JPH09186210A - Observing method of section of integrated circuit - Google Patents

Observing method of section of integrated circuit

Info

Publication number
JPH09186210A
JPH09186210A JP8315222A JP31522296A JPH09186210A JP H09186210 A JPH09186210 A JP H09186210A JP 8315222 A JP8315222 A JP 8315222A JP 31522296 A JP31522296 A JP 31522296A JP H09186210 A JPH09186210 A JP H09186210A
Authority
JP
Japan
Prior art keywords
section
cross
sample
ion beam
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8315222A
Other languages
Japanese (ja)
Other versions
JP2992682B2 (en
Inventor
Hiroyasu Izai
弘泰 伊在井
Takashi Minafuji
孝 皆藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18062874&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09186210(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP8315222A priority Critical patent/JP2992682B2/en
Publication of JPH09186210A publication Critical patent/JPH09186210A/en
Application granted granted Critical
Publication of JP2992682B2 publication Critical patent/JP2992682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an effect of an indented part of a surface from appearing in a section as a longitudinal stripe and thereby to enable attainment of an exact section, by tilting a sample at the time of processing the section at an arbitrary position of the sample and by forming the section in the direction vertical to a plane containing the axis of the tilt. SOLUTION: The position of contact of a sample LSI 1 to be observed is determined on the basis of a scanning ion microscope image and then a region 3 containing the contact is filmed by, an FIBCVD method. After filming, a sample stage is rotated so that the direction on the surface of the sample of a part of which the section is to be formed be at an angle of 90 deg. to the axis of the tilt, and then a square-shape hole is made 4 by an etching function, with the position 2 of the section to be observed made one side, by tilting the sample stage at an appropriate angle. Since FIB is cast obliquely on the sample 1 at the time of this processing of the section, a longitudinal stripe of the plane of the section due to steep indentation of the surface does not appear, and even when the effect thereof is produced, it is so small that only a few slant stripes are left, and thus an exact shape of the section is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、不良解析などのた
めに半導体デバイスの特定位置を断面出し加工し、観察
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for observing a specific position of a semiconductor device by cross-sectioning and observing it for defect analysis and the like.

【0002】[0002]

【従来の技術】LSI(大規模集積回路)等の高集積
化、微細化に伴い、開発工程や製造工程におけるLSI
の断面加工、断面観察を集束イオンビーム装置で実施す
る技術が示されている。
2. Description of the Related Art LSI (Large Scale Integrated Circuit) LSIs in the development process and manufacturing process are becoming more integrated and miniaturized.
A technique for performing the cross-section processing and cross-section observation of the above with a focused ion beam device is shown.

【0003】これは、走査イオン顕微鏡機能により断面
加工部を位置出しし、さらにマスクレスエッチング機能
により断面加工部を一面として、角形に穴あけし、所望
の断面部を露出させた後、試料を傾斜させて、断面部を
イオンビーム照射方向に向けさせ、再び、走査イオン顕
微鏡機能により断面加工部を観察する技術である。
This is because the cross-section processed portion is positioned by the scanning ion microscope function, and the cross-section processed portion is made one surface by the maskless etching function to form a square hole to expose the desired cross-sectional portion, and then the sample is tilted. Then, the cross section is directed toward the ion beam irradiation direction, and the cross section processing section is observed again by the scanning ion microscope function.

【0004】[0004]

【発明が解決しようとする課題】この方法では、試料表
面の凹凸部が切断断面に影響を与え、縦筋が走る現象が
生じ、正確な断面像が得難い欠点があった。この解決手
段の一つとして、断面切断の前に予め試料の表面をFI
BCVD(集束イオンビーム化学的気相成長)法により
処理し平坦化することで解決できるが、この場合、試料
表面が平坦化されるため、配線パターンが走査イオン顕
微鏡像上では見にくくなり加工場所がわかりにくくなる
場合がある。
However, this method has a drawback in that the irregularities on the surface of the sample affect the cut cross-section, causing a phenomenon that vertical stripes run, making it difficult to obtain an accurate cross-sectional image. As one of the means for solving this problem, before the cross section cutting, the surface of the sample is FI in advance.
This can be solved by processing by BCVD (Focused Ion Beam Chemical Vapor Deposition) method and flattening, but in this case, since the sample surface is flattened, the wiring pattern is difficult to see on the scanning ion microscope image, and the processing place is It may be difficult to understand.

【0005】本発明の目的は、上記欠点を解決した断面
加工法を提供することにある。
An object of the present invention is to provide a cross-section processing method which solves the above-mentioned drawbacks.

【0006】[0006]

【課題を解決するための手段】本願において開示される
発明の概要を説明すれば、次のとおりである。 試料の断面形成部を走査イオン顕微鏡機能を用いて、
位置出しを行う。 場合により、次に、マスクレスエッチング機能によっ
て、断面加工位置を含む領域に局所的に膜付けを行う。
The outline of the invention disclosed in the present application is as follows. Using the scanning ion microscope function, the section forming part of the sample,
Perform positioning. In some cases, next, a film is locally applied to a region including a cross-section processing position by a maskless etching function.

【0007】次に、マスクレスエッチング機能によっ
て、角形の穴あけ加工を行い、その際、加工穴の側壁の
一つが観察した断面位置となるようにする。 次に、試料を必要に応じ回転した後傾斜し、所望観察
断面が現れるように断面加工を行う。
Next, the maskless etching function is used to form a square hole, so that one of the side walls of the hole is at the observed cross-sectional position. Next, the sample is rotated as needed and then tilted to perform cross-section processing so that a desired observation cross-section appears.

【0008】観察したい断面を観察できる方向に試料
を回転、傾斜し、走査イオン顕微鏡機能を用いて、前記
加工穴の断面観察(計測、分析を含む)を行う。 尚、加工順序として上記に記した試料の回転、傾斜を
上記の後(上記を実行しない場合は上記の後)に
行い、次に角形に穴あけ加工を行い、その際、加工穴の
一つが観察したい断面位置になるように加工する順序で
も解決の手段となる。
The sample is rotated and tilted in a direction in which the desired cross section can be observed, and the cross section of the machined hole is observed (including measurement and analysis) using the scanning ion microscope function. In addition, the rotation and tilt of the sample described above as the processing order is performed after the above (or after the above if the above is not executed), and then the square hole is drilled. At that time, one of the drilled holes is observed. The order of processing to obtain the desired cross-section position is also a solution.

【0009】この構成により、試料の任意位置の断面加
工時に、試料を傾斜させ、その傾斜軸を含む面に対し垂
直方向に断面形成することにより、表面の凹凸部の影響
が断面へ縦筋となって現れるのを防ぐことができるの
で、正確な断面が得られる。
With this structure, when the cross section of the sample is processed at an arbitrary position, the sample is tilted and the cross section is formed in the direction perpendicular to the plane including the tilt axis. Since it can be prevented from appearing, an accurate cross section can be obtained.

【0010】[0010]

【発明の実施の形態】図1は本発明の一実施例であるイ
オンビームによるLSIのミクロ断面加工方法を説明す
るための図で、図1(a)はLSIの観察したい断面位
置2を一点鎖線示した図、図1(b)は上記観察断面位
置2を含む領域をFIBCVD法で膜付けしたところを
ハッチングで示した図、図1(c)は図1(b)の試料
を試料ステージの回転機構により時計方向に90゜回転し
た後を示した図、図1(d)は試料ステージを傾斜(右
側をアップ)させた図、図1(e)はエッチング機能に
より観察位置を1辺とした角形の穴あけをした図、図1
(f)は試料ステージを傾斜したまま反時計方向に90゜
回転した後を示した図、図1(g)はさらに試料ステー
ジを傾斜(例えば60゜に)させて、断面をイオンビーム
照射方向へ観察可能の位置に向けた図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining a method for processing a micro cross section of an LSI by an ion beam according to an embodiment of the present invention. FIG. FIG. 1 (b) is a diagram showing by hatching a region including the observation cross-section position 2 formed by the FIBCVD method, and FIG. 1 (c) is a diagram showing the sample stage of FIG. 1 (b). Fig. 1 (d) shows the sample stage tilted (right side up), and Fig. 1 (e) shows the observation position on one side due to the etching function. Figure with a square hole
(F) is a diagram showing a state in which the sample stage is rotated 90 ° counterclockwise with the sample stage tilted, and FIG. 1 (g) further tilts the sample stage (for example, to 60 °) to show the cross section in the ion beam irradiation direction. It is a figure which turned to the position which can be observed.

【0011】図2(a)は従来の加工方法で断面を形成
した一例を示した図、図2(b)は本発明を実施して断
面を形成した一例を示した図である。図3は本発明が使
用する集束イオンビーム装置および画像処理回路図であ
る。ここに、1はLSI,2は断面加工位置、3はFI
BCVDによる膜付け部分、4は穴あけ部、5は断面、
6は絶縁膜、7は上層配線、8は下層配線、9はSi基
板、10は縦筋、11はわずかな斜め筋、21はイオン鏡筒、
22は試料ステージ、23は試料ホルダー、24は試料、25は
二次荷電粒子検出器、26はガス銃、27は真空チャンバ
ー、28は集束イオンビーム、31は走査制御部、32は画像
取込み・再構成制御部、33は画像メモリ部、34は増幅
器、35は表示部を示す。
FIG. 2 (a) is a diagram showing an example of forming a cross section by a conventional processing method, and FIG. 2 (b) is a diagram showing an example of forming a cross section by implementing the present invention. FIG. 3 is a diagram of a focused ion beam apparatus and an image processing circuit used in the present invention. Here, 1 is LSI, 2 is cross-section processing position, 3 is FI
BCVD film deposition part, 4 hole forming part, 5 cross section,
6 is an insulating film, 7 is an upper layer wiring, 8 is a lower layer wiring, 9 is a Si substrate, 10 is a vertical stripe, 11 is a slight diagonal stripe, 21 is an ion barrel,
22 is a sample stage, 23 is a sample holder, 24 is a sample, 25 is a secondary charged particle detector, 26 is a gas gun, 27 is a vacuum chamber, 28 is a focused ion beam, 31 is a scanning control unit, 32 is an image acquisition / A reconstruction control unit, 33 is an image memory unit, 34 is an amplifier, and 35 is a display unit.

【0012】図1(a)に示すように観察したい試料L
SIのコンタクトを走査イオン顕微鏡像により位置出し
を行う。次に図1(b)に示すようにコンタクトを含む
領域3をFIBCVD法で膜付けする。FIBCVD法
はガス銃26により試料表面に原料ガスを吸着させ、20〜
30KeVのエネルギーで加速したイオンビーム28を局所的
に照射することにより、照射領域のみに選択的に膜を形
成する方法で、本実施例では原料ガスにW(CO)6 を用い
タングステン膜を形成している。勿論、ガスを変えて他
の金属膜形成によっても本発明は実施可能である。この
膜付けを長時間施すと、試料の膜付け領域表面が平坦化
されるため、配線パターンが走査イオン顕微鏡像上では
見にくくなるので、平坦化される前に膜付けを終了した
ほうが断面形成は容易になる。この膜付け後、図1
(c)に示すように、断面形成する部分の試料表面上の
方向が傾斜軸に対して90゜になるよう試料ステージを回
転させ、次に、試料ステージを適当角度(例えば45゜)
傾斜させて、エッチング機能により観察したい断面位置
2を一辺として、角形形状の穴あけ4を行う。この断面
加工時にはFIBが試料に斜めに照射されるので、図2
(a)の10で示すように表面の急峻な凹凸による切断断
面の縦筋は出なくなり、影響が出たとしても、図2
(b)の11で示すように斜めの筋が僅かに残る程度であ
る。したがって、より正確な断面形状が得られる。
A sample L to be observed as shown in FIG.
The SI contact is positioned by a scanning ion microscope image. Next, as shown in FIG. 1B, the region 3 including the contact is film-formed by the FIBCVD method. In the FIBCVD method, the raw material gas is adsorbed on the sample surface by the gas gun 26,
This is a method of selectively forming a film only in the irradiation region by locally irradiating the ion beam 28 accelerated with the energy of 30 KeV. In this embodiment, a tungsten film is formed by using W (CO) 6 as a source gas. doing. Of course, the present invention can be implemented by changing the gas and forming another metal film. If this film deposition is performed for a long time, the surface of the film deposition region of the sample is flattened, which makes it difficult to see the wiring pattern in the scanning ion microscope image. It will be easier. After applying this film,
As shown in (c), the sample stage is rotated so that the direction on the sample surface where the cross section is formed is 90 ° with respect to the tilt axis, and then the sample stage is rotated at an appropriate angle (for example, 45 °).
A square-shaped hole 4 is formed with the cross-sectional position 2 desired to be observed by the etching function being one side. Since the FIB is obliquely irradiated to the sample during this cross-section processing,
As shown in 10 of (a), the vertical stripes in the cut cross section due to the steep irregularities on the surface disappear, and even if there is an influence,
As shown by 11 in (b), the diagonal streaks are slightly left. Therefore, a more accurate cross-sectional shape can be obtained.

【0013】この穴あけは、まず、視野確保のための粗
い穴あけを行い、仕上げ加工と2段階に行うことによ
り、早く、かつ正確な断面加工がなされる。粗い穴あけ
は高電流ビーム (例えば2nA〜6nA)でなされ、また、
仕上げ加工は中電流ビーム(例えば2nA〜30nA)で観察
したい断面位置2に照射することにより行われ、急傾斜
の側壁断面5が形成される。
In this drilling, first, rough drilling is performed to secure a visual field, and finishing is performed in two steps, so that a quick and accurate cross-section processing is performed. Coarse drilling is done with a high current beam (eg 2n-6nA), and
The finishing process is performed by irradiating the cross-sectional position 2 to be observed with a medium current beam (for example, 2 nA to 30 nA) to form a steeply inclined side wall cross section 5.

【0014】上記実施例は試料を傾斜させてから断面形
成した例だが、粗い穴あけを行った後に試料を傾斜させ
仕上げ加工を行っても同様な端面が得られる。次に、図
1(f)に示すように、イオンビーム照射方向に試料の
加工断面が露呈するように試料ステージを回転させ、断
面部分の視野が確保できる範囲内でさらに試料ステージ
を傾斜させる。この断面を比較的低電流ビーム(例えば
2nA〜30nA)で走査イオン顕微鏡により観察する。
In the above-mentioned embodiment, the sample is tilted and then the cross-section is formed, but the same end face can be obtained even if the sample is tilted and finished after rough drilling. Next, as shown in FIG. 1F, the sample stage is rotated so that the processed cross section of the sample is exposed in the ion beam irradiation direction, and the sample stage is further tilted within a range in which the field of view of the cross section can be secured. This cross section is observed by a scanning ion microscope with a relatively low current beam (for example, 2 nA to 30 nA).

【0015】尚、断面観察したい異物などの異状部分が
小さい場合などは、膜付けしないで断面形成を実施する
こともある。このような場合にも上述の操作を行うこと
で、より正確な断面形状が得られる。
Incidentally, when the abnormal portion such as a foreign matter whose cross section is to be observed is small, the cross section may be formed without filming. Even in such a case, a more accurate cross-sectional shape can be obtained by performing the above operation.

【0016】[0016]

【発明の効果】本発明によれば、上記のように断面形成
時に試料を傾斜させることにより、試料表面の凹凸部の
影響が断面部へ縦筋となって現れるのを防止できる。し
たがって、より正確な断面像が得られる。
According to the present invention, by tilting the sample at the time of forming the cross section as described above, it is possible to prevent the influence of the uneven portions on the sample surface from appearing as vertical stripes on the cross section. Therefore, a more accurate sectional image can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法をLSIの上層配線と下層配線間
のコンタクト部の断面を観察する場合に適用した実施例
の上面説明図で、(a)はLSIの観察したい断面位置
2を一点鎖線で示した図、(b)は上記観察位置2を含
む領域をFIBCVD法で膜付けしたところをハッチン
グで示した図、(c)は試料ステージの回転機構により
試料を時計方向に90゜回転した後を示した図、(d)は
試料ステージを傾斜(右側をアップ)させた図、(e)
はエッチング機能により観察位置を一辺とした角形の穴
あけをした図、(f)は試料ステージを反時計方向に90
゜回転した後を示した図、(g)はさらに試料ステージ
を傾斜(例えば60゜) させて、断面をイオンビーム照射
方向へ観察可能の位置に向けた図である。
FIG. 1 is a top explanatory view of an embodiment in which the method of the present invention is applied when observing a cross section of a contact portion between an upper layer wiring and a lower layer wiring of an LSI, and (a) shows one section position 2 of the LSI to be observed. The view shown by the chain line, (b) shows the hatched part of the region including the observation position 2 by FIBCVD, and (c) shows the sample rotated 90 ° clockwise by the rotating mechanism of the sample stage. FIG. 6D is a diagram showing the sample stage after being processed, FIG. 7D is a diagram in which the sample stage is tilted (right side is up), and FIG.
Shows a square hole with the observation position on one side by the etching function. (F) shows the sample stage in the counterclockwise direction.
FIG. 6G is a diagram showing the state after the rotation of ∘, and FIG. 7G is a diagram in which the sample stage is further tilted (for example, 60 °) and the cross section is directed to a position where it can be observed in the ion beam irradiation direction.

【図2】(a)は従来の加工方法で断面を形成した一例
を示した図、図2(b)は本発明を実施して断面を形成
した一例を示した図である。
FIG. 2A is a diagram showing an example in which a cross section is formed by a conventional processing method, and FIG. 2B is a diagram showing an example in which a cross section is formed by carrying out the present invention.

【図3】本発明が使用する集束イオンビーム装置および
画像処理回路図である。
FIG. 3 is a schematic diagram of a focused ion beam device and an image processing circuit used in the present invention.

【符号の説明】[Explanation of symbols]

1 LSI 2 断面加工位置 3 FIBCVDによる膜付け部分 4 穴あけ部 5 断面 6 絶縁膜 7 上層配線 8 下層配線 9 Si基板 10 縦筋 11 わずかな斜め筋 21 イオン鏡筒 22 試料ステージ 23 試料ホルダー 24 試料 25 二次荷電粒子検出器 26 ガス銃 27 真空チャンバー 28 集束イオンビーム 31 走査制御部 32 画像取込み・再構成制御部 33 画像メモリ部 34 増幅器 35 表示部 1 LSI 2 Cross-section processing position 3 Film deposition part by FIBCVD 4 Drilling part 5 Cross-section 6 Insulating film 7 Upper layer wiring 8 Lower layer wiring 9 Si substrate 10 Vertical streak 11 Slight diagonal streak 21 Ion lens barrel 22 Sample stage 23 Sample holder 24 Sample 25 Secondary charged particle detector 26 Gas gun 27 Vacuum chamber 28 Focused ion beam 31 Scanning control unit 32 Image acquisition / reconstruction control unit 33 Image memory unit 34 Amplifier 35 Display unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 集積回路である試料の異物が観察したい
断面となるような所定領域で集束イオンビーム照射する
ことにより前記異物の断面加工を行い、前記形成された
異物の断面に前記集束イオンビームを照射し、前記試料
に存在する異物を観察することを特徴とする集積回路の
断面観察方法。
1. The focused ion beam is applied to the cross section of the formed foreign matter by irradiating the cross section of the foreign matter of a sample which is an integrated circuit by irradiating the focused ion beam in a predetermined region where the cross section of the foreign matter to be observed is obtained. And observing foreign matter present in the sample, the method for observing a cross section of an integrated circuit.
【請求項2】 前記異物の観察は、異物の分析である請
求項1記載の集積回路の断面観察方法。
2. The method for observing a cross section of an integrated circuit according to claim 1, wherein the observation of the foreign matter is an analysis of the foreign matter.
【請求項3】 集積回路である試料の異物が観察したい
断面となるような所定領域で集束イオンビーム照射する
ことにより前記異物の断面加工を行い、前記形成された
断面に集束イオンビームが照射されるように前記試料を
傾斜し、前記形成された異物の断面に前記集束イオンビ
ームを照射し、前記試料に存在する異物を観察すること
を特徴とする集積回路の断面観察方法。
3. The cross-section of the foreign matter is performed by irradiating a focused ion beam in a predetermined region such that the foreign matter of the sample, which is an integrated circuit, has a desired cross-section, and the formed cross-section is irradiated with the focused ion beam. A method for observing a cross section of an integrated circuit, wherein the sample is tilted as described above, the cross section of the formed foreign matter is irradiated with the focused ion beam, and the foreign matter present in the sample is observed.
【請求項4】 前記異物の観察は、異物の分析である請
求項3記載の集積回路の断面観察方法。
4. The method for observing a cross section of an integrated circuit according to claim 3, wherein the observation of the foreign matter is an analysis of the foreign matter.
【請求項5】 集積回路である試料の表面の側壁が観察
したい断面となるような所定領域で集束イオンビーム照
射することにより前記試料の所定領域で断面加工を行
い、前記形成された断面に前記集束イオンビームを照射
し、前記試料の断面を分析して観察することを特徴とす
る集積回路の断面観察方法。
5. A cross-section is processed in a predetermined region of the sample by irradiating a focused ion beam in a predetermined region such that the side wall of the surface of the sample which is an integrated circuit becomes a cross-section to be observed, and the formed cross-section is subjected to the A method of observing a cross section of an integrated circuit, which comprises irradiating a focused ion beam and analyzing and observing a cross section of the sample.
【請求項6】 集積回路である試料の表面の側壁が観察
したい断面となるような所定領域で集束イオンビーム照
射することにより前記試料の所定領域で断面加工を行
い、前記形成された断面に集束イオンビームが照射され
るように前記試料を傾斜し、前記形成された断面に前記
集束イオンビームを照射し、前記試料の断面を分析して
観察することを特徴とする集積回路の断面観察方法。
6. A cross-section is processed in a predetermined region of the sample by irradiating a focused ion beam in a predetermined region so that a side wall of the surface of the sample, which is an integrated circuit, becomes a cross-section to be observed, and the formed cross-section is focused. A method for observing a cross section of an integrated circuit, comprising inclining the sample so as to be irradiated with an ion beam, irradiating the focused ion beam on the formed cross section, and analyzing and observing the cross section of the sample.
JP8315222A 1996-11-26 1996-11-26 Cross section observation method for integrated circuits Expired - Lifetime JP2992682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8315222A JP2992682B2 (en) 1996-11-26 1996-11-26 Cross section observation method for integrated circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8315222A JP2992682B2 (en) 1996-11-26 1996-11-26 Cross section observation method for integrated circuits

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1308427A Division JP2973211B2 (en) 1989-11-27 1989-11-27 Section observation method

Publications (2)

Publication Number Publication Date
JPH09186210A true JPH09186210A (en) 1997-07-15
JP2992682B2 JP2992682B2 (en) 1999-12-20

Family

ID=18062874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8315222A Expired - Lifetime JP2992682B2 (en) 1996-11-26 1996-11-26 Cross section observation method for integrated circuits

Country Status (1)

Country Link
JP (1) JP2992682B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621081B2 (en) 2001-01-10 2003-09-16 International Business Machines Corporation Method of pole tip sample preparation using FIB
JP2014139938A (en) * 2010-11-05 2014-07-31 Hitachi High-Technologies Corp Ion milling system
KR20180109734A (en) 2017-03-27 2018-10-08 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus and sample processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621081B2 (en) 2001-01-10 2003-09-16 International Business Machines Corporation Method of pole tip sample preparation using FIB
JP2014139938A (en) * 2010-11-05 2014-07-31 Hitachi High-Technologies Corp Ion milling system
KR20180109734A (en) 2017-03-27 2018-10-08 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus and sample processing method

Also Published As

Publication number Publication date
JP2992682B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
JP2779414B2 (en) Processing and observation method of micro section
US5798529A (en) Focused ion beam metrology
KR101463245B1 (en) Focused ion beam apparatus and sample section forming and thin-piece sample preparing methods
JP3957750B2 (en) Ion beam preparation device for electron microscopy
US20090053395A1 (en) Method and System for Imaging a Cross Section of a Specimen
JP2010507782A (en) Method and sample structure for creating S / TEM sample
US10903044B1 (en) Filling empty structures with deposition under high-energy SEM for uniform DE layering
TW201442054A (en) Fiducial design for tilted or glancing mill operations with a charged particle beam
US5990478A (en) Method for preparing thin specimens consisting of domains of different materials
JP2004087174A (en) Ion beam device, and working method of the same
JPH07191449A (en) Method for correcting defect in phase shift mask and device therefor
US6884362B2 (en) Mass production of cross-section TEM samples by focused ion beam deposition and anisotropic etching
JP2973211B2 (en) Section observation method
JPH09186210A (en) Observing method of section of integrated circuit
JP3132938B2 (en) Charged beam device for cross-section processing observation and processing method
JPH08304243A (en) Sample having cross sectional thin-film, its manufacture, and its holder
US6420703B1 (en) Method for forming a critical dimension SEM calibration standard of improved definition and standard formed
US6251782B1 (en) Specimen preparation by focused ion beam technique
US6683305B1 (en) Method to obtain transparent image of resist contact hole or feature by SEM without deforming the feature by ion beam
JPH08313244A (en) Method of measuring thickness of thin film
JP2000156393A (en) Board extracting method and electronic component manufacture using the same
JPH11258129A (en) Method for making sample by focused ion beam
JP2006337266A (en) Detection method of glass substrate film thickness and method for forming thin film of glass substrate
JPH05291195A (en) Thin film processing apparatus and its method
JP2004328003A (en) Substrate extracting method and manufacturing method for electronic component using the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11