met Ala Ile Ala Lys Arg Gly Val Ala Val Leu Glu Val Pro Gly Asp Phe Ala Lys Val Glu Ile Asp Asn Asp Gln Trp Tyr Ser Ser Ala Asn Ser Leu Arg Lys Tyr Ala Pro Ile Ala Pro Ala Ala Gln Asp Ile Asp Ala Ala Val Glu Leu Leu Asn Asn Ser Lys Arg Pro Val Ile Tyr Ala Gly Ile Gly Thr Met Gly His Gly Pro Ala Val Gln Glu Leu Ala Arg Lys Ile Lys Ala Pro Val Ile Thr Thr Gly Lys Asn Phe Glu Thr Phe Glu Trp Asp Ph e Glu Ala Leu Thr Gly Ser Thr Tyr Arg Val Gly Trp Lys Pro Ala Asn Glu Thr Ile Leu Glu Ala Asp Thr Val Leu Phe Ala Gly Ser Asn Phe Pro Phe Ser Glu Val Glu Gly Thr Phe Arg Asn Val Asp Asn Phe Ile Gln Ile Asp Ile Asp Pro Ala Met Leu Gly Lys Arg His His Ala Asp Val Ala Ile Leu Gly Asp Ala Gly Leu Ala Ile Asp Glu Ile Leu Asn Lys Val Asp Ala Val Glu Glu Ser Ala Trp Trp Thr Ala Asn Leu Lys Asn Ile Ala Asn Trp Arg Glu Tyr Ile Asn Met Leu Glu Thr Lys Glu Glu Gly Asp Leu Gln Phe Tyr Gln Val Tyr Asn Ala Ile Asn Asn His Ala Asp Glu Asp Ala Ile Tyr Ser Ile Asp Val Gly Asn Ser Thr Gln Thr Ser Ile Arg His Leu His Met Thr Pro Lys Asn Met Trp Arg Thr Ser Pro Leu Phe Ala Thr Met Gly Ile Ala Ile Pro Gly Gly Leu Gly Ala Lys Asn Thr Tyr Pro Asp Arg Gln Val Trp Asn Ile Ile Gly Asp Gly Ala Phe Ser Met Thr Tyr Pro Asp Val Val Thr Asn Val Arg Tyr Asn Met Pro Val Ile Asn Val Val Phe Ser Asn Thr Glu Tyr Ala Phe Ile Lys Asn Lys Tyr Glu Asp Thr Asn Lys Asn Leu Phe Gly Val Asp Phe Thr Asp Val Asp Tyr Ala Lys Ile Al a Glu Ala Gln Gly Ala Lys Gly Phe Thr Val Ser Serg Ile Glu Asp Met Asp Arg Val Met Ala Glu Ala Val Ala Ala Asn Lys Ala Gly His Thr Val Val Ile Asp Cys Lys Ile Thr Gln Asp Arg Pro Ile Pro Val Glu Thr Leu Lys Leu Asp Ser Lys Leu Tyr Ser Glu Asp Glu Ile Lys Ala Tyr Lys Glu Arg Tyr Glu Ala Ala Asn Leu Val Pro Phe Arg Glu Tyr Leu Glu Ala Glu Gly Leu Glu Ser Lys Tyr Ile Lys -B amino acid residues, represents a hydrogen atom or an acetyl group, B denotes an amino acid residue, -OH or -NH 2].
【請求項2】 該ポリデオキシリボ核酸が、ラクトバシ
ラセア科またはストレプトコッカセア科に属する微生物
から由来してなるピルビン酸オキシダーゼ遺伝子または
該遺伝子を構成成分としてなる請求項1記載の製造法。
2. The method according to claim 1, wherein the polydeoxyribonucleic acid comprises a pyruvate oxidase gene derived from a microorganism belonging to the Lactobacillusaceae family or the Streptococcus family, or the gene as a constituent component.
【請求項3】 ストレプトコッカセア科に属する微生物
から由来してなるピルビン酸オキシダーゼ遺伝子が、ア
エロコッカス属の該ピルビン酸オキシダーゼ生産菌より
得られたポリデオキシリボ核酸である請求項2記載の製
造法。
3. The method according to claim 2, wherein the pyruvate oxidase gene derived from a microorganism belonging to the Streptococcus family is a polydeoxyribonucleic acid obtained from the pyruvate oxidase-producing bacterium of the genus Aerococcus.
【請求項4】 ポリデオキシリボ核酸が、5’末端側よ
り式 X−TCA GAT AAC AAA ATT AAC ATC GGT TTA GCA GTT ATG AAG ATT TTA GAA TCT TGG GGA GCA GAT ACT ATT TAT GGT ATT CCT TCA GGT ACT TTA AGC TCA TTA ATG GAT GCT ATG GGT GAA GAA GAA AAC AAC GTC AAA TTC CTA CAA GTG AAA CAC GAA GAA GTA GGT GCA ATG GCT GCT GTA ATG CAA AGC AAA TTC GGC GGT AAC TTA GGT GTT ACT GTA GGT TCT GGT GGA CCA GGT GCA TCT CAC TTG ATC AAC GGT TTA TAC GAT GCA GCA ATG GAT AAC ATT CCA GTA GTT GCG ATC TTA GGT TCT CGT CCA CAA CGC GAA TTA AAC ATG GAC GCT TTC CAA GAA TTA AAC CAG AAC CCA ATG TAC GAC CAT ATT GCA GTT TAC AAC CGT CGT GTA GCT TAT GCT GAG CAA TTA CCA AAA TTA GTT GAC GAA GCA GCT CGT ATG GCT ATC GCT AAA CGC GGT GTA GCA GTT CTA GAA GTA CCT GGT GAT TTT GCT AAA GTT GAA ATC GAC AAC GAC CAA TGG TAT TCA TCT GCA AAC AGC TTA CGT AAA TAT GCA CCA ATC GCT CCA GCA GCA CAA GAT ATC GAC GCA GCA GTT GAA TTA TTA AAC AAC TCT AAA CGT CCA GTT ATC TAC GCT GGT ATT GGT ACT ATG GGC CAC GGT CCT GCA GTT CAA GAA TTA GCT CGT AAA ATC AAA GCG CCA GTT ATC ACT ACT GGT AAA AAC TTT GAA ACT TTC GAG TGG GAT TTC GAA GCG TTA ACA GGT TCT ACT TAT CGT GTA GGT TGG AAA CCA GCT AAC GAA ACA ATT TTA GAA GCT GAC ACA GTA TTA TTT GCT GGT TCA AAC TTC CCA TTC TCA GAG GTT GAA GGT ACT TTC CGT AAC GTG GAT AAC TTC ATC CAA ATC GAT ATC GAC CCA GCT ATG TTA GGT AAA CGT CAC CAC GCT GAT GTT GCT ATC TTA GGT GAT GCT GGT CTA GCA ATC GAC GAA ATC TTA AAC AAA GTA GAT GCT GTT GAA GAG TCA GCA TGG TGG ACA GCT AAC TTG AAA AAC ATC GCT AAC TGG CGT GAA TAC ATC AAC ATG TTA GAA ACT AAA GAA GAA GGC GAC TTG CAA TTC TAC CAA GTG TAC AAT GCA ATC AAC AAC CAC GCC GAC GAA GAT GCA ATC TAC TCT ATT GAT GTT GGT AAC TCA ACT CAA ACT TCT ATC CGT CAT TTA CAT ATG ACA CCT AAA AAC ATG TGG AGA ACT TCT CCA TTA TTC GCG ACA ATG GGT ATC GCT ATC CCT GGT GGT TTA GGT GCT AAA AAC ACT TAC CCA GAT CGT CAA GTT TGG AAC ATC ATC GGT GAT GGT GCT TTC TCT ATG ACT TAC CCA GAT GTA GTA ACT AAC GTA CGT TAC AAC ATG CCT GTA ATC AAC GTT GTA TTC TCT AAC ACT GAA TAT GCC TTC ATC AAA AAC AAA TAT GAA GAC ACT AAC AAA AAC TTA TTC GGT GTA GAC TTT ACA GAT GTT GAT TAC GCT AAA ATC GCT GAA GCA CAA GGT GCT AAA GGA TTT ACT GTA AGC CGT ATC GAA GAT ATG GAC CGT GTA ATG GCT GAA GCT GTT GCA GCT AAT AAA GCA GGT CAC ACT GTC GTT ATC GAC TGT AAG ATT ACT CAA GAT CGT CCA ATC CCT GTA GAA ACA TTG AAA TTA GAT TCA AAA CTT TAC AGC GAA GAC GAA ATC AAA GCT TAC AAA GAA CGC TAC GAA GCT GCT AAC TTA GTA CCA TTC AGA GAG TAC TTA GAA GCT GAA GGC TTA GAA TCT AAA TAC ATC AAA −Y 〔式中、XはTAA,TAG およびTGA 以外のコドンまたは水
素原子を示し、Yはコドンまたは水素原子を示す〕であ
る請求項3記載の製造法。
4. The polydeoxyribonucleic acid has the formula X-TCA GAT AAC AAA ATT AAC ATC GGT TTA GCA GTT ATG AAG ATT TTA GAA TCT TGG GGA GCA GAT ACT ATT TAT GGT ATT CCT TCA GGT ACT TTA AGC. TCA TTA ATG GAT GCT ATG GGT GAA GAA GAA AAC AAC GTC AAA TTC CTA CAA GTG AAA CAC GAA GAA GTA GGT GCA ATG GCT GCT GTA ATG CAA AGC AAA TTC GGC GGT AAC TTA GGT GTT ACT GTA GGT TCT GGT GGA CCA GGT GCA TCT CAC TTG ATC AAC GGT TTA TAC GAT GCA GCA ATG GAT AAC ATT CCA GTA GTT GCG ATC TTA GGT TCT CGT CCA CAA CGC GAA TTA AAC ATG GAC GCT TTC CAA GAA TTA AAC CAG AAC CCA ATG TAC GAC CAT ATT GCA GTT TAC ATAC CGT GTA GCT TAT GCT GAG CAA TTA CCA AAA TTA GTT GAC GAA GCA GCT CGT ATG GCT ATC GCT AAA CGC GGT GTA GCA GTT CTA GAA GTA CCT GGT GAT TTT GCT AAA GTT GAA ATC GAC AAC GAC CAA TGG TAT TCA TCT GCA AAC AGC TTA CGT AAA TAT GCA CCA ATC GCT CCA GCA GCA CAA GAT ATC GAC GCA GCA GTT GAA TTA TTA AAC AAC TCT AAA CGT CCA GTT ATC TAC GCT GGT ATT GGT ACT ATG GGC CAC GGT CCT GCA GTT CAA GAA TTA GCT CGT AAA ATC AAA GCG CCA GTT ATC ACT ACT GGT AAA AAC TTT GAA ACT TTC GAG TGG GAT TTC GAA GCG TTA ACA GGT TCT ACT TAT CGT GTA GGT TGG AAA CCA GCT AAC GAA ACA ATT TTA GAA GCT GAC ACA GTA TTA TTT GCT GGT TCA AAC TTC CCA TTC TCA GAG GTT GAA GGT ACT TTC CGT AAC GTG GAT AAC TTC ATC CAA ATC GAT ATC GAC CCA GCT ATG TTA GGT AAA CGT CAC CAC GCT GAT GTT GCT ATC TTA GGT GAT GCT GGT CTA GCA ATC GAC GAA ATC TTA AAA GTA GAT GCT GTT GAA GAG TCA GCA TGG TGG ACA GCT AAC TTG AAA AAC ATC GCT AAC TGG CGT GAA TAC ATC AAC ATG TTA GAA ACT AAA GAA GAA GGC GAC TTG CAA TTC TAC CAA GTG TAC AAT GCA ATC AAC AAC CAC GCC GAC GAC GAA GAT GCA ATC TAC TCT ATT GAT GTT GGT AAC TCA ACT CAA ACT TCT ATC CGT CAT TTA CAT ATG ACA CCT AAA AAC ATG TGG AGA ACT TCT CCA TTA TTC GCG ACA ATG GGT ATC GCT ATC CCT GGT GGT TTA GGT GCT AAA AAC TAC CCA GAT CGT CAA GTT TGG AAC ATC ATC GGT GAT GGT GCT TTC TCT ATG ACT TAC CCA GAT GTA GTA ACT AAC GTA CGT TAC AAC ATG CCT GTA ATC AAC GTT GTA TTC TCT AAC ACT GAA TAT GCC TTC ATC AAA AAC AAA TAT GAA GAC ACT AAC AAA AAC TTA TTC GGT GTA GAC TTT ACA GAT GTT GAT TAC GCT AAA ATC GCT GAA GCA CAA GGT GCT AAA GGA TTT ACT GTA AGC CGT ATC GAA GAT ATG GAC CGT GTA ATG GCT GAA GCT GTT GCA GCT AAT AAA GCA GGT CAC ACT GTC GTT ATC GAC TGT AAG ATT ACT CAA GAT CGT CCA ATC CCT GTA GAA ACA TTG AAA TTA GAT TCA AAA CTT TAC AGC GAA GAC GAA ATC AAA GCT TAC AAA GAA CGC TAC GAA GCT GCT AAC TTA GTA CCA TTC AGA GAG TAC 4. TTA GAA GCT GAA GGC TTA GAA TCT AAA TAC ATC AAA-Y [wherein X represents a codon or hydrogen atom other than TAA, TAG and TGA, and Y represents a codon or hydrogen atom]. Manufacturing method.
JP7004738A 1995-01-17 1995-01-17 Use of DNA having genetic information of pyruvate oxidase Expired - Lifetime JP2706223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7004738A JP2706223B2 (en) 1995-01-17 1995-01-17 Use of DNA having genetic information of pyruvate oxidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7004738A JP2706223B2 (en) 1995-01-17 1995-01-17 Use of DNA having genetic information of pyruvate oxidase

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62000903A Division JPH0767390B2 (en) 1987-01-06 1987-01-06 DNA having genetic information for pyruvate oxidase and use thereof

Publications (2)

Publication Number Publication Date
JPH09187280A true JPH09187280A (en) 1997-07-22
JP2706223B2 JP2706223B2 (en) 1998-01-28

Family

ID=11592261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7004738A Expired - Lifetime JP2706223B2 (en) 1995-01-17 1995-01-17 Use of DNA having genetic information of pyruvate oxidase

Country Status (1)

Country Link
JP (1) JP2706223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040176A1 (en) * 1998-02-03 1999-08-12 Hakuju Institute For Health Science Co., Ltd. Inspection method for microorganisms and the like, and unit therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040176A1 (en) * 1998-02-03 1999-08-12 Hakuju Institute For Health Science Co., Ltd. Inspection method for microorganisms and the like, and unit therefor

Also Published As

Publication number Publication date
JP2706223B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
JPH11243949A (en) Glucose dehydrogenase having pqq as prosthetic group and its production
FR2641285A1 (en) GLUCOSE-6-PHOSPHATE DESHYDROGENASE GENE, PLASMID AND MICROORGANISM CONTAINING THE SAME, AND PROCESS FOR THE PREPARATION OF GLUCOSE-6-PHOSPHATE DESHYDROGENASE
JP2729045B2 (en) Sarcosine oxidase and method for producing the same
JP2706223B2 (en) Use of DNA having genetic information of pyruvate oxidase
JP2942564B2 (en) DNA having genetic information of lactate oxidase and use thereof
JP4036667B2 (en) Novel glucose dehydrogenase and gene encoding the same
US4960877A (en) DNA having genetic information of L-α-glycerophosphate oxidase and application thereof
JP2593481B2 (en) DNA having genetic information of sarcosine oxidase and use thereof
JPH10248574A (en) New lactic acid-oxidizing enzyme
JPH06303981A (en) Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase
JP3335287B2 (en) Hexokinase gene
JPH11318438A (en) Recombined microorganism 3-hydroxybutyric acid dehydrogenase, its production and its use
JP3132618B2 (en) Stabilized modified protein
JPH0767390B2 (en) DNA having genetic information for pyruvate oxidase and use thereof
JP3829950B2 (en) Novel creatinine amide hydrolase
JPH10215878A (en) New hexokinase
JP3173619B2 (en) Method for producing pyroglutamyl aminopeptidase
JPH10262674A (en) Gene coding for alkaline phosphatase
JP3003785B2 (en) DNA having genetic information of isocitrate dehydrogenase and use thereof
JP3018092B2 (en) Gene of sarcosine oxidase from actinomycetes and its use
JP4161232B2 (en) Novel protein having sarcosine oxidase activity and method for producing the same
JP3318021B2 (en) DNA encoding NAD synthetase and method for producing NAD synthetase using the DNA
JPH10248572A (en) Modified sarcosine oxidase and its use
JP3743535B2 (en) Modified sarcosine oxidase
JP2764415B2 (en) DNA having genetic information of L-α-glycerophosphate oxidase and use thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930

EXPY Cancellation because of completion of term