JPH09186314A - Mos field-effect transistor - Google Patents

Mos field-effect transistor

Info

Publication number
JPH09186314A
JPH09186314A JP7353797A JP35379795A JPH09186314A JP H09186314 A JPH09186314 A JP H09186314A JP 7353797 A JP7353797 A JP 7353797A JP 35379795 A JP35379795 A JP 35379795A JP H09186314 A JPH09186314 A JP H09186314A
Authority
JP
Japan
Prior art keywords
electrode
drain
gate electrode
gate
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7353797A
Other languages
Japanese (ja)
Inventor
Kazuaki Komiyama
一明 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP7353797A priority Critical patent/JPH09186314A/en
Publication of JPH09186314A publication Critical patent/JPH09186314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To relax a field concentration between a drain and gate and to prevent the deterioration of the current driving capability and withstand voltage of a MOS field-effect transistor from being caused by a method wherein an electrode set at an equal potential with that in a drain electrode is formed in the vicinity of a gate electrode on at least the drain side. SOLUTION: An interlayer insulating film 11 is formed and thereafter, contact holes are formed and with one part of each high-concentration diffused region made to expose, applied electrodes are made to expose. After that, an aluminium film is formed on the entire surface and is patterned. By that, the high-concentration diffused region and the applied electrode, which are located on a drain side, are made to connect with each other and a source electrode 13 is formed simultaneously with the formation of a drain electrode 12, which is set at an equal potential with that in the applied electrode. A MOS FET is completed according to a normal production method. In the MOS FET formed in such a way, it is eliminated that a field concentration is generated only between low-concentration diffused regions and a gate electrode like a conventional MOS FET because an electric field between a drain and a gate is dispersed between the applied electrodes and the gate electrode and between the low-concentration diffused regions and the gate electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、LDD(Lightly
Doped Drain)構造のMOS型電界効果トランジスタ
(MOS型FET)に係り、特に高電流駆動能力、高耐
圧化を図ったMOS型FETに関する。
TECHNICAL FIELD The present invention relates to an LDD (Lightly
The present invention relates to a MOS type field effect transistor (MOS type FET) having a Doped Drain structure, and particularly to a MOS type FET having a high current drive capability and a high breakdown voltage.

【0002】[0002]

【従来の技術】図7に従来の高耐圧型LDD構造のNチ
ャネルMOS型FETの製造方法を示す。まず、P型シ
リコン基板あるいはP型ウエル領域からなる素子形成予
定領域の半導体領域1表面にシリコン酸化膜からなるゲ
ート酸化膜2を形成する。このゲート酸化膜2を通し
て、ホトレジスト3をマスクにしてイオン注入し、ソー
ス、ドレイン形成予定領域の半導体領域1表面にLDD
構造のN型の低濃度拡散領域4を形成する(図7A)。
ホトレジスト3を除去した後、ポリシリコンを全面に形
成し、パターニングを行い、ゲート電極5を形成する。
ここで、ゲート電極5は、低濃度拡散領域4の一部と重
なり合うように形成する。図に示すようにドレイン側に
ゲート電極5をオフセットする構造に形成しても良い。
更に、ゲート電極5をマスクにして、ゲート酸化膜2を
通して、イオン注入を行い、N型の低濃度拡散領域4中
に、N型の高濃度拡散領域6を形成し(図7B)、その
後、通常のMOS型FETの製造工程に従い、引き出し
用電極等を形成し、MOS型FETを完成する。
2. Description of the Related Art FIG. 7 shows a conventional method for manufacturing an N-channel MOS FET having a high breakdown voltage LDD structure. First, a gate oxide film 2 made of a silicon oxide film is formed on the surface of the semiconductor region 1 in an element formation planned region made of a P type silicon substrate or a P type well region. Ion implantation is performed through the gate oxide film 2 using the photoresist 3 as a mask, and LDD is performed on the surface of the semiconductor region 1 in the source / drain formation planned region.
An N-type low-concentration diffusion region 4 having a structure is formed (FIG. 7A).
After removing the photoresist 3, polysilicon is formed on the entire surface and patterned to form the gate electrode 5.
Here, the gate electrode 5 is formed so as to overlap a part of the low concentration diffusion region 4. As shown in the figure, the gate electrode 5 may be formed on the drain side in an offset structure.
Further, using the gate electrode 5 as a mask, ion implantation is performed through the gate oxide film 2 to form an N-type high-concentration diffusion region 6 in the N-type low-concentration diffusion region 4 (FIG. 7B). According to the usual manufacturing process of the MOS type FET, the extraction electrode and the like are formed to complete the MOS type FET.

【0003】[0003]

【発明が解決しようとする課題】このような構造のMO
S型FETは、低濃度拡散領域4とゲート電極5とが一
部重なり合うように形成することにより、ゲート電極5
に電圧が印加されると、ゲート電極近傍のキャリア濃度
が高められ、ドレイン、ゲート間の電界が緩和され、ホ
ットキャリアの発生を防止することができる。
MO having such a structure
In the S-type FET, the low-concentration diffusion region 4 and the gate electrode 5 are formed so as to partially overlap each other, so that the gate electrode 5 is formed.
When a voltage is applied to the gate electrode, the carrier concentration in the vicinity of the gate electrode is increased, the electric field between the drain and the gate is relaxed, and the generation of hot carriers can be prevented.

【0004】しかし、ゲート、ドレイン間の電圧が10
V程度と比較的低い場合には問題ないが、更に高い電圧
で駆動させる場合、このような構造を採用しても、ドレ
イン側の低濃度拡散領域4とゲート電極5との間に高い
電圧が集中的にかかることになる。その結果、ホットキ
ャリアが発生し、発生したホットキャリアはゲート酸化
膜2にトラップされる。このゲート酸化膜にトラップさ
れたホットキャリアにより、低濃度拡散領域4が一部空
乏化し、その結果、抵抗が増大し、FETの電流駆動能
力が低下するという問題があった。また、基板電流が増
大し、FETの耐圧劣化現象を引き起こすという問題が
あった。本発明は、上記問題点を解決し、ドレイン、ゲ
ート間の電界集中を緩和し、電流駆動能力及び耐圧の劣
化を起こさない構造のMOS型FETを提供することを
目的とする。
However, the voltage between the gate and the drain is 10
There is no problem if the voltage is relatively low as V, but when driving at a higher voltage, even if such a structure is adopted, a high voltage is generated between the low concentration diffusion region 4 on the drain side and the gate electrode 5. It will take intensively. As a result, hot carriers are generated, and the generated hot carriers are trapped in the gate oxide film 2. Due to the hot carriers trapped in the gate oxide film, the low-concentration diffusion region 4 is partially depleted, resulting in an increase in resistance and a reduction in the current driving capability of the FET. In addition, there is a problem that the substrate current increases, causing a breakdown voltage phenomenon of the FET. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems, to provide a MOS type FET having a structure that alleviates the electric field concentration between the drain and the gate, and does not cause the deterioration of the current driving capability and the breakdown voltage.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するため、一導電型の半導体領域と、該半導体領域中に
形成されたソース、ドレイン領域を構成する逆導電型の
低濃度拡散領域及び高濃度拡散領域と、ソース、ドレイ
ン間の前記半導体領域上に酸化膜を介して形成されたゲ
ート電極とを備えたMOS型電界効果トランジスタにお
いて、少なくともドレイン側のゲート電極近傍、即ち、
ドレイン側の前記低濃度拡散領域とゲート電極との間の
電界強度を減少させる位置にドレイン電極と同電位の電
極を備えたことを特徴とするものである。
In order to achieve the above-mentioned object, the present invention achieves the above object by forming a semiconductor region of one conductivity type and a low-concentration diffusion region of the opposite conductivity type which constitutes a source region and a drain region formed in the semiconductor region. And a high-concentration diffusion region and a gate electrode formed on the semiconductor region between the source and the drain via an oxide film, at least in the vicinity of the drain-side gate electrode, that is,
It is characterized in that an electrode having the same potential as the drain electrode is provided at a position where the electric field strength between the low concentration diffusion region on the drain side and the gate electrode is reduced.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を、N
チャネルMOS型FETを例にとり、製造工程とともに
説明する。まず、P型シリコン基板あるいはP型ウエル
等の素子形成予定領域の半導体領域1表面に、約500
オングストロームのゲート酸化膜2を形成する。その
後、ゲート酸化膜2上に、3500オングストロームの
ポリシリコン膜をCVD法により堆積させ、ホトレジス
トを使ってパターニングを行い、ゲート電極5を形成す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be described below.
The channel MOS FET will be described as an example together with the manufacturing process. First, about 500 is formed on the surface of the semiconductor region 1 in a device formation planned region such as a P-type silicon substrate or a P-type well.
An angstrom gate oxide film 2 is formed. After that, a 3500 angstrom polysilicon film is deposited on the gate oxide film 2 by the CVD method, and patterning is performed using a photoresist to form the gate electrode 5.

【0007】次に、ゲート電極5をマスクにして、ソー
ス、ドレイン形成予定領域の半導体領域1中にゲート酸
化膜2を通して、N型不純物をイオン注入し、不純物濃
度が1×1017〜1×1018cm-3程度の低濃度拡散領
域4を形成する(図1)。
Next, using the gate electrode 5 as a mask, N-type impurities are ion-implanted through the gate oxide film 2 into the semiconductor region 1 in the regions where the source and drain are to be formed, and the impurity concentration is 1 × 10 17 to 1 ×. A low concentration diffusion region 4 of about 10 18 cm -3 is formed (FIG. 1).

【0008】全面にゲート電極と選択エッチングが可能
な絶縁膜、例えば、窒化膜あるいは酸化膜をCVD法に
より形成する。次に、異方性ドライエッチングを行うこ
とで、ゲート電極5の側壁部に、窒化膜あるいは酸化膜
からなるサイドウォール7を形成する(図2)。ここ
で、サイドウォール7の横方向の寸法は、窒化膜あるい
は酸化膜の形成厚さにより、所望の厚さに形成すること
ができ、後述するように、その寸法はMOS型FETに
要求される耐圧に応じて、適宜選択される。
A gate electrode and an insulating film capable of selective etching, for example, a nitride film or an oxide film is formed on the entire surface by a CVD method. Next, anisotropic dry etching is performed to form sidewalls 7 made of a nitride film or an oxide film on the sidewalls of the gate electrode 5 (FIG. 2). Here, the lateral dimension of the sidewall 7 can be formed to a desired thickness depending on the formation thickness of the nitride film or the oxide film, and as will be described later, the dimension is required for the MOS type FET. It is appropriately selected according to the breakdown voltage.

【0009】更に、全面にポリシリコン膜8を2000
オングストローム程度、CVD法により形成する。ここ
でポリシリコン膜8は、低抵抗化のため、ドープドポリ
シリコンを用いるか、あるいは全面にノンドープのポリ
シリコン膜を形成した後、不純物を注入する。ドレイン
側のサイドウォール7及び低濃度拡散領域4の位置のポ
リシリコン膜8上に、ホトレジスト9をパターニング形
成する(図3)。
Furthermore, a polysilicon film 8 is formed on the entire surface by 2000.
It is formed by the CVD method to a thickness of about angstrom. Here, for the polysilicon film 8, in order to reduce the resistance, doped polysilicon is used, or a non-doped polysilicon film is formed on the entire surface and then impurities are implanted. A photoresist 9 is patterned and formed on the polysilicon film 8 at the positions of the drain side sidewall 7 and the low concentration diffusion region 4 (FIG. 3).

【0010】このホトレジスト9をマスクに、ポリシリ
コン膜8をエッチング除去し、ゲート電極5及びゲート
酸化膜2を露出させる。ホトレジスト9を除去し、残さ
れたポリシリコン膜を印加電極10とする。ここで、印
加電極10とゲート電極5及び低濃度拡散領域4は、サ
イドウォール7及びゲート酸化膜2によって電気的に絶
縁されている。
Using the photoresist 9 as a mask, the polysilicon film 8 is removed by etching to expose the gate electrode 5 and the gate oxide film 2. The photoresist 9 is removed, and the remaining polysilicon film is used as the application electrode 10. Here, the applied electrode 10, the gate electrode 5, and the low concentration diffusion region 4 are electrically insulated by the sidewall 7 and the gate oxide film 2.

【0011】印加電極10、ゲート電極5及びサイドウ
ォール7をマスクに、低濃度拡散領域4中にゲート酸化
膜2を通して、N型不純物をイオン注入し、不純物濃度
が1×1020〜1×1021cm-3程度の、高濃度拡散領
域6を形成する(図4)。ここで、低濃度拡散領域4上
に形成された印加電極10の寸法だけ、高濃度拡散領域
6がオフセット形成されることになるが、MOS型FE
Tの動作時には、印加電極10がドレイン電極と導電位
となり、ドレイン側の低濃度拡散領域4の多数キャリア
を蓄積するように作用し、ドレイン抵抗の低減を図るこ
とができる。
N-type impurities are ion-implanted through the gate oxide film 2 into the low-concentration diffusion region 4 using the applying electrode 10, the gate electrode 5 and the sidewall 7 as a mask, and the impurity concentration is 1 × 10 20 to 1 × 10. A high concentration diffusion region 6 of about 21 cm -3 is formed (FIG. 4). Here, the high-concentration diffusion region 6 is offset-formed by the size of the application electrode 10 formed on the low-concentration diffusion region 4.
During the operation of T, the application electrode 10 becomes conductive with the drain electrode, acts to accumulate majority carriers in the low concentration diffusion region 4 on the drain side, and the drain resistance can be reduced.

【0012】層間絶縁膜11を形成後、コンタクトホー
ルを形成し、高濃度拡散領域6の一部を露出させるとと
もに、印加電極10を露出させる。その後、全面にアル
ミニウムを形成し、パターニングすることで、ドレイン
側の高濃度拡散領域6と印加電極10を接続させ、印加
電極10を同電位とするドレイン電極12と、同時にソ
ース電極13を形成する(図5)。以下、通常の製造方
法に従い、MOS型FETを完成する。
After forming the interlayer insulating film 11, a contact hole is formed to expose a part of the high concentration diffusion region 6 and the application electrode 10. After that, aluminum is formed on the entire surface and patterned to connect the high-concentration diffusion region 6 on the drain side and the application electrode 10, and simultaneously form the drain electrode 12 having the same potential as the application electrode 10 and the source electrode 13. (Fig. 5). Hereafter, the MOS type FET is completed according to the usual manufacturing method.

【0013】このように形成されたMOS型FETは、
ドレイン、ゲート間の電界が、印加電極、ゲート電極間
及び低濃度拡散領域4、ゲート電極間に分散されるた
め、従来のように低濃度拡散領域4とゲート電極間にの
み電界集中することが無くなる。
The MOS type FET thus formed is
Since the electric field between the drain and the gate is dispersed between the application electrode and the gate electrode and between the low concentration diffusion region 4 and the gate electrode, it is possible to concentrate the electric field only between the low concentration diffusion region 4 and the gate electrode as in the conventional case. Lost.

【0014】図6に従来構造と本願発明のMOS型FE
Tについて、ドレイン領域、ゲート電極間にかかる、ド
レイン側の半導体領域中の最大電界強度のシュミレーシ
ョン結果を示す。図6において、従来プロセスは、印加
電極を設けない構造であり、本発明のサイドウォール7
の横方向の寸法を変えたときの電界強度と比較してい
る。尚、シュミレーション条件は、ゲート電圧及びバッ
クゲート電圧を0Vとし、絶縁膜中の電界は無視し、ド
レイン電圧を0〜20Vの範囲で可変とした。
FIG. 6 shows a conventional structure and the MOS type FE of the present invention.
Regarding T, the simulation result of the maximum electric field intensity in the semiconductor region on the drain side, which is applied between the drain region and the gate electrode, is shown. In FIG. 6, the conventional process has a structure in which an applying electrode is not provided, and the sidewall 7 of the present invention is used.
Is compared with the electric field strength when the horizontal dimension of is changed. The simulation conditions were such that the gate voltage and the back gate voltage were 0 V, the electric field in the insulating film was ignored, and the drain voltage was variable in the range of 0 to 20 V.

【0015】図に示すように、ドレイン、ゲート間電圧
(Vds)の増加とともに電界強度は増大していく。しか
し、本発明の構造のMOS型FETの方が、その増加の
割合が小さいことがわかる。また、サイドウォール7の
横方向の寸法が、0.2から0.6ミクロンの範囲で、
ほぼ同等に電界強度を緩和していることがわかる。
As shown in the figure, the electric field strength increases as the drain-gate voltage (Vds) increases. However, it can be seen that the rate of increase is smaller in the MOS FET having the structure of the present invention. In addition, the lateral dimension of the sidewall 7 is in the range of 0.2 to 0.6 μm,
It can be seen that the electric field strength is relaxed almost equally.

【0016】これらの結果から本発明のMOS型FET
は、従来の構造に較べて大きい動作電圧で駆動させるこ
とができることがわかる。また、動作電圧が同じ場合に
は、電界強度が低いことを示しているから、ドレイン側
の低濃度拡散層とゲート電極との間に高い電圧が集中的
にかかることがなくなる。従って、ホットキャリアの発
生が防止でき、低濃度拡散層が一部空乏化することもな
くなり、抵抗の増大や、FETの電流駆動能力が低下す
るという問題を解消することができた。更に、電界強度
の低下に伴い、耐圧の劣化を防止することもできた。
From these results, the MOS type FET of the present invention
It can be seen that can be driven with an operating voltage larger than that of the conventional structure. Further, when the operating voltages are the same, it indicates that the electric field strength is low, so that a high voltage is not concentratedly applied between the drain side low concentration diffusion layer and the gate electrode. Therefore, generation of hot carriers can be prevented, the low-concentration diffusion layer is not partially depleted, and problems such as an increase in resistance and a reduction in current driving capability of the FET can be solved. Furthermore, it was possible to prevent the breakdown voltage from deteriorating as the electric field strength decreased.

【0017】尚、上記実施の形態では、印加電極10
は、ドレイン側の低濃度拡散領域4及びサイドウォール
7上にのみ形成される構造を示しているが、このような
構造に限定されることなく、低濃度拡散領域とゲート電
極間の電界を緩和する位置に、適宜変更することができ
る。例えば、サードウォール7及びゲート電極5上に形
成しても同様な効果が得られる。また、低濃度拡散領域
4、サイドウォール7及びゲート電極5上に形成しても
良い。この場合には、ゲート電極と印加電極は、絶縁さ
れた構造をとる必要がある。また、高濃度拡散領域を形
成する際、イオン注入マスクとして、印加電極の代わり
に別のマスク材を選択しても良い。
In the above embodiment, the application electrode 10 is used.
Shows a structure formed only on the low-concentration diffusion region 4 and the sidewall 7 on the drain side. However, the structure is not limited to such a structure, and the electric field between the low-concentration diffusion region and the gate electrode is relaxed. The position can be changed appropriately. For example, the same effect can be obtained by forming it on the third wall 7 and the gate electrode 5. Further, it may be formed on the low-concentration diffusion region 4, the side wall 7, and the gate electrode 5. In this case, the gate electrode and the application electrode need to have an insulated structure. When forming the high-concentration diffusion region, another mask material may be selected as the ion implantation mask instead of the application electrode.

【0018】以上、NチャネルMOS型FETを例にと
り説明を行ってきたが、本発明は上記実施の形態に限定
されるものではなく、PチャネルMOS型FETに適用
することも可能である。
Although the N-channel MOS type FET has been described above as an example, the present invention is not limited to the above-described embodiment, and can be applied to the P-channel MOS type FET.

【0019】[0019]

【発明の効果】以上説明したように、本発明のMOS型
電界効果トランジスタによれば、ドレイン、ゲート間の
電界集中が緩和され、ホットキャリアの発生を防止する
ことができる。その結果、ドレイン側の低濃度拡散層の
空乏化や抵抗の増大を防止することができ、MOS型電
界効果トランジスタの電流駆動能力を向上させることが
できる。また、電界集中による基板電流の増大がないの
で、耐圧の劣化を防ぐことができるという効果がある。
As described above, according to the MOS type field effect transistor of the present invention, the electric field concentration between the drain and the gate is alleviated, and the generation of hot carriers can be prevented. As a result, depletion of the low-concentration diffusion layer on the drain side and increase in resistance can be prevented, and the current drive capability of the MOS field effect transistor can be improved. Further, since the substrate current does not increase due to the electric field concentration, there is an effect that the breakdown voltage can be prevented from being deteriorated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のMOS型電界効果トランジスタの製造
方法を説明する断面図である。
FIG. 1 is a cross-sectional view illustrating a method of manufacturing a MOS field effect transistor of the present invention.

【図2】本発明のMOS型電界効果トランジスタの製造
方法を説明する断面図である。
FIG. 2 is a cross-sectional view illustrating the method of manufacturing a MOS field effect transistor of the present invention.

【図3】本発明のMOS型電界効果トランジスタの製造
方法を説明する断面図である。
FIG. 3 is a cross-sectional view illustrating a method of manufacturing a MOS field effect transistor of the present invention.

【図4】本発明のMOS型電界効果トランジスタの製造
方法を説明する断面図である。
FIG. 4 is a cross-sectional view illustrating the method of manufacturing the MOS field effect transistor of the present invention.

【図5】本発明のMOS型電界効果トランジスタの製造
方法を説明する断面図である。
FIG. 5 is a cross-sectional view illustrating the method of manufacturing the MOS field effect transistor of the present invention.

【図6】本発明と従来のMOS型電界効果トランジスタ
のドレイン、ゲート間の電界強度を比較するグラフであ
る。
FIG. 6 is a graph comparing the electric field strength between the drain and the gate of the present invention and the conventional MOS field effect transistor.

【図7】従来のMOS型電界効果トランジスタの製造方
法を説明する断面図である。
FIG. 7 is a cross-sectional view illustrating a method of manufacturing a conventional MOS field effect transistor.

【符号の説明】[Explanation of symbols]

1 半導体領域 2 ゲート酸化膜 3 ホトレジスト 4 低濃度拡散領域 5 ゲート電極 6 高濃度拡散領域 7 サイドウォール 8 ポリシリコン膜 9 ホトレジスト 10 印加電極 11 層間絶縁膜 12 ドレイン電極 13 ソース電極 1 semiconductor region 2 gate oxide film 3 photoresist 4 low concentration diffusion region 5 gate electrode 6 high concentration diffusion region 7 sidewall 8 polysilicon film 9 photoresist 10 applying electrode 11 interlayer insulating film 12 drain electrode 13 source electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体領域と、該半導体領域
中に形成されたソース、ドレイン領域を構成する逆導電
型の低濃度拡散領域及び高濃度拡散領域と、ソース、ド
レイン間の前記半導体領域上に酸化膜を介して形成され
たゲート電極とを備えたMOS型電界効果トランジスタ
において、 少なくともドレイン側のゲート電極近傍に、ドレイン電
極と同電位の電極を備えたことを特徴とするMOS型電
界効果トランジスタ。
1. A semiconductor region of one conductivity type, a low-concentration diffusion region and a high-concentration diffusion region of opposite conductivity type which form a source region and a drain region in the semiconductor region, and the semiconductor between the source and the drain. A MOS type field effect transistor having a gate electrode formed on a region through an oxide film, characterized in that an electrode having the same potential as the drain electrode is provided at least near the drain side gate electrode. Field effect transistor.
【請求項2】 請求項1記載のMOS型電界効果トラン
ジスタにおいて、前記ドレイン電極と同電位の電極は、
ドレイン側の前記低濃度拡散領域とゲート電極間の電界
強度を減少させる位置に配置されたことを特徴とするM
OS型電界効果トランジスタ。
2. The MOS field effect transistor according to claim 1, wherein the electrode having the same potential as the drain electrode is
It is arranged at a position where the electric field strength between the low concentration diffusion region on the drain side and the gate electrode is reduced.
OS type field effect transistor.
JP7353797A 1995-12-28 1995-12-28 Mos field-effect transistor Pending JPH09186314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7353797A JPH09186314A (en) 1995-12-28 1995-12-28 Mos field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7353797A JPH09186314A (en) 1995-12-28 1995-12-28 Mos field-effect transistor

Publications (1)

Publication Number Publication Date
JPH09186314A true JPH09186314A (en) 1997-07-15

Family

ID=18433289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7353797A Pending JPH09186314A (en) 1995-12-28 1995-12-28 Mos field-effect transistor

Country Status (1)

Country Link
JP (1) JPH09186314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158148A (en) * 2005-12-07 2007-06-21 Oki Electric Ind Co Ltd Semiconductor device, and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158148A (en) * 2005-12-07 2007-06-21 Oki Electric Ind Co Ltd Semiconductor device, and method of manufacturing same

Similar Documents

Publication Publication Date Title
US7276747B2 (en) Semiconductor device having screening electrode and method
US7446354B2 (en) Power semiconductor device having improved performance and method
JP3185656B2 (en) Lateral field effect transistor and method of manufacturing the same
US20050205897A1 (en) High voltage insulated-gate transistor
JPH0897411A (en) Lateral trench mos fet having high withstanding voltage and its manufacture
US7732862B2 (en) Power semiconductor device having improved performance and method
JP2660451B2 (en) Semiconductor device and manufacturing method thereof
JP3219045B2 (en) Manufacturing method of vertical MISFET
JPH10209445A (en) Mosfet and manufacture thereof
US6146952A (en) Semiconductor device having self-aligned asymmetric source/drain regions and method of fabrication thereof
US6621118B2 (en) MOSFET, semiconductor device using the same and production process therefor
JP3230184B2 (en) Method for manufacturing semiconductor device
JPH03227562A (en) Insulated-gate field-effect transistor and its manufacturing method
JP2519608B2 (en) Semiconductor device and manufacturing method thereof
JPH11354785A (en) Field effect transistor, semiconductor integrated circuit device comprising the same, and its manufacture
JPH09186314A (en) Mos field-effect transistor
JPH1145999A (en) Semiconductor device and manufacture thereof and image display device
JP2519541B2 (en) Semiconductor device
JP2540754B2 (en) High voltage transistor
JPH04115538A (en) Semiconductor device
US20050116285A1 (en) Semiconductor device and manufacturing method thereof
JP3260200B2 (en) Method for manufacturing semiconductor device
KR100516230B1 (en) Method for fabricating transistor of semiconductor device
JP2507981B2 (en) Manufacturing method of complementary MIS transistor
KR100386939B1 (en) Semiconductor device and method of manufacturing the same