JPH09185054A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH09185054A
JPH09185054A JP7353390A JP35339095A JPH09185054A JP H09185054 A JPH09185054 A JP H09185054A JP 7353390 A JP7353390 A JP 7353390A JP 35339095 A JP35339095 A JP 35339095A JP H09185054 A JPH09185054 A JP H09185054A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
crystal molecules
electrodes
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7353390A
Other languages
Japanese (ja)
Other versions
JP2730537B2 (en
Inventor
Ichiro Hirozawa
一郎 廣沢
Norinaga Sasaki
宣良 笹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7353390A priority Critical patent/JP2730537B2/en
Publication of JPH09185054A publication Critical patent/JPH09185054A/en
Application granted granted Critical
Publication of JP2730537B2 publication Critical patent/JP2730537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To orient liquid crystal molecules in a liquid crystal display element with good controilability by impressing electric fields on the liquid crystal molecules from the directions orthogonal with each other, thereby controlling the orientation state of the liquid crystal molecules and controlling the transmittance of light. SOLUTION: Side wall electrodes 20 are disposed perpendicularly via insulating film 14, 15 between opposite transparent electrodes 13, 16 made of ITO disposed on upper and lower glass substrates 12, 17. These glass substrates 12, 17 are provided with polarizing filters 11, 18 having the planes of polarization orthogonal with each other. Liquid crystals are injected into the spacing 19 between the transparent electrodes 13 and 16. The directions of the directors of the internal liquid crystals are controlled by regulating the voltages to be impressed on the respective electrodes 13, 16, 20, by which the polarization state of the light transmitted through the liquid crystal layer is controlled and the quantity of the light transmitted through the polarizer having the planes of polarization which are disposed before and behind the liquid crystal layer and are intersected orthogonally with each other is controlled. Then, the response of the liquid crystal molecules with the electric fields is capable of adjusting the directions of the liquid crystals with good controllability by the impressed magnetic fields.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶を用いた表示
装置である液晶表示素子の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a liquid crystal display device which is a display device using a liquid crystal.

【0002】[0002]

【従来の技術】従来の液晶表示素子は、通常、ラビング
処理されたポリイミド膜をセルの内壁に設けることによ
り、液晶分子に均一な配向を与え、画面全体の均一な表
示状態を実現している。
2. Description of the Related Art In a conventional liquid crystal display element, a rubbed polyimide film is usually provided on the inner wall of a cell to give uniform alignment to liquid crystal molecules and to realize a uniform display state on the entire screen. .

【0003】ポリイミド膜のラビング処理は、バフ布ロ
ーラーとよばれるレーヨン製の布を円筒状に巻いたロー
ラーを回転させてポリイミド膜表面を擦っている。この
ラビング処理により、表面のポリイミド分子が配向し、
ポリイミド分子と液晶分子との相互作用によって液晶分
子が配向するといわれている。その詳細は例えば文献
(石原その他、リキッド クリスタルズ(Liquid Crysta
ls)、4巻、6号、第669頁、1989年、「文献1」とい
う)が参照される。
In the rubbing treatment of the polyimide film, the surface of the polyimide film is rubbed by rotating a roller made of a rayon cloth called a buff cloth roller in a cylindrical shape. By this rubbing treatment, the polyimide molecules on the surface are oriented,
It is said that the liquid crystal molecules are aligned by the interaction between the polyimide molecules and the liquid crystal molecules. For details, see the literature (Ishihara et al., Liquid Crystals (Liquid Crysta
ls), Vol. 4, No. 6, p. 669, 1989, referred to as "Document 1").

【0004】良好な液晶配向を得るためには、液晶材
料、配向膜材料(ポリイミドの種類)の選定と並んで、
ローラーの回転数、ポリイミドを塗布した基板の送り速
度、基板へのローラーの押しつけ圧力、及びラビングの
回数等のラビング処理の最適化が重要な因子となってい
る。
In order to obtain good liquid crystal alignment, along with the selection of liquid crystal material and alignment film material (type of polyimide),
Optimization of the rubbing treatment such as the number of rotations of the roller, the feeding speed of the substrate coated with the polyimide, the pressure of pressing the roller against the substrate, and the number of times of rubbing are important factors.

【0005】[0005]

【発明が解決しようとする課題】ラビング処理により表
面のポリイミド分子が配向し、ポリイミド分子と液晶分
子との相互作用によって液晶分子が配向するといわれて
おり(石原その他による上記文献1参照)、一方、この
ポリイミド膜の分子配向を観測しようといくつかの試み
がなされている。例えば特開平6-102512号公報(倉井
等、名称:「液晶表示素子の配向評価装置および液晶表
示素子の製造方法」)には、スポット径の大きな測定光
でラビング前の配向膜の複屈折位相差を測定し、ラビン
グ後のスポット径の小さい測定光で配向膜表面の複屈折
位相差を測定し、両者の差によってラビング処理の均一
性や強さを評価する方法が提案されている。また特開平
4-95845号公報(石原、名称:「配向膜の液晶配向能評
価方法」)には、配向膜表面に直線偏光を入射し配向膜
表面での反射光の光量を測定することにより、基板の状
態で配向状態を評価可能とする方法が提案されている。
また文献(沢その他、ジャパニーズ ジャーナル オブ
アプライド フィジックス(Japanese Journal ofApplie
d Physics)、33巻、第6273頁、1994年、「文献2」と
いう)にも分子配向の観測が記載されているが、上記い
ずれの方法も、定量性、信頼性の点で問題があり、実用
上必ずしも、有効な方法とはいえない。
It is said that the rubbing treatment causes the polyimide molecules on the surface to be oriented, and the liquid crystal molecules to be oriented by the interaction between the polyimide molecules and the liquid crystal molecules (see Ishihara et al., Supra). Some attempts have been made to observe the molecular orientation of the polyimide film. For example, Japanese Patent Laid-Open No. 6-102512 (Kurai et al., Name: “Alignment evaluation device for liquid crystal display device and method for manufacturing liquid crystal display device”) describes that the birefringence of the alignment film before rubbing with measuring light having a large spot diameter. A method has been proposed in which the phase difference is measured, the birefringence phase difference on the surface of the alignment film is measured with measuring light having a small spot diameter after rubbing, and the uniformity or strength of the rubbing treatment is evaluated by the difference between the two. In addition,
Japanese Patent Application Publication No. 4-95845 (Ishihara, name: "Method for Evaluating Liquid Crystal Alignment Ability of Alignment Film") describes a method for measuring the amount of reflected light on the surface of an alignment film and measuring the amount of reflected light on the surface of the alignment film. A method has been proposed in which the orientation state can be evaluated in the state.
The literature (Sawa et al., Japanese Journal of
Applied Physics (Japanese Journal of Applie
d Physics), Vol. 33, p. 6273, 1994, which is referred to as “Reference 2”). However, any of the above methods has problems in terms of quantitativeness and reliability. However, this method is not always effective in practical use.

【0006】更に、液晶分子とポリイミド分子の相互作
用が未解明であり、液晶分子の配向機構も明らかとされ
ていない状態であるため、適正なポリイミド膜の分子配
向状態は未だ不明であり、これを実現するためのラビン
グ条件の最適化も行えないことになる。
Furthermore, since the interaction between liquid crystal molecules and polyimide molecules has not been clarified and the alignment mechanism of liquid crystal molecules has not been clarified, the proper molecular alignment state of the polyimide film is still unknown. It is impossible to optimize the rubbing condition for realizing the above.

【0007】現在のところ、配向膜の材料やラビング条
件は、一般に、これまで蓄積された経験に基づいて設定
されているために、原因不明の液晶の配向不良による不
良品が発生する場合があり、この種の不良発生に対する
有効な対策を採ることは困難である。
At present, since the material of the alignment film and the rubbing conditions are generally set on the basis of accumulated experience so far, defective products due to poor alignment of the liquid crystal of unknown cause may occur. However, it is difficult to take effective measures against this kind of failure occurrence.

【0008】さらに、ラビング処理は無塵化が困難なた
めに汚染による不良を生じ易い。
Further, in the rubbing treatment, it is difficult to remove dust, so that defects due to contamination are likely to occur.

【0009】従って、本発明は上記従来技術の問題点に
鑑みて為されたものであって、ラビング処理したポリイ
ミド配向膜に関わる上記問題点を解消し、液晶表示素子
内の液晶分子を制御性よく配向させる液晶表示素子の構
造を提供することを目的とする。
Accordingly, the present invention has been made in view of the above-mentioned problems of the prior art, and solves the above-mentioned problems relating to the rubbed polyimide alignment film, thereby controlling the liquid crystal molecules in the liquid crystal display element. It is an object of the present invention to provide a structure of a liquid crystal display element which is well aligned.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、液晶分子に互いに直交する2方向から電
場を印加し液晶分子の配向状態を制御することにより光
の透過率を制御するようにしたことを特徴とする液晶表
示素子を提供する。
In order to achieve the above object, the present invention provides a method for controlling the transmittance of light by applying an electric field to liquid crystal molecules from two directions perpendicular to each other to control the alignment state of the liquid crystal molecules. The present invention provides a liquid crystal display device characterized in that:

【0011】本発明の原理・作用を以下に説明する。The principle and operation of the present invention will be described below.

【0012】本発明は、液晶分子を配向させるためにラ
ビング処理したポリイミド薄膜に代って、互いに電場の
印加方向が直交する2対の電極を設け、これらの電極に
印加する電場の強度を適宜調節することにより液晶分子
の配向を制御するようにしたものである。
According to the present invention, two pairs of electrodes whose electric field application directions are orthogonal to each other are provided in place of the rubbed polyimide thin film for aligning the liquid crystal molecules, and the intensity of the electric field applied to these electrodes is appropriately adjusted. The adjustment controls the orientation of the liquid crystal molecules.

【0013】すなわち、本発明においては、好ましく
は、光の透過面とこれに直角な1対の側壁に電極を設け
た容器中に、液晶を注入し、その外側に偏光面が互いに
垂直な偏光子を備え、それぞれの電極に印加する電圧を
調整することで内部の液晶のダイレクタの方向を制御し
て、液晶層を透過する光の偏光状態を制御して、液晶層
の前後に設けた偏光面が互いに垂直な偏光子を透過する
光の量を制御する。
That is, in the present invention, preferably, liquid crystal is injected into a container provided with electrodes on a light transmitting surface and a pair of side walls perpendicular to the light transmitting surface, and polarized light whose polarization planes are perpendicular to each other on the outside thereof. It controls the direction of the director of the internal liquid crystal by adjusting the voltage applied to each electrode to control the polarization state of the light passing through the liquid crystal layer, and the polarization provided before and after the liquid crystal layer. Controls the amount of light transmitted through polarizers whose planes are perpendicular to each other.

【0014】2対の電極のうち一方の対はITO等の材
料を用いた透明電極とし、光はその電極を透過する。も
う他方の対電極は、透明電極に対して垂直に配置され、
液晶セルの側壁を形成する。
One of the two pairs of electrodes is a transparent electrode made of a material such as ITO, and light transmits through the electrodes. The other counter electrode is arranged perpendicular to the transparent electrode,
The side wall of the liquid crystal cell is formed.

【0015】この液晶セルの外側には、偏光面が互いに
直交し、さらに側壁の電極が、印加する電場方向に対し
て、両方の偏光面が非平行となるように、2つの偏光子
を設ける。
Outside the liquid crystal cell, two polarizers are provided such that the polarization planes are orthogonal to each other and the electrodes on the side walls are both non-parallel to the direction of the applied electric field. .

【0016】この構造で、電場を透明電極間に印加する
と、光学的に単軸異方性をもつ液晶分子の軸が透明電極
に垂直となり、この状態においては、一の偏光子によっ
て直線偏光された入射光は偏光状態の影響を受けずに、
液晶層を通過して、偏光面が上記一の偏光面と直交する
他の偏光子に到達するため、光はそこで遮られる。
In this structure, when an electric field is applied between the transparent electrodes, the axis of the liquid crystal molecules having optically uniaxial anisotropy becomes perpendicular to the transparent electrode. In this state, the liquid crystal molecules are linearly polarized by one polarizer. Incident light is not affected by the polarization state,
The light passes through the liquid crystal layer and reaches another polarizer whose polarization plane is orthogonal to the one polarization plane, so that the light is blocked there.

【0017】一方、透明電極と垂直な電極間に電場を印
加すると、一の偏光子を通過した入射光は液晶層で複屈
折を起こし、楕円偏光となって、他の偏光子に到達する
ために、最終的に入射光の一部が透過する。
On the other hand, when an electric field is applied between the transparent electrode and the perpendicular electrode, incident light passing through one polarizer undergoes birefringence in the liquid crystal layer, becomes elliptically polarized light, and reaches another polarizer. Finally, part of the incident light is transmitted.

【0018】以上のように、本発明によれば、各電極間
に印加する電圧を調節することにより、セルの透過光の
強度を制御できるため、表示素子としての機能を有する
ことになる。
As described above, according to the present invention, by adjusting the voltage applied between the electrodes, the intensity of the transmitted light of the cell can be controlled, thereby having a function as a display element.

【0019】なお、本発明に係る液晶表示素子におい
て、液晶分子の電場に対する応答は、液晶の粘性、弾
性、及び誘電率により決定されるため、ポリイミド配向
膜のような、未知の因子がなく、液晶の向きを印加電場
により制御性良く調節できる。
In the liquid crystal display device according to the present invention, the response of the liquid crystal molecules to the electric field is determined by the viscosity, elasticity, and dielectric constant of the liquid crystal. Therefore, there is no unknown factor such as a polyimide alignment film. The direction of the liquid crystal can be adjusted with good controllability by the applied electric field.

【0020】[0020]

【発明の実施の形態】本発明の実施の形態を図面を参照
して以下に詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0021】[0021]

【実施形態1】本発明に係る液晶表示素子の一実施形態
を、実際に作製した液晶表示素子の構造を示す図1、図
2、及び図3を参照して以下に説明する。
[Embodiment 1] An embodiment of a liquid crystal display device according to the present invention will be described below with reference to FIGS. 1, 2 and 3 showing the structure of a liquid crystal display device actually manufactured.

【0022】本実施形態において、液晶表示素子の寸法
はおよそ2mm×2mmの正方形とされ、画像を表示する液
晶表示パネル(LCD)の1画素部の動作を模擬する目
的で作製した。
In the present embodiment, the size of the liquid crystal display element is a square of about 2 mm × 2 mm, and is manufactured for the purpose of simulating the operation of one pixel portion of a liquid crystal display panel (LCD) for displaying an image.

【0023】図2を参照して、本実施形態に係る液晶表
示素子は、上下のガラス基板12、17上に設けられた
ITO(indium-tin-oxide)製の対向する透明電極膜1
3、16の間に絶縁膜14、15を介して側壁電極20
が垂直に設けられ、ガラス基板12、17には夫々の偏
光面が互いに直交している偏光フィルター11、18が
設けられ、透明電極13、16の間の空間19に液晶が
注入される。
Referring to FIG. 2, a liquid crystal display device according to the present embodiment is provided with opposed transparent electrode films 1 made of ITO (indium-tin-oxide) provided on upper and lower glass substrates 12 and 17.
Between side walls 3 and 16 via insulating films 14 and 15
Are provided vertically, and glass substrates 12 and 17 are provided with polarizing filters 11 and 18 whose polarizing planes are orthogonal to each other, and a liquid crystal is injected into a space 19 between the transparent electrodes 13 and 16.

【0024】本実施形態に係る液晶表示素子は以下の手
順で作製した。
The liquid crystal display device according to this embodiment was manufactured in the following procedure.

【0025】まず、ガラス基板12、17上にITO製
の透明電極膜13、16を一面に蒸着する。
First, transparent electrode films 13 and 16 made of ITO are vapor-deposited on glass substrates 12 and 17.

【0026】続いて、図1において、符号1で示した側
壁電極を形成する位置に、500オングストローム(=50
nm)程度の酸化シリコン(SiO2)の絶縁膜14、
15を蒸着し、さらに金(Au)を蒸着して側壁電極1
を形成する。この金を蒸着した部分(側壁電極)は、図
2において符号20(交差した斜線部(ハッチング))
で示している。
Then, in FIG. 1, 500 angstroms (= 50) are formed at the positions where the side wall electrodes 1 are formed.
nm) of silicon oxide (SiO 2 ) insulating film 14,
15 and then gold (Au) is deposited on the side wall electrode 1.
To form The portion on which the gold is deposited (sidewall electrode) is denoted by reference numeral 20 (crossed hatched portion (hatched)) in FIG.
It shows with.

【0027】このように処理された基板2枚の、側壁電
極1とは直交する縁の部分に、封止用の熱硬化性のエポ
キシ樹脂3を塗った後、直径略5.4μmの、セルギャ
ップを保持するための、スペーサ(ミクロパール)2
(図2の符号21)を散布する。
After the thermosetting epoxy resin 3 for sealing is applied to the edges of the two substrates thus processed, which are orthogonal to the side wall electrodes 1, a cell having a diameter of approximately 5.4 μm is formed. Spacer (micropearl) 2 to maintain gap
(Reference numeral 21 in FIG. 2).

【0028】その際、スペーサ(2、21)が金を蒸着
した部分(20)に乗らないように注意する。
At this time, care must be taken so that the spacers (2, 21) do not ride on the gold-deposited portions (20).

【0029】続いて、2枚の基板を夫々のパターンが一
致するようにして張合わせ、加熱によって硬化させてセ
ルを形成する。
Subsequently, the two substrates are stuck together so that their patterns match each other, and cured by heating to form cells.

【0030】なお、熱硬化性のエポキシ樹脂3は縁全体
に塗るのではなく、図1に示すように、セル内に液晶を
注入するための穴をあけておく。
The thermosetting epoxy resin 3 is not applied to the entire edge, but a hole for injecting liquid crystal into the cell is formed as shown in FIG.

【0031】セル内に液晶を導入後、紫外線硬化性の樹
脂4(図1参照)を液晶を注入した穴につけ、紫外光を
あてて封孔する。
After the liquid crystal is introduced into the cell, an ultraviolet-curable resin 4 (see FIG. 1) is applied to the hole into which the liquid crystal has been injected, and the cell is sealed with ultraviolet light.

【0032】最後にガラスの両側に偏光フィルター1
1、18(図2参照)を貼る。
Finally, a polarizing filter 1 is provided on both sides of the glass.
Paste 1, 18 (see FIG. 2).

【0033】図3は、2枚の偏光フィルターの偏光方向
と側壁電極の向きの関係を模式的に示す図である。図3
において、斜線部25が表側の偏光フィルターを示し、
矢印の方向が偏光方向である。なお、作図の都合で、偏
光フィルター25はセルの一部分のみにあるように描か
れているが、実際は全面に貼られる。また、実際の構造
で用いられるガラス基板、スペーサパターン、エポキシ
樹脂は表示していない。
FIG. 3 is a diagram schematically showing the relationship between the polarization directions of the two polarizing filters and the directions of the side wall electrodes. FIG.
In, the hatched portion 25 indicates the polarizing filter on the front side,
The direction of the arrow is the polarization direction. Although the polarizing filter 25 is drawn only on a part of the cell for the convenience of drawing, it is actually attached on the entire surface. Further, the glass substrate, the spacer pattern, and the epoxy resin used in the actual structure are not shown.

【0034】図3を参照して、偏光フィルターの偏光方
向と側壁電極の関係について、斜線で示した上側の偏光
板25の透過方向は、実線矢印のように、右上から左下
の方向で、下側の偏光板22の振動方向は、破線矢印で
示したように、左上から右下の方向とされ、上側の偏光
板25の方向と直角とされている。
Referring to FIG. 3, regarding the relationship between the polarization direction of the polarizing filter and the side wall electrode, the transmission direction of the upper polarizing plate 25 shown by oblique lines is from the upper right to the lower left as indicated by the solid line arrow. The vibration direction of the polarizing plate 22 on the side is from the upper left to the lower right, as shown by the dashed arrow, and is perpendicular to the direction of the polarizing plate 25 on the upper side.

【0035】側壁電極23、24は、2つの偏光板2
2、25の偏光方向に対して45°の角度をなす方向に
沿って作製する。
The side wall electrodes 23 and 24 are composed of two polarizing plates 2
It is manufactured along a direction forming an angle of 45 ° with respect to the polarization directions of 2, 25.

【0036】側壁電極20と絶縁膜14、15との厚さ
(図2参照)が、共に2.77μm、すなわちセルギャ
ップが5.54μmになるように作製したセルのHe−
Neレーザーの633nmの光の透過率を測定した。
The thickness of the side wall electrode 20 and the thickness of the insulating films 14 and 15 (see FIG. 2) are both 2.77 μm, that is, the He− of the cell manufactured so that the cell gap is 5.54 μm.
The transmittance of the Ne laser at 633 nm was measured.

【0037】なお、注入した液晶は5CBで、安定な動
作が得られるように温度30℃の環境で測定した。
The injected liquid crystal was measured at 5 CB in an environment of a temperature of 30 ° C. so as to obtain a stable operation.

【0038】側壁に100Vの電圧を印加し、透明電極
に印加する電圧Vを0〜3Vの範囲で変化させた。
A voltage of 100 V was applied to the side wall, and the voltage V applied to the transparent electrode was changed in the range of 0 to 3 V.

【0039】図4に、上記測定で得られた、透明電極電
圧と透過率との関係を示す。すなわち、図4は、He−
Neレーザー633nmの光をセル表面にほぼ垂直に入
射した際の透過率の印加電圧に対する変化を測定した結
果を示したものであり、横軸は電圧、縦軸は透過率であ
る。
FIG. 4 shows the relationship between the transparent electrode voltage and the transmittance obtained by the above measurement. That is, FIG.
The graph shows the results of measuring the change in transmittance with respect to the applied voltage when light of a 633 nm Ne laser is substantially perpendicularly incident on the cell surface. The horizontal axis represents voltage, and the vertical axis represents transmittance.

【0040】図4から、透明電極電圧が0.6V以下で
は光が25%ほど透過し、1.8V以上では殆ど透過し
ないことがわかった。
FIG. 4 shows that when the transparent electrode voltage is 0.6 V or less, about 25% of the light is transmitted, and when the transparent electrode voltage is 1.8 V or more, almost no light is transmitted.

【0041】理想的には透明電極電圧が0Vのときに透
過率が50%となることが期待されるが、実際のセルギ
ャップが設計値よりずれていること、及びセルの表面や
界面で反射が起こること等が、実際に測定された最大透
過率が25%程度であったことの原因と考えられる。
Ideally, the transmittance is expected to be 50% when the transparent electrode voltage is 0 V. However, the actual cell gap is deviated from the design value, and the reflection at the cell surface or interface is caused. Is considered to be the cause of the maximum transmittance actually measured being about 25%.

【0042】[0042]

【発明の効果】以上説明したように、本発明に係る液晶
表示素子は、ラビングしたポリイミド膜を用いずに、液
晶の配向を、素子に印加する電場のみで制御することを
可能としたものである。このように、本発明によれば、
汚染の原因となるラビング処理を行なわないために汚染
による不良の発生が低減できる。
As described above, the liquid crystal display device according to the present invention enables the alignment of liquid crystal to be controlled only by the electric field applied to the device without using a rubbed polyimide film. is there. Thus, according to the present invention,
Since a rubbing process that causes contamination is not performed, occurrence of defects due to contamination can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る液晶表示素子の構成
を示す図であり、液晶表示素子の中央を画面に平行に切
断した際の断面図である。
FIG. 1 is a diagram showing a configuration of a liquid crystal display element according to an embodiment of the present invention, which is a cross-sectional view when a center of the liquid crystal display element is cut parallel to a screen.

【図2】本発明の一実施形態に係る液晶表示素子の構成
を示す図であり、液晶表示素子を画面と側壁電極に垂直
な面で切断した際の断面図である。
FIG. 2 is a diagram showing a configuration of a liquid crystal display element according to an embodiment of the present invention, which is a cross-sectional view of the liquid crystal display element taken along a plane perpendicular to a screen and sidewall electrodes.

【図3】本発明の一実施形態に係る液晶表示素子を模式
的に説明するための図であり、2枚の偏光フィルターの
偏光方向と側壁電極の向きの関係を示す図である。
FIG. 3 is a diagram schematically illustrating a liquid crystal display device according to an embodiment of the present invention, and is a diagram illustrating a relationship between the polarization direction of two polarizing filters and the direction of a side wall electrode.

【図4】本発明の一実施形態に係る液晶表示素子の光透
過率の実測データを示す図である。
FIG. 4 is a view showing measured data of light transmittance of a liquid crystal display element according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 側壁電極 2 セルギャップを保持するためのスペーサ 3 封止用の熱硬化性エポキシ樹脂 4 液晶注入部を封孔する紫外線硬化性のエポキシ樹脂 5 表面にITO透明電極膜を蒸着し裏面に偏光フィル
ターを貼ったガラス基板 11、18 偏光フィルター(夫々の偏光面は互いに直
交している) 12、17 ガラス基板 13、16 ITO透明電極膜 14、15 絶縁膜であるSiO2 19 液晶が注入される空隙 20 側壁電極 21 スペーサ 22 裏側の偏光フィルター 23、24 側壁電極 25 表側の偏光フィルター
DESCRIPTION OF SYMBOLS 1 Side wall electrode 2 Spacer for holding a cell gap 3 Thermosetting epoxy resin for sealing 4 UV curable epoxy resin for sealing a liquid crystal injection part 5 ITO transparent electrode film is vapor-deposited on the surface and a polarizing filter is formed on the back Glass substrate 11, 18 Polarization filter (each polarization plane is orthogonal to each other) 12, 17 Glass substrate 13, 16 ITO transparent electrode film 14, 15 Insulating film SiO 2 19 Liquid crystal injection gap Reference Signs List 20 side wall electrode 21 spacer 22 back side polarizing filter 23, 24 side wall electrode 25 front side polarizing filter

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】液晶分子に互いに直交する2方向から電場
を印加し液晶分子の配向状態を制御することにより光の
透過率を制御するようにしたことを特徴とする液晶表示
素子。
1. A liquid crystal display device wherein a light transmittance is controlled by applying an electric field to liquid crystal molecules in two directions perpendicular to each other to control an alignment state of the liquid crystal molecules.
【請求項2】印加する電場の方向が互いに直交するよう
に配置されてなる2対の電極を備え、前記2対の電極に
印加する電場の強度を調節して、液晶分子の配向状態を
制御するように構成してなる液晶表示素子。
2. An apparatus according to claim 1, further comprising two pairs of electrodes arranged so that directions of electric fields to be applied are orthogonal to each other, and controlling an intensity of the electric field applied to said two pairs of electrodes to control an alignment state of liquid crystal molecules. A liquid crystal display element configured to perform.
【請求項3】前記2対の電極のうち一の対電極は、光の
透過面に配設される透明電極からなり、他の対電極は、
前記透明電極に対して垂直に配置され液晶セルの側壁を
形成してなる側壁電極からなることを特徴とする請求項
2記載の液晶表示素子。
3. One of the two pairs of electrodes comprises a transparent electrode disposed on a light transmitting surface, and the other counter electrode comprises:
3. The liquid crystal display device according to claim 2, comprising a side wall electrode arranged perpendicular to the transparent electrode to form a side wall of the liquid crystal cell.
【請求項4】偏光面が互いに直交し、さらに前記側壁電
極が印加する電場方向に対して前記偏光面が共に非平行
となるように2つの偏光子を備えたことを特徴とする請
求項3記載の液晶表示素子。
4. The apparatus according to claim 3, further comprising two polarizers whose polarization planes are orthogonal to each other and which are both non-parallel to the direction of the electric field applied by said side wall electrode. The liquid crystal display element as described in the above.
【請求項5】前記側壁電極が前記1対の透明電極の間に
絶縁部材を介して挿入されてなることを特徴とする請求
項3記載の液晶表示素子。
5. The liquid crystal display device according to claim 3, wherein said side wall electrode is inserted between said pair of transparent electrodes via an insulating member.
JP7353390A 1995-12-28 1995-12-28 Liquid crystal display device Expired - Fee Related JP2730537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7353390A JP2730537B2 (en) 1995-12-28 1995-12-28 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7353390A JP2730537B2 (en) 1995-12-28 1995-12-28 Liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH09185054A true JPH09185054A (en) 1997-07-15
JP2730537B2 JP2730537B2 (en) 1998-03-25

Family

ID=18430520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7353390A Expired - Fee Related JP2730537B2 (en) 1995-12-28 1995-12-28 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2730537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111764573A (en) * 2020-06-23 2020-10-13 沧州师范学院 Electric control multifunctional hollow glass brick for indoor design and glass wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111764573A (en) * 2020-06-23 2020-10-13 沧州师范学院 Electric control multifunctional hollow glass brick for indoor design and glass wall

Also Published As

Publication number Publication date
JP2730537B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
JPH06222397A (en) Liquid crystal display device
JPH09297310A (en) Liquid crystal display element and its production
JPH10333171A (en) Liquid crystal display device
JP2924757B2 (en) Liquid crystal element
US7760300B2 (en) Sample for measuring alignment axis for liquid crystal display, method of manufacturing sample, and method of measuring alignment axis
KR20010095244A (en) Liquid crystal display device
JP4546586B2 (en) Liquid crystal display element and manufacturing method thereof
JP2730537B2 (en) Liquid crystal display device
JPH0498223A (en) Liquid crystal element
JP3658122B2 (en) Liquid crystal display element and manufacturing method thereof
US6011603A (en) Double super twisted nematic liquid crystal display with improved pre-tilt angles
JPH04331918A (en) Active matrix liquid crystal display device
KR100293807B1 (en) Liquid crystal display
JP2001051277A (en) Liquid crystal device, production thereof, liquid crystal display device and method of driving the same
JP3477504B2 (en) Liquid crystal display
KR100648217B1 (en) Vertical alignment mode lcd
JP2000075308A (en) Liquid crystal display device and preparation thereof
JPH0331821A (en) Liquid crystal electrooptical device
JPH11142854A (en) Liquid crystal display device and its production
JP3335119B2 (en) Reflective liquid crystal electro-optical device and projection display system using the same
JP2558097B2 (en) Liquid crystal electro-optical device for stereoscopic image observation
JP2004020941A (en) Liquid crystal optical modulator and liquid crystal display using the same
JP2002244159A (en) Liquid crystal display element
JPS6346413A (en) Ferroelectric liquid crystal shutter array
JPS6344634A (en) Liquid crystal electrooptic device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971118

LAPS Cancellation because of no payment of annual fees