JP3477504B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP3477504B2
JP3477504B2 JP18124698A JP18124698A JP3477504B2 JP 3477504 B2 JP3477504 B2 JP 3477504B2 JP 18124698 A JP18124698 A JP 18124698A JP 18124698 A JP18124698 A JP 18124698A JP 3477504 B2 JP3477504 B2 JP 3477504B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
electrode
electric field
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18124698A
Other languages
Japanese (ja)
Other versions
JPH11119213A (en
Inventor
升 ▲ヒ▼ 李
鳳 奎 盧
印 哲 朴
Original Assignee
ビオイ−ハイディス テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ビオイ−ハイディス テクノロジー カンパニー リミテッド filed Critical ビオイ−ハイディス テクノロジー カンパニー リミテッド
Publication of JPH11119213A publication Critical patent/JPH11119213A/en
Application granted granted Critical
Publication of JP3477504B2 publication Critical patent/JP3477504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13373Disclination line; Reverse tilt

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は液晶表示装置に関
し、より具体的には広視野角の特性を有する液晶表示装
置に関する。 【0002】 【従来の技術】従来の液晶表示素子としては、ツイスト
ネマティックモードが最も広く使用されている。図1に
示したように、このような従来の液晶表示素子は、互い
に対向するように配列された電極を有する一対の基板1
2A,12B及び基板12A,12B間の液晶層14を
備える。電極16A,16Bは一対の基板の内側表面上
に置かれている。その電極16A,16Bは互いに対向
するように配列される。配向膜18A,18Bは電極1
6A,16Bを有する基板12A,12Bの表面各々に
配列される。配向膜18A,18Bは初期配向方向へ液
晶分子を配列させる為に提供される。配向膜としてはラ
ビング処理されたポリイミドが広く用いられる。下部配
向膜18Aは、上部配向膜18Bのラビング方向と90
°程度異なるラビング方向を有する。 【0003】電界無印加時においては、液晶分子14a
は、基板12A,12Bに対して所定量のプレティルト
角でティルトされ、液晶分子は、配向方向が基板12A
から基板12Bへ向けて約90°程ツイストされる。 【0004】二つの偏光子19A,19Bは、例えば、
ノーマルホワイトの液晶表示装置の場合、これらの偏光
軸が互いに交差するように基板12A,12Bの外側に
設けられる。 【0005】このような構成を有するTNモードの液晶
表示装置においては、例えばノーマルホワイトで、図1
に示したように電界無印加時に、液晶分子が90°程度
ツイストされ、偏光板の偏光軸が交差するように配列さ
れているのことから、光が透過する。 【0006】電界印加時においては、液晶分子の光軸は
上下電極間の電界により電界方向と平行に配列されるの
で、互いに交差する偏光板により光が遮断される。即
ち、電界印加時には、液晶分子の光軸が、対向する両電
極間に発生する電界方向と平行に配列される。したがっ
て、偏光子19Aを通じて液晶に入射された光は偏光子
19Bによって吸収される。 【0007】 【発明が解決しようとする課題】しかし、電界印加時に
は、液晶分子は基板表面に所定のプレティルト角を有す
る配向膜と液晶間の表面結合力(surface anchoring for
ce) のために、電界と完全に平行には配列されない。こ
のため、セルの法線方向と、この法線方向と斜めな方向
では、液晶分子が対称をなして配列されないので光の減
速(retardation;位相遅延)が発生する。これにより、
液晶は視野角の方向によって異なる屈折率となることか
ら、均一な視野角が得られない。特に画面の上側部では
セルの法線に対して斜め方向へ画面を見る際に多量の光
漏れが発生し、イクセシブホワイト(excessive white)
現象が発生し、また、画面の下側部ではセルの法線に対
して斜め方向へ画面を見る際には、画面全体がほぼダー
ク状態で見えるイクセシブダーク(excessive dark)現象
が発生することから視野角が非常に狭くなる。 【0008】また、このような場合に、一部の光は交差
配列された偏光子を通過して部分的な光漏れが発生し、
これがコントラスト比を減少させてグレースケール反転
(grey scale inversion )現象が発生する。 【0009】光は、分子のディレクタ(molecular direc
tor)に対し所定の角度をもって液晶を通過するので若干
の減速(retardation)が生じる。即ち、液晶は図1に示
したように、視野角の方向によって違う屈折率を表す。
この場合、一部光が、セルの法線に対し斜め角度で交差
配列された偏光子を通過することからコントラスト比の
減少を起こす。また、液晶表示素子をセルの法線に対し
斜め方向から見る時、光漏れが発生し、これによりグレ
ースケール反転(grey scale inversion)が発生する。 【0010】本発明は前記課題を解決するために創案さ
れたものであり、広視野角が得られる液晶表示装置の提
供をその目的としている。また、他の目的は、電界無印
加時における光漏れを防止し、電界印加時における光透
過率を最大としてコントラスト比を向上させることがで
きる液晶表示素子の提供をその目的としている。 【0011】 【課題を解決するための手段】本発明の特徴は、第1基
板と、第1基板に対向するように配列された第2基板
と、前記第1基板と第2基板との間に配列された正の誘
電率異方性を有する液晶層と、第1及び第2偏光子とし
て、前記両偏光子の偏光軸は互いに実質的に90°の差
をなすように配列されている前記第1偏光子と、第2偏
光子と、前記液晶に電界を印加する手段として、前記手
段は前記第1基板の液晶層側に配列された第1電極と、
前記第2基板の液晶層側に配列された第2電極とを含
み、両電極は交互に対向するように配列され、前記基板
の法線に対し多数の斜めラインを有する電界を発生させ
る前記第1電極と、第2電極と、前記液晶の配向方向
を、電圧無印加時に、垂直配向させる手段として、前記
第1基板の液晶側で前記第1電極を覆うように配置され
た、液晶分子を前記第1基板に対して垂直方向に配列す
る第1垂直配向膜と、前記第2基板の液晶側で前記第2
電極を覆うように配置された、液晶分子を前記第2基板
に対して垂直方向に配列する第2垂直配向膜と、前記第
2基板と前記第2基板側に配列された偏光子との間に配
列された位相補償板と、を含む液晶表示装置において、
前記液晶は、ツイスト特性を有するカイラル剤を含む構
成とするものである。 【0012】 【0013】 【発明の実施の形態】以下、添付の図面に基づき、本発
明の望ましい実施の形態を詳細に説明する。図2(a)
及び(b)は、本発明による液晶セル20の概略断面図
である。図2(a)に示したように、第1基板22Aと
第2基板22Bが所定のセルギャップをおいて互いに対
向するように配列されている。液晶21は、インジウム
錫酸化物(indium-tin-oxide :ITO) からなる電極2
4A,24Bを有する基板22A,22B間に含まれ
る。液晶層21は薄くて長い形態の多数の分子を含む。
ここで、液晶分子28は図3Aに示したように、N
びN の方向よりN の方向でもっと長い形態を有す
る。即ち、液晶分子は、正の屈折率特性を有する。ま
た、液晶21は液晶分子の長軸が電極24A,24B間
に発生された電界の方向と平行に配列される正の誘電率
異方性を有する。液晶21はツイスト特性を有するカイ
ラルドーパント(chiral dopant) を含む。 【0014】このITO上には各々液晶分子の垂直配向
を誘導するために配向膜26が蒸着されている。偏光子
30A,30Bが互いに交差するように基板22A,2
2Bの外側上に配列される。交流電圧源27が電極24
A,24Bに連結し、ITO電極を用いて液晶を横切っ
て電圧を印加する。第1または下部電極24Aは画素当
たり多数個のスリット(slits) 、即ち、ストライプ(str
ips)形態で予定されたピッチに配列された伝導性セクシ
ョンと非導性セクションを有するパターンである。対向
する第2または上部電極24Bは伝導性セクションと非
導性セクショが同じ間隔に配列されているパターンであ
る。第1電極と第2基板が互いに対向するように配列さ
れた状態において、これら電極の伝導性セクションは所
定間隔のピッチだけ互いに対しシフトされ、電極中一つ
の電極の伝導性セクションは他の一つの電極の非導性セ
クションと対向される。 【0015】図2(a)は電界無印加条件下におけるセ
ルを示す。この条件で、液晶分子28はセル全体に亘っ
てセル法線に平行に配列される。 【0016】セル法線にそって入射した入射光は偏光子
30A,30Bにより偏光される。伝搬方向(propagati
on direction)が液晶ディレクタ(liquid crystaldirec
tor)の光軸方向に対し平行するため、いかなる複屈折
もなく、また、光学的遅延もない。 【0017】光はセルを抜け出る時に偏光された状態を
継続維持し、第1偏光子30Aに対し交差するように配
列された対向する第2偏光子30Bにより吸収されて消
滅する。斜め方向からの入射に対し、光は液晶ディレク
タ(liquid crystaldirector) に対し所定の角度で液晶
分子を通過する。従って、若干の遅延が生じる。 【0018】この場合、一部光は交差した偏光子を通過
して斜めな角度により減少されたコントラスト比を表
す。 【0019】本実施の形態では光漏れによる問題を解決
するため、第2基板22Aと第2偏光子30B間に位相
補償板32が配置される。この位相補償板32はネマテ
ィック液晶分子を含み、位相補償板32は液晶層の減速
(retardation) と実質的に同一で、電圧無印加条件下に
おいて反対値を有する。すなわち、位相補償板32は、
ディスク形態の液晶分子の積層構造をなし、位相補償板
32をなす液晶分子の各々はN 及びNの方向より
の方向でより短いディスク形態をなし、位相補償板
32はこのようなディスク形態の液晶分子の積層構造か
らなされる。液晶層21の液晶分子28はNzの方向で
位相補償板32によって補償され、実質的に等方性材料
のように見える。従って、表示装置は電界の無印加時に
全ての視野角の方向で完全なダーク状態となる。 【0020】図2(b)は電圧がしきい値電圧(thresho
ld voltage) より大きい電界印加条件下におけるセルを
示す。この条件下では、図2(b)に示したように、電
界がセル法線(cell normal) に対し斜め方向に形成され
る。従って、液晶分子はセル法線に対し斜め方向へ、即
ち電界方向へ配向し始める。液晶分子がセル法線に対し
斜めで、左右方向に対称をなすように配列されるので、
セル法線に対し斜め方向で減速値が補償され左右視野角
特性が改善される。第1偏光子を通過した直線偏光され
た光の光軸が第1偏光子の偏光軸と約45°だけ違う角
度を有する液晶分子の光軸と一致する時、光は楕円偏光
される。従って、光は最大で透過される。 【0021】図4は本発明によって製造された液晶表示
装置に対する透過率を測定したグラフである。この液晶
表示装置では誘電率異方性が10. 1であり、屈折率異
方性が0.1である液晶を用いた。セルギャップが4.
8μmであり、電極間隔が10μmであり、印加電圧が
7Vであった。また、光の波長は550nmであり、第
1偏光子は45°であり、第2偏光子は135°であ
る。図4で上部は透過率を示し、下部は液晶の分子配列
及び等電位線を示す。このグラフは電圧印加後、時間に
従うセル透過率を示す。約30ms後に透過率が飽和さ
れ、特に開口部分が入射光を100% 透過させることを
示す。 【0022】 【発明の効果】以上説明のように本発明によれば、電界
無印加時において、従来のTNモードが有するダーク状
態における光漏れによるコントラスト比が減少する問題
を解決し、ダーク状態で傾斜視野角方向を含む全ての方
向で完全なダーク状態が得られるようになる。また、電
界印加時において、液晶分子がセル法線に対し斜めに発
生した電界の方向に沿って配向される。即ち入射光に4
5°方向で配向された液晶分子によって光を最大に透過
することができる。したがって、視野角に伴う問題を解
決して高画質の広視野角が得られる。又、電界無印加時
において光漏れを防止し電界印加時の光の透過率を最大
とすることで、コントラスト比を向上させることができ
る。
DETAILED DESCRIPTION OF THE INVENTION [0001] [0001] The present invention relates to a liquid crystal display device.
More specifically, liquid crystal display devices having wide viewing angle characteristics
About the installation. [0002] 2. Description of the Related Art As a conventional liquid crystal display element, a twist is used.
Nematic mode is the most widely used. In FIG.
As shown, such conventional liquid crystal display elements are mutually
Substrates 1 having electrodes arranged to face each other
2A, 12B and the liquid crystal layer 14 between the substrates 12A, 12B
Prepare. The electrodes 16A and 16B are on the inner surfaces of a pair of substrates.
Has been placed. The electrodes 16A and 16B face each other
It is arranged to be. The alignment films 18A and 18B are electrodes 1
Each of the surfaces of the substrates 12A, 12B having 6A, 16B
Are arranged. The alignment films 18A and 18B are liquid in the initial alignment direction.
Provided to align crystal molecules. La as alignment film
Bing-treated polyimide is widely used. Bottom arrangement
The orientation film 18A is aligned with the rubbing direction of the upper orientation film 18B.
It has rubbing directions that differ by about °. When no electric field is applied, the liquid crystal molecules 14a
Is a predetermined amount of pretilt with respect to the substrates 12A and 12B.
The liquid crystal molecules are tilted at an angle, and the alignment direction of the liquid crystal molecules is
The substrate is twisted about 90 ° toward the substrate 12B. [0004] The two polarizers 19A and 19B are, for example,
In the case of a normal white liquid crystal display, these polarizations
Outside the substrates 12A and 12B so that the axes intersect each other
Provided. TN mode liquid crystal having such a structure
In the display device, for example, in normal white, FIG.
As shown in the figure, when no electric field is applied, the liquid crystal molecules
Twisted and arranged so that the polarization axes of the polarizers intersect
Light is transmitted through the When an electric field is applied, the optical axis of the liquid crystal molecule is
It is arranged parallel to the direction of the electric field by the electric field between the upper and lower electrodes
Then, the light is blocked by the polarizing plates crossing each other. Immediately
That is, when an electric field is applied, the optical axes of the liquid crystal molecules
They are arranged in parallel to the direction of the electric field generated between the poles. Accordingly
The light incident on the liquid crystal through the polarizer 19A is a polarizer.
Absorbed by 19B. [0007] However, when an electric field is applied,
Means that the liquid crystal molecules have a predetermined pretilt angle on the substrate surface
Surface anchoring force between the alignment film and the liquid crystal
Due to ce), they are not arranged completely parallel to the electric field. This
Because of the normal direction of the cell, and the diagonal direction to this normal direction
In this case, the liquid crystal molecules are not arranged symmetrically,
Retardation (phase delay) occurs. This allows
Do liquid crystals have different refractive indices depending on the viewing angle direction?
Therefore, a uniform viewing angle cannot be obtained. Especially in the upper part of the screen
A large amount of light when viewing the screen obliquely to the cell normal
Leakage occurs, Excessive white
Phenomenon occurs, and the bottom of the screen
When viewing the screen diagonally, the entire screen is almost
Dark phenomenon (excessive dark)
, The viewing angle becomes very narrow. In such a case, some light crosses
Partial light leakage occurs through the arrayed polarizers,
This reduces the contrast ratio and grayscale inversion
(grey scale inversion) phenomenon occurs. Light is a molecular direc
through the liquid crystal at a predetermined angle to
This causes a retardation. That is, the liquid crystal is shown in FIG.
As described above, the refractive index varies depending on the direction of the viewing angle.
In this case, some light intersects at an oblique angle to the cell normal
Since the light passes through the arrayed polarizers, the contrast ratio
Cause a decrease. In addition, the liquid crystal display element is
When viewed from an oblique direction, light leakage occurs, causing
-Gray scale inversion occurs. The present invention has been made to solve the above-mentioned problems.
Liquid crystal display device with a wide viewing angle.
The purpose is to serve. For other purposes,
To prevent light leakage at the time of
The contrast ratio can be improved by maximizing the
It is an object of the present invention to provide a liquid crystal display element that can be used. [0011] [Means for Solving the Problems]The feature of the present invention is the first group
Plate and a second substrate arranged to face the first substrate
And a positive invitation arranged between the first substrate and the second substrate.
A liquid crystal layer having electrical anisotropy and first and second polarizers;
The polarization axes of the two polarizers are substantially 90 ° apart from each other.
The first polarizer arranged to form
As means for applying an electric field to the photons and the liquid crystal, the hand
A step having a first electrode arranged on the liquid crystal layer side of the first substrate;
A second electrode arranged on the liquid crystal layer side of the second substrate.
The two electrodes are arranged so as to face each other alternately, and the substrate
An electric field with many oblique lines to the normal
The first electrode, the second electrode, and the alignment direction of the liquid crystal.
As a means for vertical alignment when no voltage is applied,
A liquid crystal side of the first substrate is arranged to cover the first electrode.
In addition, liquid crystal molecules are aligned in a direction perpendicular to the first substrate.
A first vertical alignment film, and the second substrate on the liquid crystal side of the second substrate.
A liquid crystal molecule disposed on the second substrate so as to cover the electrode;
A second vertical alignment film vertically arranged with respect to
Between the two substrates and the polarizer arranged on the second substrate side.
A phase compensator arranged in a row,
The liquid crystal is a chiral agent having a twist propertyIncluding
It should be. [0012] [0013] BRIEF DESCRIPTION OF THE DRAWINGS FIG.
Preferred embodiments of the present invention will be described in detail. FIG. 2 (a)
And (b) is a schematic sectional view of a liquid crystal cell 20 according to the present invention.
It is. As shown in FIG. 2A, the first substrate 22A
The second substrates 22B are paired with each other with a predetermined cell gap.
Are arranged to face each other. The liquid crystal 21 is indium
Electrode 2 made of indium-tin-oxide (ITO)
Included between substrates 22A and 22B having 4A and 24B.
You. The liquid crystal layer 21 includes many molecules in a thin and long form.
Here, the liquid crystal molecules 28 are, as shown in FIG.xPassing
And Ny N from the direction ofz Has a longer form in the direction of
You. That is, the liquid crystal molecules have a positive refractive index characteristic. Ma
In addition, the liquid crystal 21 has a long axis of liquid crystal molecules between the electrodes 24A and 24B.
Positive permittivity arranged parallel to the direction of the electric field generated in
It has anisotropy. The liquid crystal 21 has a twist characteristic.
Includes chiral dopants. On this ITO, the liquid crystal molecules are vertically aligned.
An alignment film 26 is deposited in order to induce the above. Polarizer
The substrates 22A, 2B are arranged such that the substrates 30A, 30B cross each other.
Arrayed on the outside of 2B. The AC voltage source 27 is the electrode 24
A, 24B, and across the liquid crystal using ITO electrodes
Voltage. The first or lower electrode 24A corresponds to a pixel.
Or many slits, i.e., stripes (str
(ips) form conductive sections arranged in a predetermined pitch
This is a pattern having an option and a non-conductive section. Opposite
The second or upper electrode 24B is connected to the conductive section
A pattern in which conductive sections are arranged at the same interval.
You. The first electrode and the second substrate are arranged so as to face each other.
In the closed state, the conductive sections of these electrodes are
Shifted with respect to each other by a fixed pitch, one of the electrodes
The conductive section of one electrode is the nonconductive section of the other electrode.
Opposition. FIG. 2A shows a cell under no electric field application condition.
Show Under these conditions, the liquid crystal molecules 28 extend over the entire cell.
Are arranged parallel to the cell normal. The incident light incident along the cell normal is a polarizer.
The light is polarized by 30A and 30B. Propagation direction (propagati
on direction) is the liquid crystal director (liquid crystaldirec)
tor) parallel to the optical axis direction, so any birefringence
There is no optical delay. Light exits the cell and becomes polarized
It is maintained and arranged so as to cross the first polarizer 30A.
Absorbed by the second opposing second polarizers 30B and disappears.
Perish. Light is directed to the liquid crystal
Liquid crystal at a certain angle to the liquid crystal director
Pass through the molecule. Therefore, a slight delay occurs. In this case, some light passes through the crossed polarizers
To show the reduced contrast ratio due to the oblique angle
You. This embodiment solves the problem caused by light leakage.
Phase between the second substrate 22A and the second polarizer 30B.
A compensator 32 is arranged. This phase compensator 32 is a nematic
Phase compensator 32 contains liquid crystal molecules and decelerates the liquid crystal layer.
(retardation)
Have the opposite value. That is, the phase compensator 32 is
A phase compensator with a laminated structure of disk-shaped liquid crystal molecules
Each of the 32 liquid crystal molecules is Nx And NyFrom the direction of
Nz In the form of a shorter disk in the direction of
32 is a stacked structure of such disk-shaped liquid crystal molecules?
Made. The liquid crystal molecules 28 of the liquid crystal layer 21 are oriented in the direction of Nz.
Compensated by the phase compensator 32, substantially isotropic material
looks like. Therefore, the display device is operated when no electric field is applied.
It is completely dark in all viewing angle directions. FIG. 2B shows that the voltage is a threshold voltage (threshosho).
ld voltage)
Show. Under this condition, as shown in FIG.
The field is formed diagonally to the cell normal
You. Therefore, the liquid crystal molecules are immediately oblique to the cell normal.
That is, the alignment starts in the direction of the electric field. Liquid crystal molecules
It is arranged diagonally and symmetrically in the left and right direction,
The deceleration value is compensated in the oblique direction with respect to the cell normal, and the viewing angle is
The properties are improved. Linearly polarized light passing through the first polarizer
The optical axis of the reflected light differs from the polarization axis of the first polarizer by about 45 °
When the light coincides with the optical axis of the liquid crystal molecule having the degree, the light is elliptically polarized.
Is done. Thus, light is transmitted at a maximum. FIG. 4 shows a liquid crystal display manufactured according to the present invention.
It is the graph which measured the transmittance | permeability with respect to an apparatus. This liquid crystal
In the display device, the dielectric anisotropy is 10.1 and the refractive index is different.
A liquid crystal having anisotropy of 0.1 was used. Cell gap is 4.
8 μm, the electrode spacing is 10 μm, and the applied voltage is
7V. The wavelength of the light is 550 nm,
One polarizer is at 45 ° and the second polarizer is at 135 °.
You. In FIG. 4, the upper part shows the transmittance, and the lower part shows the molecular arrangement of the liquid crystal.
And equipotential lines. This graph shows the time
3 shows the cell transmittance according to the following. Transmittance is saturated after about 30 ms
In particular, make sure that the aperture transmits 100% of the incident light.
Show. [0022] As described above, according to the present invention, the electric field
Dark state of conventional TN mode when no voltage is applied
Problem that the contrast ratio decreases due to light leakage
Solved for all persons including dark viewing angle direction in the dark state
Direction to obtain a complete dark state. In addition,
When a field is applied, liquid crystal molecules are emitted obliquely to the cell normal.
It is oriented along the direction of the generated electric field. That is, 4
Maximum transmission of light by liquid crystal molecules aligned in 5 ° direction
can do. Therefore, the problem with the viewing angle is solved.
A wide viewing angle with high image quality can be obtained. When no electric field is applied
Prevents light leakage and maximizes light transmittance when an electric field is applied
, The contrast ratio can be improved.
You.

【図面の簡単な説明】 【図1】従来のTNモードの液晶表示装置の断面図であ
る。 【図2】(a)は本発明の一実施の形態による液晶表示
装置の断面図であって、液晶表示装置に電界が印加され
なかった場合を示す図であり、(b)は本発明の一実施
の形態による液晶表示装置の断面図であって、液晶表示
装置に電界が印加された場合を示す図である。 【図3】(a)は本発明の一実施の形態に用いられる液
晶層に含まれる液晶分子の拡大図であり、(b)は本発
明の一実施の形態に用いられる位相補償板に含まれる液
晶分子の拡大図である。 【図4】本発明の一実施の形態による液晶表示装置に対
する物性試験結果を示すグラフである。 【符号の説明】 21 液晶 22A、22B 基板 24A、24B 電極 30A、30B 偏光子 32 位相補償板
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a conventional TN mode liquid crystal display device. FIG. 2A is a cross-sectional view of a liquid crystal display device according to an embodiment of the present invention, showing a case where no electric field is applied to the liquid crystal display device, and FIG. FIG. 2 is a cross-sectional view of the liquid crystal display device according to one embodiment, illustrating a case where an electric field is applied to the liquid crystal display device. FIG. 3A is an enlarged view of liquid crystal molecules included in a liquid crystal layer used in one embodiment of the present invention, and FIG. 3B is included in a phase compensator used in one embodiment of the present invention. FIG. FIG. 4 is a graph showing physical property test results for the liquid crystal display according to the embodiment of the present invention. [Description of Signs] 21 Liquid crystals 22A, 22B Substrates 24A, 24B Electrodes 30A, 30B Polarizer 32 Phase compensator

フロントページの続き (72)発明者 朴 印 哲 大韓民国 ソウル 道峰區 放鶴 1洞 672番地 31号 22/1 (56)参考文献 特開 平9−160042(JP,A) 特開 平10−232392(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1335 510 G02F 1/13 500 G02F 1/1343 Continuation of the front page (72) Inventor Park In-cheol, Seoul, Dobong-gu, Bokaku 1-dong 672 No. 31 22/1 (56) References JP-A-9-160042 (JP, A) JP-A-10-232392 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G02F 1/1335 510 G02F 1/13 500 G02F 1/1343

Claims (1)

(57)【特許請求の範囲】 【請求項1】 第1基板と第1基板に対向するように
配列された第2基板と、前記第1基板と第2基板との間
に配列された正の誘電率異方性を有する液晶層と、第1
及び第2偏光子として、前記両偏光子の偏光軸は互いに
実質的に90°の差をなすように配列されている前記第
偏光子と、第2偏光子と、前記液晶に電界を印加する
手段として、前記手段は前記第1基板の液晶層側に配列
された第1電極と、前記第2基板の液晶層側に配列され
た第2電極とを含み、両電極は交互に対向するように配
列され、前記基板の法線に対し多数の斜めラインを有す
る電界を発生させる前記第1電極と、第2電極と、前記
液晶の配向方向を、電圧無印加時に、垂直配向させる手
段として、前記第1基板の液晶側で前記第1電極を覆う
ように配置された、液晶分子を前記第1基板に対して垂
直方向に配列する第1垂直配向膜と、前記第2基板の液
晶側で前記第2電極を覆うように配置された、液晶分子
を前記第2基板に対して垂直方向に配列する第2垂直配
向膜と、前記第2基板と前記第2基板側に配列された偏
光子との間に配列された位相補償板と、を含む液晶表示
装置において、 前記液晶は、ツイスト特性を有するカイラル剤を含むこ
とを特徴とする液晶表示装置。
(57) and [Claims 1. A first substrate, a second substrate arranged to face the first substrate, arranged between the first substrate and the second substrate a liquid crystal layer having positive dielectric anisotropy, the first
And applying an electric field to the first polarizer, the second polarizer, and the liquid crystal , wherein the polarization axes of the two polarizers are arranged to have a difference of substantially 90 ° from each other. The means includes a first electrode arranged on the liquid crystal layer side of the first substrate and a second electrode arranged on the liquid crystal layer side of the second substrate, and the two electrodes alternately face each other. The first electrode generating an electric field having a number of oblique lines with respect to the normal of the substrate , the second electrode ,
A method for vertically aligning the liquid crystal when no voltage is applied.
Covering the first electrode on the liquid crystal side of the first substrate as a step
Liquid crystal molecules are arranged perpendicular to the first substrate.
A first vertical alignment film arranged in a vertical direction, and a liquid for the second substrate.
Liquid crystal molecules arranged to cover the second electrode on the crystal side
Are vertically arranged with respect to the second substrate.
And alignment films, the liquid crystal display device comprising: a phase compensator arranged between said second substrate and said second polarizer arranged on the substrate side, the liquid crystal, a chiral agent having a twist properties A liquid crystal display device comprising:
JP18124698A 1997-06-27 1998-06-26 Liquid crystal display Expired - Lifetime JP3477504B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1997/P28461 1997-06-27
KR1019970028461A KR100272267B1 (en) 1997-06-27 1997-06-27 Lcd device

Publications (2)

Publication Number Publication Date
JPH11119213A JPH11119213A (en) 1999-04-30
JP3477504B2 true JP3477504B2 (en) 2003-12-10

Family

ID=19511878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18124698A Expired - Lifetime JP3477504B2 (en) 1997-06-27 1998-06-26 Liquid crystal display

Country Status (3)

Country Link
JP (1) JP3477504B2 (en)
KR (1) KR100272267B1 (en)
DE (1) DE19828962B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404161B1 (en) * 2001-05-03 2003-11-03 엘지.필립스 엘시디 주식회사 Transmissive Liquid Crystal Display Device having Hologram Diffuser
KR101629152B1 (en) 2015-12-08 2016-06-09 전순분 Carriage vessel for ink and diluents

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69332575T2 (en) * 1992-09-18 2003-11-20 Hitachi Ltd A liquid crystal display device
JPH06110068A (en) * 1992-09-29 1994-04-22 Toshiba Corp Liquid crystal display device
CN1186682C (en) * 1997-05-30 2005-01-26 三星电子株式会社 Liquid crystal display

Also Published As

Publication number Publication date
KR19990004372A (en) 1999-01-15
DE19828962A1 (en) 1999-01-07
JPH11119213A (en) 1999-04-30
KR100272267B1 (en) 2000-11-15
DE19828962B4 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
KR100248210B1 (en) Liquid crystal display device
JP5767687B2 (en) Liquid crystal display device and manufacturing method thereof
JP3427611B2 (en) Liquid crystal display
JP2982869B2 (en) Liquid crystal display
US7864276B2 (en) Liquid crystal display device
KR100630580B1 (en) Liquid crystal display unit
US5757454A (en) Liquid crystal display device with homeotropic alignment in which two liquid crystal regions on the same subtrate have different pretilt directions because of rubbing
KR101258263B1 (en) Alignment axis measuring sample for liquid crystal display, and manufacturing method thereof
KR100255058B1 (en) Liquid crystal display apparatus having high wide visual angle and high contrast
JP2004151525A (en) Liquid crystal display
JP3292591B2 (en) Liquid crystal display device
KR100288766B1 (en) Wide viewing angle liquid crystal display device
JP3356273B2 (en) Liquid crystal display
KR100299376B1 (en) Liquid crystal display with vertical alignment mode having multiple domains
JP3477504B2 (en) Liquid crystal display
WO2007032356A1 (en) Liquid crystal display
JP4031658B2 (en) Liquid crystal display
KR20020015029A (en) Liquid crystal display element and method for fabricating the same
WO2010016284A1 (en) Vertically aligned liquid crystal display device
EP0727691A1 (en) Active matrix liquid crystal display device having homogeneously aligned non-twisted liquid crystal configuration and retardation compensation
KR0163944B1 (en) Liquid crystal display device using liquid crystal compound with chirality of negative dielectric anisotropy
KR100247305B1 (en) 4 domain parallel alignment lcd device
KR100368988B1 (en) High Opening and High Transmittance Liquid Crystal Display
JP2809980B2 (en) Liquid crystal display device and method of manufacturing the same
JPH09146125A (en) Liquid crystal display element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term